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ABSTRACT
Industry and academia have strong incentives to adopt virtual-
ization technologies. Such technologies can reduce the total cost
of ownership or facilitate business models like cloud computing.
These options have recently grown significantly with the rise of
Kubernetes and the OCI runtime specification. Both enabled vir-
tualization technology vendors to easily integrate their solution
into existing infrastructures, leading to increased adoption. Making
a detailed decision on a technology selection based on objective
characteristics is a complex task. This specifically includes the in-
strumentation of performance characteristics that are an important
aspect for a fair comparison. Moreover, a subsequent quantifica-
tion of the isolation capability based on performance metrics is not
readily available.

In this paper, we instrument and determine the OCI runtime
isolation capability by measuring virtualized system resources. We
hereby build on two previous contributions, a proven isolation
measurement workflow engine, and meaningful isolation metrics.
The existing workflow engine is extended to integrate OCI runtime
instrumentation as well as the novel isolation metrics.

We indicate a quantifiable distinction between the isolation ca-
pabilities of these technologies. Researchers and industry alike can
use the results to make decisions on the adoption of virtualization
technology based on their isolation characteristics. Furthermore,
our extended measurement workflow engine can be leveraged to
conduct further experiments with new technologies, metrics, and
scenarios.

CCS CONCEPTS
•General and reference→Performance; •Computingmethod-
ologies → Modeling methodologies.
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1 INTRODUCTION
Virtualization technologies are consistently driving the vision of
a software-defined infrastructure. Implementing virtualization is
motivated by various factors, from facilitating business models
like cloud computing to potentially reducing total ownership costs.
Since the early days of Virtual Machines (VMs)[5], the landscape
has been massively enriched by novel approaches such as container-
ization and other lightweight virtualization concepts. The rise and
growing market share of the Kubernetes container orchestration en-
gine, as well as the definition of the Open Container Initiative (OCI)
specification, led to an increasing number of tools, methodologies,
runtimes and engines in the domain of virtualization. This enabled
virtualization technology vendors to implement their runtimes ac-
cording to the OCI specification to be utilized interchangeably with
orchestrators like Kubernetes [14]. For industry and academia alike,
this vast number of options makes it difficult to objectively decide
on what technology to utilize. The rapid expansion in this area
makes it hard to stay abreast of all the most recent developments.

Comparing different virtualization technologies is a multidimen-
sional decision problem with criteria ranging from security consid-
erations, isolation capabilities, the type of virtualization, and many
more. Various research studies are conducted on the comparison
of virtualization technologies in several aspects, from impact on
startup times[16], security considerations[15], to performance and
isolation analysis[12].

Due to this mentioned rapid extension of the virtualization land-
scape, we need effective means to make informed decisions based
on objective metrics. Multi-criteria decisions are typically complex
and can hardly be reduced to a single metric [3]. Thus, we focus
on the single distinct “isolation” metric to compare virtualization
technologies against each other.

In systems with multiple competing workloads, isolation effi-
ciency can be quantified by the impact that a disruptive workload
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has on its competing but behaving counterpart. Therefore, it is
necessary to measure the performance characteristics of the dif-
ferent resources that are contended. To objectively analyze these
characteristics for different runtimes, the instrumentation across
all technologies has to be done from a black-box perspective. It
needs to acquire similar performance metrics for all technologies
and requires low instrumentation overhead. We take advantage of
extended Berkeley Packet Filter (eBPF) to get an unobstructed view
of the performance characteristics. For the sake of acquiring similar
metrics for all technologies and simplification of implementation,
we focus on OCI compliant virtualization runtimes.

In this work, we answer the following research questions.

RQ 1 (instrumentation). How can performance and derived
isolation characteristics of OCI compatible runtimes be instrumented
and subsequently measured?

RQ 2 (automatability). How can the instrumentation across dif-
ferent OCI runtimes be conducted in an efficient and uniformmanner?

RQ 3 (comparision). How do the isolation capabilities among
OCI compatible virtualization technologies compare?

This paper uses an existing benchmark-based evaluationmethod-
ology that supports the instrumentation of performance degrada-
tion and the determination of isolation capabilities. More precisely,
we present the following contributions.

C 1 (isolation determination framework). We release the
codebase of the evaluation framework including the extensions de-
veloped during the work on this paper [20]. This relates to RQ 1 and
RQ 2 and enables fellow researcher to perform similar measurements
for their usecases.

C 2 (comparison). We present a comparison (RQ 3) of three
distinct OCI compliant virtualization technologies regarding their
isolation capabilities.

The remainder of this paper is structured as follows. In section 2
we briefly present the fundamentals of this work. This includes
eBPF, OCI and a discussion of isolation and its quantification. This
is followed by a description of the methodology in section 3 and
lays the foundation for the answer to RQ 1. The methodology
is followed by some important details of the implementation in
section 4. It discusses the remaining aspects of answering RQ 1
and additionally answers RQ 2. Section 5 gives a brief overview of
the technologies involved in the experimental setup. This setup is
used to generate the final results in section 6 which closes RQ 3.
We finish with a discussion in section 7, a review of related work
in section 8 and a final summary in section 9.

2 BACKGROUND
This section explains fundamentals that are essential for the further
course of this work.

2.1 eBPF and Instrumentation
This section briefly highlights eBPF and Linux profiling. A more
detailed description is available in the previous work of the fellow
authors [2, 21].

eBPF enables the execution of verified code within a special
VM that runs as part of the Linux kernel. It hereby extends the
capabilities of the initially developed Berkeley Packet Filter (BPF)
developed at a Berkeley Laboratory [13]. Apart from executing
functions when receiving network packets, it can now observe and
react to a multitude of event sources as part of the Linux profil-
ing subsystem. Those specifically include Performance Monitoring
Counters (PMCs), tracepoints, kernel, and user functions.

While these events are technically not part of eBPF, it still enables
an approachable exploitation of them. The typical lifecycle of an
eBPF program is visualized in Figure 1 as presented by Gregg [6].
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𝐾𝑒𝑟𝑛𝑒𝑙𝑈𝑠𝑒𝑟

Figure 1: eBPF internals and Linux instrumentation accord-
ing to [6]

The following paragraphs briefly describe the previously men-
tioned Linux profiling subsystem instrumentation points that are
relevant to this work.

(a) Tracepoints. Tracepoints are static kernel instrumentation
points[19]. They are defined and implemented by the kernel devel-
opers and issue an event once a specific call occurs. They further
include counters that are specific to hardware, like CPU instrumen-
tation.

(b) Kprobes. Kprobes are similar to tracepoints, yet not statically
defined [7]. They allow dynamic hooks into any kernel function
call. As this depends on the kernel function name, this is not stable
across kernel releases.

(c) Uprobes. Similar to kprobes, uprobes can dynamically instru-
ment user space function calls. In practice, this requires available
debug symbols [4].

2.2 Open Container Runtime
The “OCI”1 is part of the “Linux Foundation”2 that develops open
standards for container-based virtualization. These open standards
take the form of specifications. In the context of this paper, the “run-
time specification” is of particular importance. Figure 2 highlights
1https://opencontainers.org/
2https://linuxfoundation.org/
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the complete container virtualization toolchain from user input to
running the actual (v) container. Mavridis and Karatza [12] describe
this structure and the accompanying technologies in detail.

A (iv) runtime that implements the (iii) OCI runtime specifica-
tion can be utilized by (ii) container engines that provide a respec-
tive interface. Popular technologies that implement this interface
include containerd3, Podman4 and CRI-O5. The engines offer an
Application Programming Interface (API) that can be used by (i)
user-experience-oriented container management and orchestration
tools such as Docker6 or Kubernetes7.
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Figure 2: OCI ecosystem

As Figure 2 suggests, there aremany combinations of tools within
this chain possible, as each segment is individually interchangeable.
Specifically, the widely adopted Kubernetes orchestrator created a
large amount of the so-called “Kubernetes distributions” that bun-
dle toolchains in an opinionated use case-driven manner. Popular
examples are SUSE’s8 k3s9 and RedHat’s10 OpenShift11.

Another popular example for OCI compliant technology combi-
nations is the container UX solution Docker. While docker initially
started out as a full stack container solution including engine and
runtime, it open sourced its components (containerd, runc) and
now focusses on its role as management and orchestration tool.

2.3 Isolation Terminology
Isolation is a state that occurs when two workloads share and thus
compete for a resource. The degree to which they influence each
other describes isolation. If they have a strong impact on each other,
the isolation is low and vice versa. [9, 11, 24]. This work follows
the isolation definition of Krebs et al. [9] who define performance
isolation as follows:

Definition 1 (Isolation). Performance isolation is the ability of
a system to ensure that tenants working within their assigned quota
3https://containerd.io/
4https://podman.io
5https://cri-o.io/
6https://docker.com/
7https://kubernetes.io/
8https://www.suse.com/
9https://k3s.io/
10https://www.redhat.com/
11https://www.openshift.com/

(i.e., abiding tenants) will not suffer performance degradation due to
other tenants exceeding their quotas (i.e., disruptive tenants).

In a similar context and especially in cloud computing, related
work regularly uses the term “noisy neighbor”. This noisy neighbor
describes a disruptive tenant that negatively impacts another tenant.
According to Longbottom [10], it is defined as follows:

Definition 2 (Noisy Neighbor). A workload within a shared
environment is utilizing one or more resources in a way that it impacts
other workloads operating around it.

2.4 Isolation Quantification
Throughout this work, we assume two distinct workloads𝑊𝑎 and
𝑊𝑑 . The workloads themselves enact a certain amount of resource
utilization.
𝑊𝑎 describes the abiding, behaving workload that stays within

its assigned limits and utilizes a constant amount of resources.𝑊𝑑

on the other hand, defines a disruptive workload that misbehaves in
one way or another. It may do so by actively trying to disturb other
workloads as a “Noisy Neighbor” or by inadvertently negatively
impacting other workloads due to an error.

A simple and natural approach to the quantification of isolation
is the calculation of a “performance loss rate” [8, 11, 17, 24]. It
describes the amount of performance degradation of 𝑊𝑎 when
affected by𝑊𝑑 on a fixed amount of workload.

Therefore, the baseline performance of a workload𝑊𝑎1 in an
uncontended environment is measured. Subsequently, the same
workload plus an additional disrupting workload 𝑊𝑑 is started,
resulting in workload performance𝑊𝑎2 . Both workloads compete
against resources.

The isolation performance loss rate 𝐼𝑝𝑙𝑟 as the rate between the
difference of both performance measurements can then be deter-
mined as shown in Equation (1). Slightly changing the perspective,
𝐼𝑢𝑙𝑟 refers in Equation (2) to the utilization loss rate relative to the
maximum possible utilization 𝑅𝑛𝑚𝑎𝑥

that a resource 𝑅𝑛 can achieve.

𝐼𝑝𝑙𝑟 =
|𝑊𝑎1 −𝑊𝑎2 |

𝑊𝑎1
(1) 𝐼𝑢𝑙𝑟 =

|𝑊𝑎1 −𝑊𝑎2 |
𝑅𝑛𝑚𝑎𝑥

(2)

In addition to this simplified model, further distinctions can be
made. As part of his dissertation, Krebs et al. developed a model
that included a graphical representation of isolation characteristics.
It incorporates several interesting isolation points of interest along
the range of values [9]. On the basis of those, additional metrics
can be derived. Their graphical representation is adopted here and
is presented in Figure 3.

In the following, we briefly iterate over theirmost notablemetrics
in the context of this paper.

Generally, this model also assumes static workload𝑊𝑎 . In con-
trast to the performance loss rate as described above, the disruptive
workload𝑊𝑑 increases its load over time and as a consequence
impacts𝑊𝑎

The x-axis𝑊𝑑 in Figure 3 represents the amount of workload
the disruptive tenant causes, whereas the y-axis𝑊𝑎 represents that
for the abiding tenant.
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Figure 3: Visualization of theoretical and practical behaviour
in isolation scenarios

The green line denoted with “isolated” shows a perfectly isolated
𝑊𝑎 , which is not affected by𝑊𝑑 at all. No amount of𝑊𝑑 has an
impact on𝑊𝑎 .

In contrast, the blue line indicated with “non-isolated”, shows
how workload𝑊𝑎 decreases, while workload𝑊𝑑 increases. For this
case, no isolation occurs at all and𝑊𝑑 is clearly prioritized.

In reality, the actual graphical representation is represented by
the red line denoted by “Possible Measurement”. It will lie some-
where between the aforementioned green and blue lines.

With the graphical representation in Figure 3 in mind, various
interesting isolation points can be identified. Moreover, these offer
the potential to derive additional useful metrics. The following
briefly iterates on the said points as defined by Krebs et al. [9].

Reference points. The reference point𝑊𝑑𝑟𝑒𝑓 marks where the
disruptive tenant starts to degrade the abiding tenant. In conse-
quence𝑊𝑎𝑟𝑒𝑓 defines this point from the perspective of𝑊𝑎 .

Degradation points. 𝑊𝑑𝑏𝑎𝑠𝑒 highlights the point where𝑊𝑎 is
fully degraded and thus reduced to zero if𝑊𝑎 was not isolated.
The same is true for𝑊𝑑𝑒𝑛𝑑 , marking the point where an arbitrary
isolation would cause that degradation to zero. Finally, the cross
section of𝑊𝑎𝑏𝑎𝑠𝑒 and𝑊𝑑𝑏𝑎𝑠𝑒 marks the respective workload for
that arbitrary isolation that would otherwise be zero if no isolation
had taken place.

Krebs et al. give an example for an isolation metric based on
degradation points. They describe the difference between𝑊𝑑𝑒𝑛𝑑
and𝑊𝑑𝑏𝑎𝑠𝑒 in relation to𝑊𝑎𝑟𝑒𝑓 . This relation is shown as 𝐼𝑒𝑛𝑑 in
Equation (3). Its value is zero if no isolation happens, and the higher
this value gets, the better the isolation is. As this value tends to ∞,
the authors suggest to rather use𝑊𝑎𝑟𝑒𝑓 as a reference resulting in
values between [0, 1]. This is in Equation (4).

𝐼𝑒𝑛𝑑 =
𝑊𝑑𝑒𝑛𝑑 −𝑊𝑑𝑏𝑎𝑠𝑒

𝑊𝑎𝑟𝑒𝑓

(3) 𝐼𝑏𝑎𝑠𝑒 =
𝑊𝑎𝑏𝑎𝑠𝑒

𝑊𝑎𝑟𝑒𝑓

(4)

The authors further argue that these metrics are sufficient only
for systems that degrade linearly. They therefore propose two ad-
ditional integral-based metrics. Equation (5) describes the relation
between the area under the measured curve and the area under
the curve of the non-isolated workload starting from𝑊𝑑𝑟𝑒𝑓 . Equa-
tion (6) describes the same relation but starting from𝑊𝑑𝑏𝑎𝑠𝑒 to an
arbitrary point beyond𝑊𝑑𝑏𝑎𝑠𝑒 . The latter could be the highest value
on𝑊𝑑𝑏𝑎𝑠𝑒 . Both values range between [0, 1].

𝐼𝑖𝑛𝑡𝐵𝑎𝑠𝑒 =

(∫𝑊𝑑𝑏𝑎𝑠𝑒

𝑊𝑑𝑟𝑒𝑓

𝑓𝑚 (𝑊𝑑 )𝑑𝑊𝑑

)
−𝑊 2

𝑎𝑟𝑒𝑓
/2

𝑊 2
𝑎𝑟𝑒𝑓

/2
(5)

𝐼𝑖𝑛𝑡𝐹𝑟𝑒𝑒 =

(∫ 𝑝𝑒𝑛𝑑
𝑊𝑑𝑟𝑒𝑓

𝑓𝑚 (𝑊𝑑 )𝑑𝑊𝑑

)
−𝑊 2

𝑎𝑟𝑒𝑓
/2

𝑊 2
𝑎𝑟𝑒𝑓

·
(
𝑝𝑒𝑛𝑑 −𝑊𝑑𝑟𝑒𝑓

)
−𝑊 2

𝑎𝑟𝑒𝑓
/2

(6)

Not every metric described here will ultimately be useful for this
work. Although we will elaborate on their applicability in section 4.

3 METHOD
This section presents the underlying method applied to gather
isolation metrics. It starts by briefly summarizing this work’s goal
and follows by discussing the applied scenarios, instrumentation,
and isolation quantification methods.

3.1 Goals
To reiterate our research questions, our aim is to measure the iso-
lation of certain OCI based virtualization technologies. Therefore,
we isolate them against each other in specific scenarios that are
presented in the upcoming section. To achieve this, we instrument
them directly on the host as in outside their virtualization envi-
ronment. This enables us to collect high-resolution performance
metrics of any involved process. This instrumentation is possible by
leveraging eBPF. The actual isolation quantification follows related
work. We decide to determine different metrics in order to compare
and discuss them in conclusion.

3.2 Scenarios
We analyze the characteristics of isolation among tenants in four
distinct scenarios. Each scenario consists of an abiding and a disrup-
tive workload according to the model presented by Krebs et al. [9].
The abiding workload statically utilizes a resource and is contended
by a disruptive workload. This disruptive workload continuously in-
creases its workload until it reaches its final utilization. An overview
of all scenarios is presented in Table 1. In this table, 𝑙𝑎 and 𝑙𝑑 de-
scribe the resource limits for 𝑤𝑎 and 𝑤𝑑 compared to the total
available resources.𝑤𝑎 and𝑤𝑑 describe the relative utilization of
the respective workloads within these limits.

For each scenario, the abiding workload utilizes a static amount
of resources, whereas the disruptive workload increases linearly
over time. This enables us to measure every possible combination of
workloads between a static abiding and a linear disruptive workload.
Plotting both on distinct axes results in a graph similar to Figure 3.

The runtime of each scenario is sensibly chosen depending on
the maximum degree of utilization, its maximum capacity, and the
time it takes to utilize it. The linear increasing disruptive workload
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Table 1: Isolation scenarios with workload and their limits

name 𝑤𝑎 𝑙𝑎 𝑤𝑑 𝑙𝑑

harmony 100 % 50 % 100 % 50 %
escape 100 % 50 % 150 % 50 %
overcommitting 100 % 50 % 100 % 75 %
steal 50 % 50 % 100 % 75 %

evenly utilizes its resource over the experiment runtime and thus
subdivides into fitting steps whose size and degree of isolation
depend on the same characteristics as the total runtime. The ex-
periments themselves are each repeated at least 10 times and the
physical server involved is fully reset in between to mitigate any
residue and thus impact from previous experiment runs [18].

harmony. In this scenario, two workloads fully utilize their
assigned resources. The assigned resources are imposed through
limits and evenly distributed throughout the resource as a whole,
resulting in 50% for both. In practice, this means that the capacity
planning performed previously adhered strictly to the combined
available resources. This is a typical use-case for scenarios where
no overcommitting or dynamic resource sharing happens. From a
theoretical point of view, no resource contention should occur, and
thus both workloads should not interfere with each other.

escape. This scenario is similar to the harmony one with only
one exception. Here, the disruptive workload tries to escape its own
imposed limit. Such scenarios occur when a workload accidentally
or on purpose tries to exceed its allocated resources. In consequence,
we can see two different things. One being whether the limit can
actually be imposed and the workload is not able to exceed its limit,
and the other being whether it is able to have an impact on the
abiding workload in either case. In an ideal case, there should be
no impact whatsoever.

overcommitting. Overcommitting is something that typically
happens in cloud scenarios. As briefly mentioned in section 1 this
may be part of their business model. In this scenario, we set a
higher total limit for a resource than is physically available. To
consider the worst case, both workloads use 100% of resources
within their own limit. Again, considering the cloud computing use
case, this most likely leads to a violation of customers Service Level
Agreement (SLA). As both workloads stay within their limits, it is
not deterministic how the workloads will behave. Nevertheless, it
is still interesting how degradation occurs and whether different
virtualization technologies behave differently.

steal. This is an extension of the “overcommitting” scenario.
Although the limits still exceed the total available resource, work-
loads no longer use them fully. The abiding workload purposefully
utilizes only half of its granted resources, while the disruptive still
fully uses the resource until its limit. The combined workloads fully
utilize all available resources, however. Essentially, this scenario
tests whether the disruptive workload can steal free available re-
sources from the abiding one. Some virtualization technologies may
allow this, whereas others may strictly assign resources and block
them.

3.3 Instrumentation
The method for resource instrumentation is based on the principles
designed by [21]. In summary, this implies that the instrumentation
must follow two essential functions. It (i) must occur outside of the
virtualization technology to get a holistic view of the unobstructed
resources. Furthermore, (ii) needs to be independent of virtualiza-
tion technology to allow a fair comparison. This means that the
instrumentation points need to be reasonably similar. Therefore,
the uprobes as outlined in section 2.1 are not applicable.

eBPF has made it possible to access any kind of Linux instru-
mentation while promising low instrumentation overhead. The
overhead can be kept low, as it can be performed within the ker-
nel, reducing the amount of overhead induced by frequent kernel
userspace interactions significantly.

OCI
Runtime
Root

Process

Virtual
Child

Process 1

Virtual
Child

Process 𝑛

Virtual
Child Sub-
processes

g(𝑖) OCI
Inspect

(𝑖𝑖)
Identify

consumers

(𝑖𝑖𝑖)
instrument
and filter

Figure 4: Instrumentation of processes controlled by OCI
runtimes

As the instrumentation happens outside the virtualization tech-
nology, the following issues need to be solved. The process to do is
highlighted in Figure 4.

We first need to (i) identify and distinguish virtualization tech-
nology instances that compete for resources. We further need to (ii)
identify the actual process that consumes the resources. Finally, we
need to (iii) find an appropriate instrumentation point that correctly
profiles the resource in question.

When it comes to network resource profiling, the eXpress Data
Path (XDP) feature of eBPF offers an efficient way of instrumenting.
XDP provides an API to implement functions that are attached
directly to network interfaces and allow stateless processing of
incoming packets. It promises fast networking functionality, as it
allows bypassing the Linux netfilter stack. State handling, including,
but not limited to, packet counting and stateful connection tracking,
can be achieved by leveraging eBPF maps that can be accessed by
the named XDP function, as well as by user-space applications.

3.4 Isolation Quantification
In section 2.4 we presented and briefly discussed several useful
metrics to quantify isolation. However, not all are desirable or even
applicable to our scenarios as shown in section 3.2.

64



ICPE ’24, May 7–11, 2024, London, United Kingdom Simon Volpert et al.

For example, 𝐼𝑝𝑙𝑟 in Equation (1) is widely applied in scientific
work, but that may also be due to it being straightforward and
comparatively simple. For these reasons and to compare it with
another metric, we still calculate it. In order to do so, we need
to pick a performance degradation point in an isolation diagram
like Figure 3. Here, we choose the performance degradation where
the disruptive workload is at its maximum. Another viable option
would be the highest degradation of the abiding workload observed.
However, we did not observe a significant difference between these
possible points and therefore neglected them.

In section 2.4 we cite Krebs et al. [9] who argues that metrics like
𝐼𝑝𝑙𝑟 are only sufficient for linearly degrading resources. However,
this is not always the case, as we can see in our results in section 6.
They therefore suggested integral-based ones. However, some met-
rics assume that we have a disruptive workload that is capable of
fully degrading the abiding one. Our scenarios do not force that,
and depending on the resource, the respective resource scheduler
might not allow this. As a consequence, we decide to use the 𝐼𝑖𝑛𝑡𝑓 𝑟𝑒𝑒
metric in Equation (6). This metrics calculation only regards the first
point of degradation and the highest applied disruptive workload.

In section 7 we reiterate the correlations for these metrics and
discuss their respective applicability retrospectively. We therefore
introduce a simple isolation similarity metric 𝑆𝐼 between 𝐼𝑖𝑛𝑡𝑓 𝑟𝑒𝑒
and 𝐼𝑝𝑙𝑟 that describes how similar they are to each other on a scale
from [0, 1] where 1 is exactly the same and 0 very different.

4 IMPLEMENTATION
The evaluation process is based on the evaluation framework pre-
sented in [21]. Some aspects are extended to enable answering the
research questions. In particular, this involves updates to the load
generation and instrumentation details.

Compared to the initial work, the three notable changes are
(i) new scenarios as presented in section 3.2, (ii) new isolation
metrics as described in section 3.4 and new technologies as shown
in section 5.2.

4.1 Workflow
The whole process of load generation and data acquisition for every
possible combination of scenario and technology relies on the eval-
uation framework. The abstract process of a conducted experiment
is briefly highlighted below.

It follows the workflow highlighted in Figure 5. Here, the process
begins with the (i) spawning of a virtualization technology process.
Within this (ii) load is generated by the respective load generation
tools. Afterwards, the (iii) profiling process on the host system is
started in parallel. This profiling supervises and profiles the virtual-
ization technology process. Upon success, data is (iv) acquired and
(v) stored on external storage.

4.2 Load generation
The original load generation process needs several changes in order
to enact the previously mentioned scenarios. Specifically, the static
load generation at several distinct interesting points is changed
to a linear load generation phase. This improvement still includes
all previous configurations and extends them with a configurable
number of points.

Host

Virtualisation technology

Load

Profile

g

External Storage

(𝑖𝑖𝑖) Profiling

(𝑖)
Spa

wn

(𝑖𝑖) Ex
ecute

(𝑖𝑣) Acquire

(𝑣) Store

Figure 5: Flow of an abstract measurement

Benchmarking and load generation tools that are scientifically
trusted do not commonly offer the possibility to gradually increase
the load over given amount of. We therefore separate the load
generation into multiple intervals with configurable resolution. By
doing so, we can achieve a nearly linear behavior of load generation,
as highlighted in Figure 6.

𝑊𝑎

𝑊𝑑𝑖𝑑𝑒𝑎𝑙

𝑊𝑑𝑟𝑒𝑎𝑙

𝑡

𝑊

Figure 6: Visualization of linear load generation highlighting
ideal and real𝑊𝑑

Here, the axis describes the workload over time showing the
abiding constant workload𝑊𝑎 as well as the theoretically ideal
disruptive workload𝑊𝑑𝑖𝑑𝑒𝑎𝑙 and the actual real disruptive workload
𝑊𝑑𝑟𝑒𝑎𝑙 .

4.3 Instrumentation
In practice, the process structures of distinct virtualization tech-
nologies are very different. Adding a new technology to this work-
flow engine would involve a small implementation effort based
on process structure investigations. To give an example, the pro-
cess structure of loosely isolated container technology like docker
with runc is visible in detail, whereas it is mostly abstracted for
hypervisor-based virtualization like KVM. In the latter case, we
cannot see processes running within the virtual machine from the
outside.

The following Table 2 presents all the instrumentation points
for the technologies observed in this work and the process filter
necessary to sort the process trees of competing tenants. We specif-
ically avoided kprobes, as they are significantly less stable than

65



An Empirical Analysis of Common OCI Runtimes’ Performance Isolation Capabilities ICPE ’24, May 7–11, 2024, London, United Kingdom

instrumentation resource description
hardware:cycles CPU Hardware counter reporting

CPU cycles
tracepoint:kmem:
rss_stat

Memory Tracepoint called when Resi-
dent Set Size (RSS) counters
change

tracepoint:block:
block_io_start

Disk Tracepoint called when block
operation request is queued for
execution

XDP Network Network interface specific
functions executed upon
incoming network packet

Table 2: Instrumentation points list

tracepoints. This is no hard requirement, though, and extensions
of this framework might make their usage necessary.

To measure the throughput on a network interface, we imple-
ment an XDP function that increments time-based buckets in an
eBPF-map. After a finished run, all buckets are then extracted by a
user-space application for further analysis. The OCI specification
dictates the use of veth-pairs to be OCI compliant. This allows us to
perform black-box measurements of network isolation capabilities,
independent of the OCI runtime under test.

5 EXPERIMENTAL SET-UP
5.1 Physical nodes
The experimental setup consists of 7 physical servers. They are
arranged symmetrically and consist of identical components. The
CPUs are two Intel CPUs of the model “Intel(R) Xeon(R) CPU E5-
2630 v3” with a basic clock frequency of 2.40 GHz and a maximum
clock frequency of 3.20 GHz. The memory attached to those CPUs
have a total of 16 · 16 = 256 GiB DDR4 memory clocked at 2133
MHz available. The disk involved at the Input Output Operations
Per Second (IOPS) isolation tests is a Samsung SM843TN, rated
with 15000 IOPS “random write” performance. The server types
involved are six experiment nodes for parallel execution and one
control node that provides bare metal provisioning for the workflow
control engine.

The networking between all involved nodes is realized by Mel-
lanox Technologies Network Interface Card (NIC) of the “MT27800
ConnectX-”5 family. These are capable of a network throughput
rate of 50𝐺𝑏𝑖𝑡/𝑠 . Nevertheless, as described during the results in
section 6.4 they are not used for the actual network resource exper-
iments. Here we use on-board network cards that only provide a
maximum throughput of 1𝐺𝑏𝑖𝑡/𝑠 , as otherwise there would be no
resource contention for hypervisors that do not offer bandwidths
beyond a few 𝐺𝑏𝑖𝑡/𝑠

Notable other software components involved are listed in Table 3.
All of these are part of the automated experiment workflow engine
as described in section 4.1.

5.2 Selected Virtualization Technologies
Based on the components deconstructed of virtualization technolo-
gies, we can roughly separate them into categories [21]. Although

name version note
Fedora CoreOS 39 Operating system version
Linux Kernel 6.5.6 Kernel used by the operating system

Fedora CoreOS
k3s v1.28.4 Rancher Kubernetes Distribution
Argo Workflow v3.5.0 The workflow engine to orchestrate

experiments and scenarios
bpftrace v0.19.0 Profiling tool based on eBPF and bcc
stress-ng 0.13.05 Load generator for CPU and mem-

ory
fio 3.28 Load generator for disk I/O
iperf3 3.10.1 Load generator for network I/O
podman 4.7.0
gvisor 20231023 with the systap platform
kata 3.2.0 with the virtio-fs storage driver

Table 3: Software version list

there are not necessarily strict categories for their isolation capa-
bilities, they are sufficient for a rough starting point. Thus, for this
work we select three popular engines including OCI compatible con-
tainer runtimes that each fit into those proposed categories. More
specifically, the technologies are Podman12, gVisor13 and Kata14.
Figure 7 shows a hierarchical representation of those choices.
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Virtualisation

hypervisor
based

docker

(i) kata

runk

container
based

podman

(ii) crun

crun

sandbox
based

docker

(iii) gVisor

runsc

Figure 7: Virtualisation Classification Overview

Naturally, these technologies offer many possible configurations.
In this paper, we use their most recent releases as of date, as well
as the upstream default configuration. Table 3 gives an overview
over these details in the bottom part. Here, we distinguish between
the container runtime as defined in Figure 2 and the container
runtime’s binary name for reference.

crun. This container runtime, developed by RedHat, adheres to a
more conventional approach. It leverages namespaces and cgroups
for isolation, offering an alternative to runc, often bundled with
containerd. Notably, it does not differentiate between the runtime
and binary name, hence also referred to as “crun”.

12https://podman.io/
13https://gvisor.dev/
14https://katacontainers.io/
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gVisor. Originated at Google15 gVisor promises a stricter iso-
lation among workloads. Although this technology also builds on
namespaces and cgroups, they further improve isolation by filtering
Linux system calls [26]. This “sandbox” approach reimplements
fundamental Linux capabilities within the user space to gain more
control and thus improve isolation [22]. The runtime “runsc” is
bundled with gVisor itself.

Kata. This independent OpenSource engine leverages hypervi-
sor based virtualization to achieve isolation. Moreover, it also uses
cgroups and namespaces where applicable. Similarly to the tech-
nologies mentioned above, Kata also bundles its container runtime
“runk”.

6 RESULTS
This section presents and discusses the results of the isolation mea-
surements. Therefore, we present an overview in Table 4 that con-
tains all isolation metrics determined based on the measurements
we performed.

Table 4 consists of two multi-indexes. The vertical ones describe
all permutations of virtualization technologies as described in sec-
tion 5.2 and the scenarios we presented in section 3.2. Horizontal
indices describe all permutations of resources that are instrumented
as part of the workflow in section 4.1 and all isolation metrics dis-
cussed in section 3.4.

The number of results is too numerous to discuss every isolation
characteristic in detail. As a consequence, we select interesting as-
pects for every resource and discuss them in the following sections.
One thing all technologies have in common is that they allow grant-
ing unused resources to other workloads. In every steal scenario,
the disruptive workload is able to allocate resources that could have
been exclusively granted to the abiding one, without negatively
impacting it. For this reason, we do not discuss this scenario further
in the detail sections below.

The figures “Isolation” and “Timeline” presented throughout the
remainder of this section are aligned to Figure 3 and Figure 6, respec-
tively. The isolation figures furthermore highlight the changepoint
discussed in section 3.4 with an orange circle and highlight the area
under the abiding but disturbed workload. This tries to give a better
idea of what the 𝐼𝑖𝑛𝑡𝑓 𝑟𝑒𝑒 metric will look like, since this is part of
Equation (6).

6.1 CPU
Reviewing the isolation metrics in the CPU column of Table 4, it is
evident that CPU isolation is comparatively good and stable across
the different virtualization technologies.

Considering a typical scenario like the escape one for the gVisor
CPU, we can see that there is a slight degradation visible. However,
𝑆𝐼 indicates that our two isolation models slightly disagree. To
understand the reasoning behind this, we investigate the time and
isolation charts.

According to the escape scenario, both workloads fully utilize the
CPU together. In fig. 8b we can see the steadily increasing workload
𝑊 of the disruptive workload until it tries to escape its limit. We
can see that this is not possible. However, as soon as the disruptive

15https://www.google.com/
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Figure 8: gVisor CPU Escape Scenario
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Figure 9: Kata CPU Escape Scenario

workload reaches its limit, the abiding workload starts to degrade.
This might be due to the fact that the CPU scheduler needs to take
efforts to keep the disruptive workload from exceeding its limit,
implying less available CPU time for the abiding workload.

In contrast, the same scenario for the Kata CPU isolation looks
slightly different. In fig. 9b we cannot observe a significant degra-
dation over the course of the experiment. The fact that there is no
change point above our threshold detected in fig. 9a, has a huge
effect on the areas under the graphs of the calculated 𝐼𝑖𝑛𝑡𝑓 𝑟𝑒𝑒 . This
can be neglected, though, as these cut each other out by building a
ratio as highlighted in Equation (6).

6.2 Disk
As visible in Table 4 it is imminent that disk isolation has problems
for our scenarios. An immediately visible aspect is the fact that
disk isolation for gVisor is not present. This is because it, at the
time of writing, does not support directly passing block devices
into its container. This is a mandatory requirement as we generate
and measure direct block operations.

Apart from that observation, the disk isolation for the remaining
technologies is arguably bad. Considering Podman, for example,
yields bad results in almost every scenario with 𝐼𝑖𝑛𝑡𝑓 𝑟𝑒𝑒 < 0.5 and
𝐼𝑝𝑙𝑟 even worse.

This is clearly reflected in the respective time and isolation charts
in Figure 10, taking the overcommitting scenario as an example.
Here we can see that as soon as the disruptive workload starts, the
abiding is almost reduced to zero. Interestingly, it starts to regain
its workload over time, which will quickly be impacted by the ever-
increasing disruptive workload, though. This behavior is a good
example of how changing or specifically increasing the workload
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Table 4: Isolation metrics comparison

Resource cpu disk memory network
Metric 𝐼𝑖𝑛𝑡𝐹𝑟𝑒𝑒 𝐼𝑝𝑙𝑟 𝑆𝐼 𝐼𝑖𝑛𝑡𝐹𝑟𝑒𝑒 𝐼𝑝𝑙𝑟 𝑆𝐼 𝐼𝑖𝑛𝑡𝐹𝑟𝑒𝑒 𝐼𝑝𝑙𝑟 𝑆𝐼 𝐼𝑖𝑛𝑡𝐹𝑟𝑒𝑒 𝐼𝑝𝑙𝑟 𝑆𝐼

Technology Scenario

gvisor

escape 0.89 0.85 0.96 n/a n/a n/a 0.99 0.99 1.00 n/a n/a n/a
harmony 0.99 0.99 1.00 n/a n/a n/a 0.99 0.99 1.00 1.00 1.00 1.00
overcommit 0.94 0.89 0.95 n/a n/a n/a n/a n/a n/a 0.76 0.87 0.87
steal 1.00 0.99 1.00 n/a n/a n/a 1.03 1.00 0.97 0.95 1.00 0.95

kata

escape 0.95 0.99 0.96 0.86 0.95 0.90 0.99 1.02 0.97 n/a n/a n/a
harmony 0.99 0.99 1.00 0.60 0.93 0.64 1.00 1.02 0.99 1.00 1.00 1.00
overcommit 0.88 0.80 0.92 0.44 1.04 0.43 n/a n/a n/a 0.96 0.94 0.98
steal 1.00 1.00 1.00 1.42 1.31 0.92 1.10 1.16 0.94 1.00 0.99 0.99

podman

escape 0.94 0.84 0.89 0.41 0.13 0.32 0.93 0.91 0.97 n/a n/a n/a
harmony 1.00 0.99 1.00 0.47 0.15 0.32 0.93 0.92 0.98 1.00 1.00 1.00
overcommit 0.94 0.90 0.96 0.39 0.10 0.25 n/a n/a n/a 0.93 0.86 0.93
steal 1.00 1.00 1.00 0.41 0.95 0.43 1.06 1.00 0.95 1.00 1.00 1.00
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Figure 10: Podman disk overcommit Scenario

has a different impact than two static competing workloads. This
also relates to the comparative low 𝑆𝐼 scores. As mentioned before,
the less linear the degradation process is, the less applicable the
𝐼𝑝𝑙𝑟 metric becomes. For this metric, we only consider the highest
applied disruptive workload that is not stable, leading to a 𝐼𝑝𝑙𝑟 with
very low expressiveness.

However, in general, we can see that the contended resource is
not actually the observed and limited IOPS but a related resource
that is saturated. This naturally depends on many factors such as
the physical type of the disk (e.g. HDD, SSD, etc.), the bus it is at-
tached to (e.g. PCIE, SATA, SAS) or hardware specific details like the
installed disk controller. The analysis of what exactly happens here
is beyond the scope of this work and is left for future investigations.

The Kata disk isolation issue is very different. Although it is ca-
pable of effectively limiting disk IOPS for processes running inside
the virtual machine, this does not include the disk IOPS performed
by actual virtualization technology. The kind of hypervisor Kata
uses does not offer the possibility to instrument the individual
processes inside it through eBPF. Instrumenting the hypervisor
in consequence adds IOPS it executes for its own overhead. This
behavior can be seen in Figure 11 for the harmony scenario.

Although this limits the significance of these specific results,
we were still able to observe performance degradation between
the abiding and disruptive workload. However, we only consider
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Figure 11: Kata disk harmony Scenario

workload below the actual targeted utilization as described in the
scenarios in Table 1, to ensure that an actual degradation of the
workload inside occurs.

6.3 Memory
The isolation results for the memory metrics come with a small
limitation. During the benchmarks, we determined that the Kata
runtime has issues with the Non-Uniform Memory Access (NUMA)
architecture of our physical servers and was not properly accessing
memory across the CPU boundaries. Therefore, we limited virtu-
alization technology access to a specific node and performed the
experiments there while only allocating the memory (half of total)
attached to it.

Moreover, we did not conduct any overcommit scenarios, as
overcommitting memory was not possible in general. The Out Of
Memory (OOM) killer would quickly kill the processes involved
in our experiment, rendering the results useless. overcommitting
the actual allocated memory (as in Resident Set Size (RSS)) is not
possible in our configuration.

As memory isolation is very similar across technologies, we
briefly discuss Podmans’ escape scenario as an example in Figure 12.

One notable aspect is the observation that the actual workload
never fully utilizes its designated utilization. This is due to the fact
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Figure 12: Podman memory Escape Scenario
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Figure 13: Podman network overcommit Scenario

that the load generator tries to allocate RSS memory with many
workers in parallel and thus eventually reaches the limit. Once
that happens, a process within the container gets OOM killed. One
consideration here is that due to this circumstance, 𝐼𝑖𝑛𝑡𝑓 𝑟𝑒𝑒 is lower
than expected.

From the Figure 12 it is clearly visible that the imposed limitation
for disruptive workloads works very well and cannot disturb the
prevailing workload in any way.

6.4 Network
The virtualization technologies studied in this work do not offer
the possibility of limiting the network bandwidth or IOPS of a
NIC. This is the reason we do not perform an escape scenario for
this resource, as it would merely mimic the overcommit scenario.
However, technologies still possibly implement different strategies
to enable network virtualization.

One significant difference is the Kata-induced limitation. Here,
the maximum possible bandwidth achievable by the virtual NICs
it creates is 5𝐺𝑏𝑖𝑡/𝑠 . We therefore performed all our tests on an
exclusive 1𝐺𝑏𝑖𝑡/𝑠 card specific for these experiments.

Apart from this consideration, the isolation metrics across all
virtualization technologies are very similar. We see that as soon as
both workloads fully utilize the NIC, performance degradation oc-
curs. This behavior is clearly visible from any overcommit scenario
as shown in Figure 13.

7 DISCUSSION
Although we can quantify the isolation capabilities of OCI runtimes
by applying two different approaches to acquire isolation metrics,

the results need critical reflection. This especially applies to the
meaningfulness of the quantification methods in regard to the ex-
amined technology, scenario and resource, as well as the deviation
of some results exceeding the predicted numeric range with an
upper bound of 1.

As the respective 𝑆𝐼 columns in Table 4 show, the deviation of the
retrieved isolation metrics can be rather high across the technolo-
gies, applied scenarios, but also resources of interest. In section 3.4
we noted that 𝐼𝑝𝑙𝑟 is only sufficient for systems that degrade lin-
early. Looking at the corresponding graphs, it is evident that a linear
degradation behavior does not apply to disk measurements. For
some CPU measurements a near-linear behavior can be observed.

On the other hand, the integral-based metrics can also be mis-
leading. As we calculate 𝐼𝑖𝑛𝑡𝑓 𝑟𝑒𝑒 with the highest value of𝑊𝑑 , the
applied scenario and therefore the maximum resource consump-
tion of the disruptive tenant has a huge impact on the result of this
metric.

In summary, depending on the selected configuration, themethod
to derive the isolation metric has to be selected carefully, the most
expressiveness regarding the isolation capabilities is given by the
isolation graphs.

Some calculated metrics show values higher than the theoretical
upper bound of 1. For runtimes that hide information about running
processes, such as gVisor, the retrieved values include the overhead
produced by the runtime itself. A good example is the memory
consumption measured for Kata containers. In each scenario, the
retrieved values lie slightly above the imposed limits. Although Kata
seems to apply the correct limits to the processes running inside,
our method of measuring the consumption does not resemble the
additional overhead of runtime. Subtracting overhead, to acquire
more reasonable results, requires further investigation.

Generally speaking, the results that we present in this work
are naturally very specific to the hardware, system configurations,
and scenarios used. Isolation metrics cannot be easily compared
between resources and scenarios. However, they can be compared
within scenarios.

8 RELATEDWORK
A common approach to quantify the isolation capacity of a virtual-
ization technology is to determine the 𝐼𝑝𝑙𝑟 similar to Equation (1).
Therefore, related work typically first measures a resource from
within the virtualized environment[11, 17, 24, 25]. Combined with a
subsequent measurement of the same workload under the influence
of a disrupting contending workload, this ratio can be calculated.
This approach has several constraints. One (i) is the measurement
from within the virtualized environment. This neglects unforeseen
impact on the host system. Another (ii) one is the dependability
on the load generator specific to the stressed resource. Moreover,
applying (iii) static workloads neglects effects induced by the vari-
ability of stress. Calculating only a (iv) single metric disregards the
time in which a possible equilibrium of workloads is reached. In
our work, we instrument the virtual environments from the hosting
system through eBPF and thus decouple ourselves. Additionally, we
induce a variable stress based on multiple scenarios and determine
an isolation metric that takes the timeline into account.
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This work focuses on the isolation of compute resources. An-
other aspect to consider is the impact that virtualization technology
has on kernel resources and to classify isolation based on that.Wang
et al. [23] follow very interesting approach to determine amisbehav-
ing workload and further presents a tool to improve this isolation.
Similarly Anjali et al. [1] assess virtualization technology categories
along the kind and amount of system calls, and thus kernel stress.

9 CONCLUSION
Throughout this work, we presented a workflow engine and im-
plementation details on isolation characteristics instrumentation
for OCI compatible virtualization runtimes and give a rough esti-
mate of the capabilities state-of-the-art virtualization technologies
bring. Our results can be used in a decision process to pick a fit-
for-purpose technology. Moreover, the framework itself can be
extended for custom changes and executed on custom platforms.

We discovered some limitations in instrumentation and isolation
for certain scenarios and technology combinations. These findings
can be used to decide against a certain technology or to implement
improvements.

One future direction that we intend to pursue with our work is
to create a system of continuous profiling of isolation character-
istics. Similarly to the work of Wang et al. [23], a classification of
abiding and disruptive workloads could be based on a combination
of performance metrics, derived isolation metrics, and kernel re-
source utilization. Furthermore, the characterization of workloads
based on these metrics could be improved by integrating Quality of
Service (QoS) metrics. Experiments may show a possible relation be-
tween resource isolation degradation and, for example, application
response time.
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