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ABSTRACT
Intel’s first heterogeneous processor, Alder Lake, combines two dif-
ferent core architectures from the Core and Atom families: Golden
Cove and Gracemont, respectively. While the heterogeneity of this
chip can improve performance and energy efficiency, it also in-
creases the complexity of scheduling decisions and power saving
mechanisms. In this paper, we analyze performance and energy
characteristics of anAlder Lake system and describe effects of power
saving mechanisms. We evaluate the factors that influence the time
required to switch core and uncore frequencies and waking cores
from idle states. In addition, we assess the efficiency of the two
core architectures across various workloads. We show that in states
with low power consumption, RAPL energy measurements are in-
accurate, and actual (externally measured) power consumption also
exhibits peculiar patterns. Through experiments, we also examine
the newly introduced user space idle states, and the novel teleme-
try capability. This information can be used by other researchers
to design efficient software and further experiments, and explain
measured performance on heterogeneous Intel processors.

CCS CONCEPTS
• Computer systems organization→Multicore architectures;
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1 INTRODUCTION
The continuous evolution of processors requires vendors to trans-
late ever-growing transistor budgets into performance improve-
ments, e.g., by including more functional units, memory controllers,
input/output (I/O) interfaces, graphics processing units (GPUs),
and caches. This trend also increases complexity, which cannot
be fully hidden from the operating system (OS) or application do-
mains. Issues like where to place threads if cores have different
frequency ranges or architectures, or where to perform a task that
might be hardware-accelerated cannot be decided on a hardware
level. Moreover, performance improvements need to be achieved
within a limited power envelope with energy efficiency as a first
order design goal. Introduced power saving techniques, however,
can contradict OS and applications performance assumptions.

Several processor vendors offer heterogeneous processor ar-
chitectures, such as ARM’s big.LITTLE or Apple M1, combining
high-performance and power-efficient cores. Intel’s first such ar-
chitecture, Alder Lake, integrates different core architectures and
various accelerating components. This work presents an architec-
ture overview of Alder Lake and an in-depth analysis of its power
efficiency properties and techniques. For example, this includes
frequency scaling of different components, idle states and their
latencies, integrated energy measurement capabilities, and recently
introduced processor feedback interfaces and OS integration.

2 BACKGROUND AND RELATEDWORK ON
ENERGY EFFICIENCY MECHANISMS

Dynamic Voltage and Frequency Scaling (DVFS) describes the
ability of a processor to change frequencies and voltages at runtime
as a trade-off of power and performance. Contemporary processors
havemultiple frequency and voltage domains, e.g., one for each core
and one for uncore components. The decision to change frequencies
is influenced by multiple factors: first, the allowed frequency or
frequency range set by the operating system, which can be influ-
enced by the user [22, 34]; second, the internal control mechanisms,
which uses one of the allowed frequencies [16, Section 14.4]; and
third, protection mechanisms to prevent overheating and a high
power consumption [16, Section 14.10]. After the decision is made,
frequencies are not changed instantaneously, but only with some
delays to change voltages as well. While the information about
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the duration of a frequency change can be communicated by the
hardware to the OS in ACPI P-state tables [32, Section 8.4.5], these
values are not necessarily correct [21]. Moreover, internal control
mechanisms delay the decisions further [6, 28].

DVFS has been used by researchers to optimize the energy effi-
ciency of programs using two different approaches: First, the region-
based tuning of frequencies uses the characteristic of a code region
to lower the frequency of components when they are not used. One
example is the reduction of processor core frequencies when code
is memory-bound, as described, for example, by Kumaraswamy et
al. [19] and Vysocky et al. [33]. The second approach applies to par-
allel applications where the non-critical paths can be slowed down
to reduce the energy consumption of the cores that execute them.
This has been shown for example by Rountree et al. [25]. Charac-
teristics of frequency transitions have been studied by Mazouz et
al. [21]. We described additional details in [6, 28, 29].

Idle States are hardware power saving mechanisms that can
be used by the OS or the hardware to switch off the clock (clock
gating) or voltage (power gating) of a part of the processor that is
not actively used to lower power dissipation. Operating systems
typically use instructions like hlt or mwait to let CPUs idle [23].
Processors can also employ idle states for whole packages, includ-
ing cores and uncore components [26]. Parts of a processor core
can also be disabled when they are not used [28]. However, idle
mechanisms introduce latencies when re-enabling the idling com-
ponents. Characteristics of idle state transitions have been studied
by our previous work for various architectures in [8, 26, 28, 29].

Modern high performance processor architectures typically op-
erate under thermal and/or power constraints when fully utilized [7,
Sec. 1.5]. Consequently, processors are equipped with mechanisms
for Power Limiting and Thermal Protection to enforce oper-
ation within the given constraints. Intel introduced the Running
Average Power Limit (RAPL) [16, Sec. 15.10], which aims to maxi-
mize performance while ensuring safe operation. RAPL also pro-
vides energy measurement data that can be read from counters
for certain power domains. Monitoring power for thermal pro-
tection is also available on other platforms such as AMD [4, 29]
and IBM [31]. In previous work we detailed accuracies and other
properties of processor and platform power measurement inter-
faces [4, 6, 28, 29, 31]. Processors can also use clock modulation to
lower power consumption for thermal protection. Here, parts of a
processor are periodically clock gated for a certain timeframe to
lower power dissipation [27]. Another approach forces cores into
idle states periodically, including all benefits and costs discussed
earlier. This concept is called Hardware Duty Cycling (HDC) on
Intel processors [16, Section 15.5].

3 ALDER LAKE PROCESSOR ARCHITECTURE
AND TEST SYSTEM

The Intel Alder Lake processor family is a heterogeneous architec-
ture that can include the following computing components: Up to
eight performance cores (P-cores) using the Golden Cove architec-
ture, up to eight efficiency cores (E-cores, located in two modules
with four cores per module) using the Gracemont architecture,
an Intel Xe Gen 12.2 GPGPU with up to 96 execution units (EUs)
and a Gaussian-Neuronal-Network-Accelerator (GNA Version 3).
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Figure 1: Block diagram of the Intel Core i7-12900K processor

The processor cores are connected via shared caches1. To trans-
port data from and to the processor, it supports 16 PCIe 5.0 and
4 PCIe 4.0 lanes, Thunderbolt 4.0, Direct Media Interface (DMI) 4.0
and memory controllers for DDR4 and DDR5. The P-, H-, and U-
processor line also include an Image Processing Unit (IPU), which
provides support for camera functions (e.g., white balance and color
matching). A Volume Management Device [11, Section 2.8] adds
hardware RAID support below the OS level. The specification of
Alder Lake processors offer a range of configurable parameters
for thermal management / power control. Four power limits (PL1 -
PL4) define increasing thresholds, starting with PL1 as the average
power over long time, up to PL4 as a limit never to be exceeded
(see [11, Section 4.1.1]). From these, PL3 and PL4 are disabled by
default. When a system (platform) power measurement is available,
platform power limits (PsysPL) can further enforce thermal limits
beyond the scope of the processor. PL1 and PL2 limitations can also
affect main memory accesses, as [13, Section 3.3.13] hints.

Our test system hosts an Intel Core i9-12900K processor with
8+8 processor cores and 32 GPU EUs with a TDP2 of 125W. Ap-
pendix B lists the full test systems specifications. Figure 1 shows a
block diagram of the processor. The Intel powercap kernel module
reports 4 kW for the long_term and short_term RAPL constraints
(power_limit_uw). According to settings regarding Temperature
Targets [13, Section 3.3.28], the processor throttles at 100 ◦C and
the fans are engaged at 80 ◦C. While the interfaces for Hardware
Duty Cycling are listed in [17, Table 2-39], the feature itself is not
available on our system according to cpuid, and the MSRs are not
accessible. We measure power consumption on the AC side us-
ing a ZES LMG450 power meter and collect data externally using
MetricQ [9] for processing.

4 DYNAMIC VOLTAGE AND FREQUENCY
SCALING

Alder Lake processors have clock domains for: cores, the GPU, the
memory controller, the system agent, and the uncore including
L3-slices and ring. Different interfaces can be used to change core
frequencies: The operating system can use model-specific registers
(MSR) with the Enhanced Intel SpeedStep Technology [11, Sec-
tion 2.4.8] [16, Section 14.1]. While these MSRs can be accessed

1All cores share the last level cache (LLC / L3), a set of four E-cores shares a mid-level
cache (MLC / L2)
2The acronym TDP originates from Thermal Design Point [24] or Thermal Design
Power but is now also referred to as Processor Base Power [13, Table 1].
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per CPU3, Intel states that “all active processor IA cores share the
same frequency and voltage” [11, Section 2.4.8]. We validate this
in Section 4.1. Alternatively, the processor can control core fre-
quencies transparently using Hardware-Controlled Performance
States (HWP) [16, Section 14.4], also known as Intel Speed Shift
Technology [11, Section 2.4.10]. This can still be influenced by the
OS by regulating the minimal and maximal allowed frequency and
the preference for performance or power saving. Since frequency
control is implemented with MSRs, a remote core’s frequency can
only be changed by interrupting that core’s work. To cover this
issue, the operating system can use a new mechanism Remote Ac-
tion Request (RAR) [11, Section 2.4.16]. With RAR, a HWP request
can be broadcast to all cores of the system [2]. However, on our
system, the RAR information register [2, Table 4-1] is not accessible.
We describe how long it takes a core to change its frequency in
Section 4.2. Frequencies can be increased above the nominal fre-
quency using Turbo mechanisms [11, Sections 2.4.5, 2.4.7, 2.4.10],
within the given thermal and power limits. One of the reasons for a
high power consumption of processors and a possible reduction of
frequencies is the execution of compute-intense instructions. On
server processors specific frequency bands are applied when such
instructions are used [6, 28]. In Section 4.3, we check whether such
mechanisms are also present in the Alder Lake architecture.

The frequency of uncore components is regulated by the proces-
sor but can also be influenced by the operating system [17, pp. 2-
332f], which exposes this functionality with the uncore-frequency
driver. Previous work showed that these definitions cannot be con-
sidered to be hard limits and that a regulation mechanism will adapt
the uncore frequency to workloads on server processors [28]. We
cover this for Alder Lake processors in Section 4.4.

The frequency of the integrated GPU can also be changed by the
operating system and the hardware using different interfaces [11,
Section 3.4.3]. Linux exposes this option to the userspace with the
i915 driver. The datasheet [13, Section 3.3.22] states that compute
(slice) components of the GPU have a different frequency than other
(unslice) components. We describe the operating system interfaces
and the supported frequencies in Section 4.5.

3We use CPU to refer to a logical OS CPU, which corresponds to a hardware thread.

4.1 Frequency Interdependencies
At first, we check if the core frequencies depend on each other. We
run a while(1);workload on the tested CPU with a low frequency
and set a higher frequency on a different CPU that is either active
or idle. An increased frequency of the tested CPU suggests a shared
frequency domain. The experiment reveals that all active cores of
the processor share one frequency domain running with the highest
frequency set for any of these cores. In addition, idling P-core CPUs
can increase the frequency of the non-idling CPU of the same core.
Likewise, idling E-cores influence other cores in their module.

4.2 Frequency Change Latency
To measure the time until a frequency change is applied, we use the
method introduced by Mazouz et al. in [21] and refined in [6, 28].
We pin the frequency of unused CPUs to 800MHz. The workload
starts at the source frequency, waits for a random time between
0ms and 10ms, triggers a frequency switch via sysfs, measures
the start time and monitors the runtime of a short loop until it
fits the performance expected for the target frequency. As soon
as that happens, it takes the end time and verifies that the new
performance is stable. Unstable outliers are marked as such and
filtered from the analysis. Afterwards, it resets the frequency to the
initial frequency, verifies it by measuring the short workload and
starts over by waiting for a random time to measure the next switch.
We take 2×10 000 samples for P-cores and E-cores, respectively.

Figure 2 shows the latencies for P- and E-cores switching from
3.2GHz to 3.0GHz and 1.0GHz to 0.8GHz depending on the wait
time after resetting to the initial frequency. Initially, the transition
is fast, e.g., 38.7 µs (P-core, wait time < 2ms, 3.2→3.0GHz, median).
Starting approx. 2.1ms after the last frequency change, the behav-
ior for P-cores changes and now falls in two categories: For the
3.2→3.0GHz-switch, we see a periodic pattern with a period of
≈200 µs where a new core frequency can be applied at absolute
points in time. Such a behavior was reported for server processors
in [6, 28, 29]. The latencies for this periodic behavior range from
69.6 µs to 272.2 µs (P-core, wait time > 2.5ms, 3.2→3.0GHz, 1%
and 99 %-quantiles). In contrast, the 1.0GHz→0.8GHz transition is
now significantly faster without a further time dependent pattern.
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Figure 2: The time until a new frequency is applied depends on the wait time since the last frequency change. The latency
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(a) P-cores: Median of frequency latencies (<2ms)
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(b) P-cores: 99th percentile of frequency latencies
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(c) E-cores: 99th percentile of frequency latencies
(>2.5ms)

Figure 3: Frequency switch latencies, differentiated to short (< 2ms) and long time (> 2.5ms) after last switch.

Overall, the transition latencies within the first 2ms after a pre-
vious switch depend only on source and target latencies (see Fig-
ure 3a). While lowering frequencies can be done faster without
waiting for the voltage to change, increasing frequencies first needs
to increase voltages. Figure 3b shows that, for P-cores after 2ms,
most combinations follow the pattern of the 3.2GHz→3.0GHz
transition. However, there are some combinations with a low and
constant latency similar to the 1.0GHz→0.8GHz transition. The
latter have some things in common: first, it is always a reduction of
frequency and second, the source and target frequencies are rela-
tively close. This could be due to voltages not being changed during
the last frequency reset. In addition to that, some target frequencies
also show a pattern where a significant number of samples were
not valid. We provide more data with the reproducibility package.

These complex effects do not occur on E-cores, as shown in
Figure 2 and Figure 3c. Here, the initial pattern of a stable minimal
latency and a range of values above the minimum is visible even
for higher wait times since the previous frequency switch.

4.3 AVX Frequencies
The perfmon events website lists the event CORE_POWER sup-
ported by P-cores [10, Event CORE_POWER]. The same event
name is used on Intel Skylake processors to monitor processor cy-
cles spent in different frequency bands (standard, AVX, AVX-512
frequencies). On AlderLake P-cores the event lists three different
power licenses: 1-3, which can be selected using the umasks 0x02,
0x04, and 0x08 respectively. We validate these events by running
FIRESTARTER [5] and a while(1);-loop while sampling the per-
formance monitoring counter (PMC) every 1 s using perf stat.
During the while(1); workload, the PMC counts cycles if the
umask is 0x1. We therefore argue that the umask 0x1 refers to
license 0. Running FIRESTARTER workloads with SSE and AVX
triggers the PMC to count licenses 1 and 3, respectively.

License 2 is used whenever switching from license 3 to license 0,
as determined with perf record. Based on the number of cycles
spent in license 2 and the duration of a workload, cores presumably
spend about 640 µs in license 2 before switching back to license 0.
This time correlates with the time to switch back from the AVX-512

to the standard frequency band on Skylake server processors [28,
Section VII]. From this, we conclude that it is likely that a mecha-
nism for applying AVX frequency-ranges is implemented in Golden
Cove cores. However, we could not see any impact of this mecha-
nism on applied frequencies.

4.4 Uncore Frequency
As in previous products, the uncore frequency is usually regu-
lated within a pre-defined frequency range by an internal con-
trol loop [6, 28]. For our processor, the default range spans from
800MHz to 4700MHz according to the UNCORE_RATIO_LIMITMSR.
Bymanipulating this register we can reduce the lowest frequency to
400MHz, but we cannot increase themaximal frequency. In all cases,
the uncore frequency is set 200MHz below the core frequency4.
The exceptions are the following:

(1) The given bounds are not exceeded in the default case –
i.e., at a core frequency of 800MHz, the uncore still uses a
frequency of 800MHz

(2) Whenever a workload runs on P-cores and E-cores with
enabled turbo frequencies, the uncore frequency is reduced
to 3.6GHz–3.7GHz (200MHz below E-core turbo). This also
overrides the previous exception. Even if the minimum is set
to > 3.7GHz, the uncore frequency stays at the same level.

In some scenarios, users might want to manipulate the uncore
frequency manually for energy efficiency reasons, e.g., lowering
it during code sections with no offcore accesses. We evaluate the
occurring latencies with the methodology introduced in [28]. We
measure 1000 transitions for each pair of source and target frequen-
cies and evaluate the median, as depicted in Figure 4. We found the
transition latency to depend on the source and the target frequency.
While the qualitative pattern is the same as for frequency switches
on cores (see Figure 3a and Figure 3c) the quantitative values are
different. Lowering the frequency is much faster at about 26.5 µs.
Increasing uncore frequencies can take longer compared to core
frequency changes.

4When disabling the BIOS setting Ring to Core offset (Down Bin) the uncore frequency
will equal the core frequency. However, by default it is enabled.
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Figure 4: At the lowest core frequency (0.8GHz), changing
the uncore frequency takes between 26.4µs (clocking down)
and 135.0µs, depending on source and target frequency.

4.5 GPU Frequencies
We use the sysfs interface and perf stat events for the i915 device
to test valid frequencies on the GPU. The sysfs interface provides
three different files to specify the minimal, maximal, and boost
frequency in MHz (gt_{min|max|boost}_freq_mhz), from which
we set the latter two. perf lists multiple events for the i915 device,
from which we use actual-frequency and requested-frequency. Both
counters only increase when the GPU is actively used by the system.
In a first step, we check the supported frequencies and steps. To
do so, we increase the requested frequency in 1MHz-steps while
running a matrix multiplication on the GPU. Results show that the
actual frequency is always a multiple of 50MHz. The requested
frequency is amultiple of 16.667MHz. To fit this scheme to the given
interface requested frequencies are rounded as follows: First, it is
rounded to the nearest multiple of 16.667MHz. Then it is rounded
up to a multiple of 50MHz.

5 IDLE STATES
Operating systems use idle states to lower power consumption
whenever there is no task scheduled on a CPU. Information from
ACPI tables, populated by hardware, are the basis to decide which
idle state to use [32]. This includes an estimation of the time to
re-enable CPUs. As latencies can be several hundred microsec-
onds [26], deep idle states should be disabled for latency sensitive
scenarios [3]. In other cases, a lower average power consumption
is preferred. While ACPI tables can hold information on projected
power consumption, this information is often not set or invalid for
idle states. Latency and power consumption additionally depend,
for example, on applied frequencies and the activity of other cores.

Alder Lake cores implement three different core C-states: C0 (ac-
tive), C1 (clock gating, can be combined with DVFS to C1E), and C6
(power gating). As previous processors, the core can autonomously
switch from C6 to C1/C1E, which is called auto-demotion. Addi-
tional package C-states are used whenever all cores and the GPU
reside in a higher C-state (C8, C10). Package C-states can limit the
functionality of PCI links and other busses like USB and xHCI [13,

Section 3.7f] or flush the L3 cache. During package C-state transi-
tions or whenever a device is still active, PKG C2 can be used where
cores are still in a deep idle state, but uncore components can be
active. The datasheet [13, Table 8] lists more details about package
idle states. We describe the usage of C-states and the power saving
potential of our system in Section 5.1 and the time to return to an
active state in Section 5.2.

Alder Lake introduces two new idle states5 (C0.1 and C0.2) that –
unlike other C-states – can be entered from userspace [15, Table 4-
21]. The two different idle states vary in their wakeup time, power
savings, and effects with Simultaneous Multi-Threading (SMT):
In C0.2, the wakeup time and power savings are higher and the
performance of the second CPU on a core improves. We measure
power consumption of C0.1 and C0.2 states in Section 5.1 and
analyze the latency to return from these idle states in Section 5.3.

5.1 C-States and Power Consumption
We use different idle states on all cores of the system to determine
their power consumption. Our experiments cover the five C-states
available through the OS: C0 (POLL), C1E (hlt), C6, C8, and C10,
as well as active idling workloads (widely unrolled NOP, PAUSE for
C0, and TPAUSE for user idle states C0.1 and C0.2). We use the
register MSR_IA32_POWER_CTL to disable the transition to C1E. We
further test at different core frequencies. To measure the usage of
hardware C-States we monitor the idling periods with perf stat’s
event groups cstate_core/ and cstate_pkg/. Concurrently, we
monitor system power consumption using the out-of-band MetricQ
framework [9] . We use the mean power measured over an interval
of 10 s (11 seconds measured, data from the first second is omitted)
with a sampling rate of 20 Sa/s.

According to our measurements, P-cores use the C6 state if re-
quested by theOS. The event counter cstate_core/c7-residency/
increases if C8 or C10 are requested. E-cores on the other hand use
the C6 state, even if higher states are requested. This is surprising,
since the OS requests C10 to a high extent according to the usage
stats provided by the idle driver. With these core C-states, the high-
est package C-state that can be used is package C6. Nevertheless,
only the package C-states PC2 and PC3 are used, where attached
USB and video devices result in a higher proportion of PC2 usage.
We provide data, the analysis script and plot for these numbers in
the reproducibility data package.

The power consumption resulting from using different idles
states is shown in Figure 5. As expected, power consumption in C1
and C0 (including active idle routines) increases with the applied
core frequency since power gating is not used. For other C-states,
the power consumption is independent of the applied frequency.
The usage of C8 and C10 results in the same power consumption,
which is consistent with the previous analysis with perf. If C8
and C10 are not allowed, the cores use C6 and power consumption
increases from 37W to 43W. The plot show a particular anomaly:
at low core frequency, the power is slightly higher when using C6
than under C1. However, due to a peculiarity that we describe in
Section 7, power consumption in these cases is generally inconsis-
tent.

5Originally, they were introduced to Atom line with Tremont processors. Now they
are also available for performance cores.
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Figure 5: System power consumption depending on used idle
mechanism and frequency by cores. 4.9GHz refers to the
usage of Turbo frequencies (measured for P-cores in C0).

5.2 Idle State Latencies
To measure latencies for returning from idle states, we use the
methodology from [8]. Here, a thread running on one core (caller)
sends a pthread_cond_signal to another core (callee), whichwaits
using pthread_cond_wait. We measure times as a difference be-
tween the Linux kernel events sched:sched_waking from the caller
and a power:cpu_idle to an active state at the callee.

The core C-state C10 is not used (see Section 5.1). Surprisingly,
the latencies for C6 and C7 (as initiated by allowing C8 and C10
states) are similar (not depicted). As shown in Figure 6, latencies
decrease with an increasing core frequency up to about 2GHz.
Afterwards, there is no clear pattern. The measured times are in
the same order of magnitude as Skylake server processors [28].

5.3 User Space Idle State Latencies
In addition to idle states that can only be called from an operating
system, Intel implements new instructions that can trigger idle
behavior from user space. These include a timed pause instruction
and a user-space implementation of monitor/mwait. With these,
threads can indicate to the processor that it should stop fetching
and executing new instructions while still being scheduled on the
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Figure 6: C-state wakeup latencies for C6. For P-cores and
E-cores depending if all cores in it’s module are idle

CPU. To limit the duration of these idle periods, operating systems
can configure a maximal sleep time in the UMWAIT_CONTROLMSR
(25 000 cycles on our system).

We check the latency of waking cores from user-space idle states
by accessing umonitor’ed data. To do so, we setup umwait to use
a specific state and schedule two threads on two CPUs: a caller
and a callee. The callee waits for a volatile date to reach a certain
value, then it monitors this value using umonitor and waits for
it to change using umwait. The caller waits for a specific time to
take a timestamp using rdtsc and change the monitored value. The
change causes the callee to wake up and also take a time stamp. We
store the difference of both timestamps for the analysis. In Figure 7,
we show the distributions for waking up different core types from
CPU 0. Here, we see that E-cores (CPU 20) have a lower latency
than P-cores (CPU 1). In C0.1 we see an anomaly, where about 8 % of
the samples have a higher latency. It seems that the E-cores do not
support the C0.2 state: The latencies including the C0.1 anomaly are
the same, regardless of the requested state. Also, the spatial distance
of cores has an influence on these latencies, but the analysis is out
of scope. Data can be found in the reproducibility package.

6 EFFICIENCY OF IMPLEMENTED
COMPUTE-ARCHITECTURES

The two different core architectures and multiple accelerator ar-
chitectures of Alder Lake processors each implement their own
performance and power profile. According to [18, Section 2.2.1] P-
cores provide single or limited thread performance, while E-cores help
provide improved scaling and multithreaded efficiency (see also [18,
Section 2.3, Section 4.1]). To support an efficient usage of this hetero-
geneity, Alder Lake provides a feedback interface for the operating
system that gives information about the recently executedworkload,
distinguishing four classes: Non-vectorized integer or floating-point
code, [...] vectorized code [...], Intel [Deep Learning] Boost code, Pause
[...] dominated code [18, Section 2.2.2.1]. We evaluate this interface
in Section 6.1. Intel also implements a Hardware Feedback Interface
(HFI), which describes the performance and energy efficiency of
each available CPU [16, Section 15.6]. This interface can, e.g., be
used by the OS to select specific cores for different workloads. The
entries "may change at runtime as a result of changes in the operating
conditions of the system or the action of external factors" [1], which
then can be used for scheduling decisions.
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Figure 7: User space idle state wakeup latencies (ECDF)
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On Alder Lake processors, Intel implements an Intel Xe Gen
12.2 GPU [13, Section 9.1.1], which can also be used to accelerate
computing. Section 6.2 compares performance and energy efficiency
of BLAS routines on processor cores and the GPU. Shared memory
resources like main memory can have a strong influence on the
energy efficiency of workloads [6, 28, 29]. Unfortunately, an analysis
of this topic is out of scope for this paper.

6.1 Intel Thread Director
The OS can use the Thread Director interface to observe and sched-
ule threads to cores that are deemed efficient for their workload.
Intel lists typical workloads that represent the four classes in [18,
Section 2.2.2.1]. We use these workloads in a loop running on all
CPUs of the processor. Then, we enable themechanism via theMSRs
HW_FEEDBACK_CONFIG and HW_FEEDBACK_THREAD_CONFIG and poll
the THREAD_FEEDBACK_CHARMSR while executing the workloads.
Finally, we compare the provided mapping to the executed work-
load. E-cores never provide valid samples (bit 63 is set to 0). P-cores
can correctly identify classes 0, 2, and 3, but map the class 1 work-
load to class 0. As the information is missing on E-cores, we doubt
that the OS can effectively use this interface to manage scheduling
decisions, e.g., migrating unsuitable threads await from E-cores.

6.2 Comparison of Performance and Efficiency
To compare the efficiency of P-cores, E-cores, and GPU, we use
three different BLAS functions: dot, sgemv, and sgemm.We vary the
frequency of the respective computational unit(s) across the set of
specifically selectable frequencies, but not the full turbo range. Thus,
the processor runs significantly under its power budget. For GPU
workloads, core frequencies are set to 3.2GHz. The problem sizes
are set such that data does not fit in caches. We use the Intel Math
Kernel Library (MKL) implementations of sdot, sgemv, sgemm with
𝑁 = 1𝐺, 40𝑘, 10𝑘 respectively. Specific core types are selected with
taskset for CPU and OpenMP target directives for GPU whereas
MKL controls the final number and distribution of threads. We use

100 repetitions for sdot/sgemv and 10 repetitions for sgemm to
achieve stable power consumption, but use the median of power
samples to avoid impact from initialization and measure the overall
execution time to compute the floating-point performance.

Figure 8 shows the resulting performance depending on process-
ing and uncore frequencies. First, we focus on P-core performance
at a variable uncore frequency (default). Due to the low arithmetic
intensity, the performance of sdot and sgemv is dominated by mem-
ory accesses with diminishing benefits from high core frequencies.
At default uncore settings, the core frequency only indirectly af-
fects performance via the variable uncore frequency. E.g., P-core
frequencies of 800MHz and 1000MHz show the same performance
since both imply an uncore frequency of 800MHz as described in
Section 4.4. We validate this assumption with the results from a
fixed uncore frequency of 3.2GHz. On the E-cores and the GPU,
the uncore bottleneck does not apply and the performance does not
appear to saturate in a memory-bound configuration. The sgemm-
kernel is purely compute bound for all architectures and frequen-
cies with a performance growing linearly with the core frequency.
While we executed the GPU kernels from different host core types
and at different uncore frequencies, both performance and power
consumption only depends on the GPU frequency.

P-core configurations exhibit the highest overall power consump-
tion, except at the lowest core frequencies. Due to their higher turbo
frequencies, P-core power can be even higher, which is not covered
by this benchmark. However, due to their superior performance,
they are still the most energy-efficient choice for sdot and sgemv
with optimal core frequencies around 1800MHz at default uncore
frequency. For sgemm, the GPU at its highest frequency is the most
efficient. This efficiency considers the total system energy for the
given hardware allocation when exclusively using one architecture.
The results are therefore influenced by the power consumption
of the common resources, e.g., memory and fans and would differ
with a different hardware allocation.
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Figure 8: Performance, power and efficiency for different compute kernels on different compute architectures.
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7 MONITORING ENERGY-EFFICIENCY-
RELATED INFORMATION

The Running Average Power Limit (RAPL) [16, Section 15.10] pro-
vides enerhy counters since the Intel Sandy Bridge architecture.
While early implementations used models, which were not neces-
sarily accurate [4], newer server processors use physical measure-
ments [6, 28]. The usual update rate of RAPL is 1ms but can get
as low as 50 µs for the PP0 domain (processor cores) on desktop
processors. This can be used to retrieve processed data in a side-
channel attack [20]. While this can be fixed by limiting access to
RAPL counters from the OS side, Intel also implements a filtering
technique via the ENERGY_FILTERING_ENABLE [17, Table 2-2] entry
in an MSR. This filtering adds random noise to the reported values
and can only be disabled with a system reset [14]. We analyze the
temporal granularity and the filtering feature in Section 7.1

Power measurements for Alder Lake Processors can benefit from
the VCCIN AUX IMON Feature to achieve “more accurate package
power reporting and better accuracy” [11, Section 3.3]. This affects
the enforcement of package power limits, but most likely also the
accuracy of measuring package power consumption via RAPL. We
analyze the accuracy of RAPL measurements in Section 7.2.

Another monitoring infrastructure is the Platform Monitoring
Technology (PMT) or Telemetry Aggregator [11, Section 2.6.3],
which records metrics of the processor out-of-band and was intro-
duced with Tiger Lake. The data is made available to user space
with the intel_pmt_telemetry driver and can include information
about energy-related features. The definition of the encoded data is
not documented. However, an Intel code repository mentions that
the interface passes thermal, voltage and frequency information
for Sapphire Rapids6. The description also notes that some infor-
mation might be only available under a non-disclosure agreement.
In Section 7.3, we analyze the information available on our system.

This study focuses on package (PCKG) and core (PP0) coun-
ters, since the DRAM domain reports 0 and the uncore component
domain (PP1) reports 0 if the GPU [16, Section 15.10.2] is not used.

6https://raw.githubusercontent.com/intel/Intel-PMT/73cfa682/xml/SPR/OOBMSM/
CORE/spr_aggregator.xml

7.1 Filter and RAPL Granularity
To measure the update rate of RAPL counters, we continuously poll
the MSR from CPU 0 for 5 s. We take timestamps before reading the
MSR and — if the measured energy changed — we store timestamp,
read data, and the number of reading attempts since the last change.
As Figure 9a shows, the temporal granularity depends on the moni-
tored domain and the usage of the filter. For the PP0 domain, the
temporal granularity is 8ms if the filter is enabled. For all other
cases, the granularity is about 1ms. If the power consumption is
too low for the energy in the MSR to increase, it will be reported
in the next available moment (i.e. 1 or 8ms later). Figure 9b shows
effects of the filter on the reported energy. Package power is mostly
the same as core power with an offset of about 1.4mJ, i.e. 1.4W
over 1ms when idling cores execute the C0 polling routine. If C6
is used, for more than 60% of the samples, this difference is also
visible. However for some samples, the reported package power is
the same as the core power. This could hint at a mechanism, which
takes energy of uncore components into account only if it is above
a certain threshold.

Enabling the filter leads to significant changes: For the package
power consumption, a lower energy is reported often. The values
are mostly on par with PP0 without a filter for any C-state condition
used. For core power consumption, the reported energy increases,
as the time frame increases as well. However, the average power
consumption over time does not change significantly.

7.2 Accuracy of RAPL Measurements
To further understand the impact of the filter, we measure data-
dependent power consumption with and without the filter enabled.
To that end, we use run the vxorps7 instruction with different
number of set bits on all P-cores with nominal frequency and mea-
sure the energy with RAPL. Details of the method are explained
in [29]. The experiment measures the vxorps-loop 1000 times with
0/50/100% of the bits being set (the operand weight). The result
is then split according to the operand weight (defining color) and

7We chose vxorps for two reasons: it can be used in encryption algorithms (XOR
cipher) and to be comparable to other architectures [29].
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Figure 9: RAPL information at 2.3GHz core frequency, which is high enough to enable energy counting on the PP0 domain.
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Figure 10: RAPL power samples for measuring a vxorps-loop that runs for a given time with a given proportion of set operand
bits (operand weight). Each line represents an empirical density function of 100 samples.

split each of these sets into 10 different subsets (to understand
repeatability of the effect) that we plot in Figure 10. While the influ-
ence of data weight on power consumption is clearly exposed with
100 10ms-samples without a filter, it cannot be reconstructed with
enabled filtering. However, a 100-fold increase of the monitoring
time still shows the data-dependent aspect of computations with a
similar clarity. This shows that, given enough time, the filter does
not prevent side-channel attacks via RAPL monitoring.

On a broader scale, we evaluate the RAPL implementation on
our test system using a synthetic workload generator comparing
RAPL values (average power derived from energy and time) with
the external measurement of average AC power. The reference mea-
surement covers a different domain, including power supply unit
(PSU) losses, memory, and other off-chip components of the system.
While a direct RAPL measurement error cannot be determined, this
approach can be used to expose inconsistencies and systematic
errors. The workload generator uses multiple microkernels that
stress different components, including a focus on computation and
memory. We run each kernel in a large number of configurations,
varying core frequency, number of threads, and thread distribution
across P-cores, their SMT-threads and E-cores. Each configuration
runs for 30 s to prevent timing effects and focus on energy/average
power (cf. [4]).
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Figure 11: Comparison of power consumption measured by
RAPL for the package and a full-system reference measure-
ment. Each point represents the average power within a 30 s
interval of the same workload configuration.

Figure 11 plots average AC power against RAPL package power,
where each point represents one configuration of kernel, core fre-
quency, and thread configuration. There is a consistent correlation
between the two, with two exceptions. First, kernels that utilize the
memory subsystem significantly, appear more noisy and report a
lower RAPL package power for similar PSU input powers. This can
be explained by RAPL not supporting the DRAM domain on this
system. While this does not necessarily indicate that RAPL values
are wrong, it confirms that RAPL package power alone cannot be
used to accurately model total system power consumption, e.g., for
energy optimization. The second abnormality occurs at low power
consumption, where RAPL and the reference measurement diverge
strongly. All kinds of workload kernels and thread configurations,
including configurations of P-core and E-core usage exhibit this
weak correlation. However, this only affects low frequency con-
figurations: At nominal frequencies, a single thread executing any
kernel uses more power than the abnormal cluster.

Figure 12 shows power measurements of different low-power
computations with gradually increasing number of threads. While
PSU power generally increases with the number of threads, it be-
comes noisy at 11 active threads with a significantly reduced aver-
age. Contrary, the reported RAPL power remains relatively constant
at approx. 1.5W for up to 10 active threads. Later, it increases with
substantial noise for configurations where AC power is reduced
and noisy Finally, it follows a more consistent pattern at higher
power consumption configurations. This behavior is reproducible
and we observed similar patterns for other workloads and low core
frequencies at different thread count thresholds. We measured sev-
eral hardware counters (core and uncore frequencies, instructions,
power licenses), core temperatures, and workload utility. None of
these correlated with the anomalies. We were not able to model or
provide an explanation why the actual system power consumption
and the RAPL measurements behave in such a way at low power.

We did not include GPU workloads in this evaluation, hence
the GPU domain reports 0W. The PP0 domain follows the pack-
age domain with a difference of 1.41W for workloads w/o sub-
stantial memory accesses, up to 2.65W for workloads w/ memory
access, and 0.35W in idle. In summary, RAPL offers plausible en-
ergy measurements with the exception of particularly low power
configurations and the limitations to the processor itself.
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Figure 12: RAPL and reference power consumption sampled
at 100ms / 50ms intervals respectively. Double precision ma-
trix multiplication kernel at 0.8GHz running for 60 s each at
increasing number of active threads.

7.3 Platform Monitoring Technology
Our test system hosts two Intel PMT telemetry sources with GUIDs
0x85b7c2a0 and 0x409072a0 according to sysfs information. These
provide 2752 Byte and 320 Byte of data, respectively. The latter
always reads as 0. We run various workloads on all cores or a subset
of cores and change hardware properties like core frequencies. We
concurrently monitor the data from the main telemetry source by
dumping the content of /sys/class/intel_pmt/telem0/telem
in regular intervals as 4-Byte integers for the follow-up analysis.

In a first analysis step, we check whether the initial guess of
data sizes (4 Byte) suits the measured data and distinguish between
increasing counters and data that describes a current status. While
the former increase over time until they overflow, the latter can
change their values more freely. Some rules for the conversion of
data types are: A 4-B-date 𝑎𝑖 that is increasing towards the maximal
integer and increases 𝑎𝑖+1 on an overflow can be considered an 8-
B-date. Any entry representing a current status where the upper 2
Byte are similar to the lower 2 byte represent two 2-B-dates. The
same goes for four 1-B-dates. Any entry where a set of 8, 16, or 24
lower bits are not flipped can be shifted by that number of bits.

Some of the most interesting things that we reconstructed are
the current frequency of P-cores and E-core-modules (beginning
at offset 20), an activity bit-mask for them at offset 76, and their
temperature at offset 144. Moreover, the 38.4 MHz signal, which
might be related to a clock source of the chipset [12, Section 21], can
be read at offset 280, the number of 38.4 MHz cycles a P- or E-core is
active are stored at offsets 1840ff, and the uncore clock counts with
200 MHz below the highest frequency at offset 1368. However, some
readings of the uncore clock were incorrect (decreasing) during
package idle phases. Here it seems that the lower 4 B of the 8 B
counter are reset during package idle, while the upper 4 B keep
their content. This possible bug also affects other counters, e.g., per
core activity related counters starting at offset 1192.

Table 1: Intel PMT data in 85b7c2a0

Starting Assumed content Size Data
offset [B] [B] type
20, 24, ... Frequency of P-cores in 100MHz 1 Instant.
52, 56 Frequency of E-core-modules in 100MHz 1 Instant.
76 Bit mask: active P-cores and E-core modules 1.5 Instant.
144, 148, ... Temperature of P-cores & E-core modules [°C] 1 Instant.
184-212 Core-related, peaks before throttling 2 Instant.
280 Increases with with 38.4MHz 8 Increasing

1368 Uncore Clock Counter (200MHz under core
frequency) in cycles

8 Increasing

1840-1960 Increases with 38.4MHz when core is not
idling (first p-cores, then e-cores)

8 Increasing

8 SUMMARY AND OUTLOOK
This paper provides a multitude of analyses of power management
and energy efficiency features of the first Intel processor generation
with heterogeneous core architectures. We found that frequency
switch timings differ for P- and E-cores. Only the former show a pat-
tern known from server processors. Even though the architecture
does not seem to use AVX frequency ranges, P-cores still support
accounting for those. The uncore frequency depends directly on
the core frequency and can fall below the set range when cores use
Turbo frequencies. E-cores seem not to support some of the idle
states of P-cores, namely C0.2 and idle states above C6. Waking
cores from deep idle states takes as long as on server processors.
User space idle states save power and have a wakeup time in the
order of hundreds of nano seconds. The Intel Thread Director fails
to identify class 1 workloads and is not present on E-cores. While
the integrated GPU can be used to run floating point intense code
efficiently, accessing memory seems to pose a bottleneck. When
running memory-bound codes, P-cores are most efficient in terms
of performance and energy efficiency. Increasing the uncore fre-
quency can increase performance for memory-bound codes at low
core-frequencies. The update rates for RAPL are at 1ms. The fil-
tering functionality can add noise to counter side-channel attacks.
Enabling this filter leads to a lower update rate for the core do-
main. Still, data can be inferred from RAPL readings using longer
observation. While RAPL is generally consistent with external mea-
surements, it does not include DRAM and is inaccurate in low
power scenarios. The platform monitoring technology provides a
sideband measurement of power-related information. We unveil
encoded information and describe a possible bug in 8 B-counters.

While not all of these various findings can be generalized beyond
our specific system, they serve as a guideline of relevant effects.
Moreover, we provide a detailed methodology as well as a repro-
ducibility package [30] to facilitate translating the results to other
systems. Some energy aspects are not covered in this paper and
remain future work, including the following: In addition to DVFS,
the integrated GPU supports various power saving mechanisms [11,
Section 3.4] that could be investigated. We also did not analyze the
Power Management Integrated Circuits mentioned in [11, Section
3.4] due to a lack of information. Other idle states like S-states or
G-states could be investigated further. However, information on
their effects are described in [11, 12]. It will also be interesting to
look at Sapphire Rapids, which also implements Golden Cove cores,
including an analysis of user space idle states, and AVX frequencies.
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B TEST SYSTEM SPECIFICATION
The test system we used is specified in Table 2.
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Table 2: Test system details

Processor Intel Core i9-12900K
Performance cores / P-cores / Golden Cove

Nr. cores / hardware-threads 8 / 16
Frequency range (selectable) 0.8GHz to 3.2GHz
Turbo frequency up to 5.1GHz*

Efficiency cores / E-cores / Gracemont
Nr. cores / hardware-threads 8 / 8
Frequency range (selectable) 0.8GHz to 3.2GHz
Turbo frequency up to 3.9 GHz*

Intel® UHD Graphics 770
Nr. Execution Units (EUs) 32
Frequency range (selectable) 0.3GHz to 1.5GHz
Turbo frequency up to 1.55GHz
Uncore frequency scaling (UFS) 0.8GHz to 4.7GHz
Hardware Performance States (HWP) disabled
RAPL Power Limit 4095W

RAM 2 × 16GiB DDR5-4800
Motherboard Gigabyte Tech. Co. Z690 UD

Operating system Ubuntu 22.04
Kernel version 5.19.1 & 6.2.0

Power meter ZES LMG450
Accuracy 0.07 % + 0.25W
*or 5.2GHz on one core or with Turbo Boost Max Technology 3.0

C ADDITIONAL DATA ON POWER
MONITORING

On an idling system, additional noise can increase the average
power consumption significantly, as we show in Figure 13a. Often,
when a CPU on an idling system gets active, the processor power
consumption (monitored with an LMG670 and 20 kSa/s) increases
from 9W to 13.3W (with spikes of more then 15W). Simultaneously,
the power consumption of the 5 V rail increases from 6.5W to 7.9W.
This increased power consumption only decreases gradually and
affects the power consumption of the system even after the CPUs
are already back in an idling phase.

We see the multiple power levels mentioned in Section 7.2 for an
idling system as well where some cores use the POLLing idle routine
instead of the default C10. Figure 13b shows the minimal, maximal,
and median power on an idling system with a number of cores
POLLing instead of using C10 and an uncore frequency of 3.2GHz
for different core frequencies. The power data is retrieved over a 10 s
time period with metricq-summary. System power consumption
grows linearly with the number of used cores if the system power
consumption is above 54W (with some noise induced outliers).
There is a gap if the frequency and number of cores are too low to
reach this threshold. There seems to be another linear relation at
the minimal values, just on a lower level. Median and average are
located randomly between these two lines.

(a) Unused cores can significantly increase power consumption once they be-
come active due to OS noise. Vampir visualization of a lo2s trace of the idling
test system. Top: Power consumption (5V rail). Mid: Power consumption (12V
processor). Bottom: activity of CPUs. A short usage of CPUs increases the power
consumption from 9 to 15 Watt, which is then reduced only gradually. Not
only CPU activity can lead to power spikes, e.g., at offset +0.15s there is a spike
without any CPU core being active.
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(b) System power consumption, depending on the number of cores in OS poll
loop and the core frequency. Minimal, median and maximal power values
plotted as lines. The uncore frequency is set to 3.2GHz.

Figure 13: Detailed look at different power measurement aspects.
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