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ABSTRACT
Software applications can produce a wide range of runtime software
metrics (e.g., number of crashes, response times), which can be
closely monitored to ensure operational efficiency and prevent
significant software failures. These metrics are typically recorded
as time series data. However, runtime software monitoring has
become a high-effort task due to the growing complexity of today’s
software systems. In this context, time series forecasting (TSF)
offers unique opportunities to enhance software monitoring and
facilitate proactive issue resolution. While TSF methods have been
widely studied in areas like economics and weather forecasting, our
understanding of their effectiveness for software runtime metrics
remains somewhat limited.

In this paper, we investigate the effectiveness of four TSF meth-
ods on 25 real-world runtime software metrics recorded over a
period of one and a half years. These methods comprise three re-
current neural network (RNN) models and one traditional time
series analysis technique (i.e., SARIMA). The metrics are gathered
from a large-scale IT infrastructure involving tens of thousands
of digital devices. Our results indicate that, in general, RNN mod-
els are very effective in the runtime software metrics prediction,
although in some scenarios and for certain specific metrics (e.g.,
waiting times) SARIMA proves to outperform RNN models. Addi-
tionally, our findings suggest that the advantages of using RNN
models vanish when the prediction horizon becomes too wide, in
our case when it exceeds one week.

CCS CONCEPTS
• Software and its engineering→Maintaining software; Soft-
ware evolution; Extra-functional properties; • Computing
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1 INTRODUCTION
As software systems grow in complexity, the task of ensuring soft-
ware quality becomes increasingly challenging. Today software
systems constantly evolve, with frequent daily software releases
[46], and they operate under highly variable workloads [5], which
make them susceptible to unforeseen software failures [5, 55, 58].
In such a dynamic environment, traditional proactive strategies,
such as software testing, are often insufficient for ensuring consis-
tent operational efficiency [45, 58]. For this reason, monitoring is
emerging as a key activity for maintaining operational efficiency
of software systems [12, 23, 32].

Modern software applications can produce large volumes of
runtime metrics, which are typically stored as time series data in
specialized databases [23], (e.g., Prometheus [15]). Dedicated moni-
toring teams continuously analyze these time series to identify and
mitigate potential software issues [12]. However, the vast volume
of collected data can make manual analysis costly and potentially
ineffective. To address this challenge, researchers started to de-
velop automated techniques that can facilitate the identification of
software issues or aid in the debugging process [1, 6, 16, 19, 25, 53].

Despite these advancements, significant opportunities in the
realm of data analysis remain unexploited. Time series forecasting
(TSF), in particular, presents a promising avenue for enhancing
the current practices in software monitoring. Indeed, the ability to
predict future trends in runtime software metrics could facilitate
the adoption of proactive measures, potentially preventing signifi-
cant software failures or optimizing resource allocation. Runtime
software metrics are notoriously difficult to analyze, due to their
inherent instability [5, 20, 38, 54]. However, recent advancements
in TSF have demonstrated its successful application across diverse
fields, including economics [7, 50], meteorology [11], and health-
care [48]. Moreover, TSF has recently begun to gain attention also
in the software domain [3, 10, 31, 35]. For instance, Amin et al. [3]
employed AutoRegressive Integrated Moving Average (ARIMA)
models to predict reliability a software system based on testing
results. Krishna et al. [35] used time series analysis to forecast bug
reports and enhancement requests in software projects. Bauer et al.
[10] proposed the use of TSF in self-aware systems.

Despite these efforts, to date there is still little knowledge about
the effectiveness of TSF methods for the prediction of runtime soft-
ware metrics. With this paper, we aim to fill this gap by presenting
an empirical assessment of multiple TSF methods on runtime soft-
ware metrics. The study aims at addressing the following research
questions:
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RQ1 How effective are TSF methods when applied to predict short-
term runtime software metrics?

RQ2 Do TSF methods exhibit diverse forecasting accuracy over dif-
ferent classes of runtime software metrics?

RQ3 To what extent does forecasting accuracy degrade when applied
to predict longer-term runtime software metrics?

To answer our research questions, we investigate the forecasting
accuracy of four TSF methods, including a seasonal autoregressive
moving average model (SARIMA) and three different recurrent
neural networks, namely: fully-connected recurrent neural net-
works (FC-RNN), long-short memory networks (LSTM), and gated
recurrent unit networks (GRU). The evaluation is performed on
25 real-world runtime software metrics that are categorized into 3
classes (i.e., crash rate, hang time, and waiting time) and gathered
from 8 different software applications, resulting in a total of 14,575
individual data points. These metrics were recorded over a period
of one and a half years on the large-scale IT infrastructure of a com-
pany1, which comprises thousands digital devices. In this study, we
distinguish between short- and long-term software metrics. This dis-
tinction refers to the distance of the forecasting target with respect
to the current week of the software metric under analysis.

We show that, overall, RNN models are more effective than
SARIMA and naive baselines, with FC-RNN providing the best
forecasting accuracy. Nonetheless, our evaluation underscores the
lack of a “silver bullet” method that outperforms all others across
the considered metrics. For instance, we found that when deal-
ing with specific classes of metrics, such as application waiting
times, SARIMA offers the most accurate prediction. Furthermore,
we found that benefits of using RNN models are valuable until the
forecasting horizon does not exceed approximately one week.
The main contribution of this work are:

• A first empirical assessment of TSF methods when applied
to runtime software metrics.

• An investigation of how different TSF methods behave when
applied to different classes of metrics.

• A sensitivity analysis of TSF on runtime software metrics
while varying forecasting horizons.

Paper Structure. The remainder of this paper is organized as
follows. Section 2 provides background on TSF within and outside
the software domain. Section 3 outlines the experimental design
used for our empirical study. In Section 4, we detail our research
questions alongwith the corresponding findings. Section 5 discusses
potential threats to validity, and Section 6 concludes this paper.

2 BACKGROUND
Over the years, a vast variety of phenomena have been captured
and modeled by leveraging the concept of time series, which can be
defined as an ordered sequence of data points gathered at regular
time intervals. Time series forecasting (TSF) approaches aim at pre-
dicting future evolution of the variable of interest by learning from
its historical data while looking for patterns, trends, and seasonal-
ity in the data. Due to the easy porting of the time series concept,
the effectiveness of TSF methods has been widely investigated in

1Due to privacy concerns, the company choose not to reveal itself.

diverse areas, such as medicine, environment, system engineering,
finance and more [3, 8, 17, 22, 44, 47, 50, 63]. Forecasting techniques
can be differentiated between one-step-ahead and multistep-ahead
ones. In the first case, the goal is to predict just the next value of the
time series, whereas multiple values are predicted simultaneously
in the second case. Generally, the number of forecast values that
are generated at a time is denoted as the forecasting horizon.

Earliest techniques relied on straightforward heuristics as they
evolved over time in more complex statistical models, such as Ex-
ponential Smoothing [13] and Autoregressive Integrated Moving
Average (ARIMA) models [14]. The wide popularity of machine
learning techniques, also driven by the increasing availability of
data, has induced a strong interest in artificial neural networks
(ANNs) for this purpose [27]. Some studies also explored the combi-
nation of statistical models and deep learning models, for instance
Zhang et al. leveraged statistical models to fit the linear part of the
time series and ANN to model the residual part [65].

Usually, a time series is fed into a neural network by creating
consecutive shifted input windows to predict the datapoint(s) that
follows the input sequence, thus modeling the task as a super-
vised learning problem. As dealing with sequential data is a very
frequent task in machine learning, several neural network architec-
tures have been expressly designed for sequence prediction, such as
recurrent neural networks (RNN). Examples of most popular RNN
are Long Short-Term Memory (LSTM) [26, 28, 47] and Gated Recur-
rent Unit (GRU) [18] models. Despite the extensive employment of
TSF techniques, the No Free Launch Theorem [62] denies the possi-
bility to build and select a single method that outperforms all the
others across all time series, and for this reason a comprehensive
evaluation of several models is often needed for the forecasting
effectiveness.

Motivated by the necessity of studying the behavior of software
applications over time [24, 56], and driven by the vast amount of
data produced by modern software applications, researchers have
started to apply TSF methods in software contexts, with the goal of
anticipating potential issues that may arise from software evolu-
tion [3, 10]. For instance, Jia et al. [31] applied a hybrid prediction
framework, namely DGRU, to predict software aging and determine
the optimal rejuvenation time. Krishna et al. [35] proposed a model
to predict the number of bug reports and enhancement requests
that are going to be generated in the next month by exploiting the
history of issue reports. Amin et al. [3] investigated the employ-
ment of ARIMA models in order to predict software reliability as an
alternative solution to fight the Software Reliability Growth Models
(SRGMs) limitations. Other researchers have explored the use of TSF
for enabling proactive autonomous decisions in self-aware systems.
For instance, Bauer et al. [10] conducted a preliminary investiga-
tion into how TSF methods can be integrated within self-aware
systems. Additional research has investigated the exploitability of
TSF in predicting Quality of Service (QoS) attributes [30, 52, 60].
For example, Syu et al. [52] conducted an empirical study on TSF
methods applied to web services quality attributes.

Albeit considerable work has been carried out on the application
of TSF methods in specific software contexts, their application on
runtime software metrics and the derived benefits/drawbacks in
a broader monitoring environment should be more thoroughly
investigated. To fill this gap, we conducted an empirical evaluation
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of TSF methods on several runtime software metrics (by varying
nature) gathered from a large IT infrastructure.

3 EXPERIMENT DESIGN
In this section, we describe our experiment design, including the
dataset, the TSFmethods (and baselines) we studied, and the specific
experimental procedures we used to gather metric predictions.

3.1 Dataset
Our dataset consists of 25 distinct runtime software metrics col-
lected from the IT infrastructure of a large company, which includes
more than 30k digital devices with heterogeneous hardware and
software configurations. For each of the 25 metrics, the dataset
provides a time series of daily observations collected over a period
of one and a half years, thus resulting in a total of 583 measure-
ments per metric. Each metric (i.e., times series) concerns to a
specific runtime aspect of a particular software application. For
example, one metric might represent the crash rate of a specific
web browser, while another could indicate the hang time of a par-
ticular email client. The dataset encompasses 8 distinct software
applications from a diverse array of types, including web browsers,
communication platforms, and word processors. Each application
was monitored on 3 different runtime aspects, which we refer to as
metric classes. In the following, we describe the semantics of each
metric class.

• Crash rate denotes the average number of observed crashes
of an application per hour of use. It is calculated by dividing
the total number of observed application crashes within the
IT infrastructure by the cumulative hours of application
usage across all devices.

• Hang time represents the percentage of application usage
time during which the application remains in a “hang” state,
i.e., when the application is unresponsive and not perform-
ing any active processing tasks. This runtime aspect can
be critical for diagnosing potential issues within software
applications.

• Waiting time is defined as the time users spend in waiting
for an application to respond while it is actively running.
This metric encompasses periods when the application is un-
responsive, known as the “hang” state, as well as application
and network loading times. It reports the percentage of the
total application usage time that is spent in a “waiting” state
across all devices within the IT infrastructure.

As a result, the dataset contains 24 time series (i.e., 3 for each of
the 8 software applications), plus an additional one that reports the
crash rate related to operating system failures, such as blue screen
of death [36] or kernel panics [49].

Due to privacy concerns, we cannot make publicly available the
dataset used in our study.

3.2 Models and Baselines selection
For our empirical study, we selected four TSF methods, includ-
ing one autoregressive moving-average model and three recurrent
neural network models. We chose these types of models because

they have been successfully applied to time series analysis in pre-
vious research [3, 22, 26, 31]. Specifically, our selection comprises
the following TSF methods: (i) Seasonal Autoregressive Integrated
Moving Average (SARIMA) [59], (ii) Fully Connected Recurrent
Neural Network (FC-RNN) [40, 64], (iii) Long Short-Term Memory
(LSTM) [28] and (iv) Gated Recurrent Unit (GRU) [18].

SARIMA is an extension of the autoregressive integrated moving-
average (ARIMA) model [14] that addresses the seasonal fluctua-
tions often observed in time series data. It is based on the integration
of additional seasonal terms, which allow the model to capture both
short- and long-term dependencies, as well as repetitive patterns
that occur at fixed intervals. This versatility makes it suitable for
forecasting time series where the data exhibit periodicity.

FC-RNN is a variant of neural networks where the outputs are
fed back into the network as inputs, thus forming directed cycles.
This creates a recurrent connection pattern that allows the network
to maintain a state that can theoretically hold information about
previous inputs indefinitely. The term “fully connected” denotes
that each neuron in a given layer is connected to every neuron in
both the preceding and subsequent layers.

LSTM is a specialized form of RNN designed to address the chal-
lenge of learning long-term dependencies. Unlike standard RNNs,
LSTMs include a series of gated cell states that regulate the flow of
information. These gates control the persistence and updating of
information within the cell state. This architecture allows LSTMs to
effectively retain important information over extended sequences
while discarding irrelevant data, thus making them particularly
suitable for TSF.

GRU is a particular form of RNN, introduced to solve the vanish-
ing gradient problem inherent to traditional RNNs. GRUs simplify
the LSTM approach by combining the forget and input gates into
a single “update gate” [18], while also merging the cell state and
hidden state. This results in a more streamlined model that requires
fewer parameters without sacrificing performance.

To aid the interpretability of results, we compare the forecasting
accuracy of TSF models with the ones of two naïve baseline models,
namely seasonal naïve (sNaïve) and seasonal monthly mean (sMM).

sNaïve operates on the assumption of temporal recurrence, by
repeating the last observed values for future forecasts. In other
words, this method projects the most recent seasonal data forward
to the next equivalent season, thus assuming cyclical repetition.
For instance, when predicting values for the upcoming week, the
method simply replicates the observations from the previous week.
This method is commonly used as baseline for comparative analysis
in TSF studies [9, 22, 27, 34, 43, 52].

sMM leverages recent seasonal weekly trends to forecast future
values. Specifically, it computes predictions by calculating the mean
of data points that correspond to the sameweekday in the preceding
month. For example, to forecast the value for an upcoming Monday,
sMM would average the values from all Mondays in the last month.
Domain experts from the company that provided the dataset have
recommended this baseline approach, as it reflects the established
analytical practices of their software monitoring team.
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3.3 Experimental procedure
To account for the distinct characteristics of the TSF methods in-
vestigated in our study, we adopt two distinct procedures tailored
specifically for the RNN and SARIMA models, respectively.

SARIMA evaluation. For SARIMA, we independently create one
model instance for each of the 25 time series (i.e., runtime software
metrics). The fitting process in SARIMA models consists of estimat-
ing the (𝑝, 𝑑, 𝑞) (𝑃, 𝐷,𝑄)𝑠 parameters, where: 𝑝 and 𝑃 represent the
order of the autoregressive (AR) terms for the non-seasonal and sea-
sonal parts respectively; 𝑑 and 𝐷 denotes the degree of differencing
needed to render the series stationary on both non-seasonal and
seasonal levels; 𝑞 and 𝑄 indicate the order of the moving average
(MA) terms for the non-seasonal and seasonal components; and 𝑠
denotes the seasonality period of the time series data. To estimate
the 𝑑 and 𝐷 parameter, we considered the number of times we
applied differencing to obtain a stationary time series according
to the ADFuller [21] test. The best values of (𝑝, 𝑞, 𝑃,𝑄) have been
searched by fitting the model with all the values ranging from 0
to 3 for each parameter, and by selecting the parameters config-
uration that gave the lowest Akaike Information Criterion (AIC)
[2, 51] value after the model fitting. We set the 𝑠 parameter to 7,
which corresponds to a one week seasonality. The fitting process is
performed using the initial 467 consecutive measurements of the
time series (i.e., 80% of the data points), with the remaining 20% of
the measurements reserved for assessing the forecasting accuracy
of the model. For the evaluation, starting from the initial input win-
dow of 467 consecutive measurements, we progressively increase
the input window by one time unit and use the model to forecast
the subsequent 14 measurements. This methodology enables us to
simulate a realistic scenario of progressive forecasting, in which
the model is continuously tested as new data becomes available in
the time series. As a result, we obtain for each time series a set of 89
forecast segments 𝐹 , each consisting of 14 predicted measurements.

RNN evaluation. To train the RNN models, instead, we employ a
sliding window segmentation technique [29], which divides a longer
time series of measurements into smaller, overlapping segments of
fixed size. Specifically, we use a sliding window of 28 consecutive
measurements (i.e., 4 weeks) to generate multiple overlapping seg-
ments. The initial 14 measurements serves as the input segment
(or look-back period), whereas the remaining measurements form
the forecast segment. Following the best practice for deep-learning
models [42, 63], we scaled the data using the z-score normalization
technique, thus ensuring that the data falls within a comparable
range. Specifically, we standardize each of the 28 measurements
within the window segment by using the process outlined in Equa-
tion (1):

𝑧𝑖 =
𝑥𝑖 − 𝜇𝑖𝑛𝑝𝑢𝑡

𝜎𝑖𝑛𝑝𝑢𝑡
(1)

where 𝑧𝑖 is the standardized value of the 𝑖𝑡ℎ data point of the win-
dow segment, 𝑥𝑖 is the original data point value, 𝜇𝑖𝑛𝑝𝑢𝑡 is the mean
of the input segment measurements, and 𝜎𝑖𝑛𝑝𝑢𝑡 is their standard
deviation. We use the mean and standard deviation of the input seg-
ment, instead of the entire window of 28 measurements, to ensure
that our evaluation process reflects realistic forecasting scenarios,

where future measurements (i.e., the forecast segments) are not yet
known.

To evaluate a RNN model, we independently train one model
instance for each of the 25 time series, by using the initial 72%
consecutive window segments (i.e., 394 segments) for training, the
subsequent 8% for validation (i.e., 19 segments), and the remaining
20% for testing (i.e., 89 segments). For the RNNmodels under consid-
eration (i.e., FC-RNN, LSTM, GRU), the neural network architecture
is designed as follows. The first layer of the architecture consists of
14 units of the specific RNN type (either FC-RNN, LSTM, or GRU).
The architecture includes a second layer composed of another 14
units of the same type, which is encapsulated within a bidirectional
layer. Finally, the processed information is channeled through a
fully connected layer with 14 units, by employing the hyperbolic
tangent (tanh) activation function to produce the final output. We
use the Adam optimizer [33] with an initial learning rate of 0.001,
using the mean absolute error (MAE) as the loss function. Addition-
ally, we implement a reduce-on-plateau strategy, which decreases
the learning rate when no improvement is observed in the valida-
tion loss for 20 epochs. The training is conducted for a maximum
of 500 epochs, with an early stopping mechanism that terminates
the process if no improvement in the validation loss is observed
for 50 consecutive epochs. The best model is selected basing on the
lowest validation loss observed throughout the training epochs. As
a result of the evaluation process, similarly to SARIMA, we obtain
for each RNN model and time series a set of forecast segments 𝐹 ,
each consisting of 14 measurements.

Notation. For notational convenience, we use 𝐹 𝑖 to denote the
forecast segment that aims to predict the time series data points
beginning from the 𝑖th position. For instance, 𝐹 500 represents the
forecast segment predicting data from the 500th to the 513th position
of the time series. Additionally, we use 𝐹 𝑗 to denote the 𝑗 th element
of the forecast segment, with 1 ≤ 𝑗 ≤ 14. Figure 1 graphically
illustrates the example presented above (𝐹 500). The black circles
represent the data used as input by the models and the red ones are
the predicted measurements.

Forecast Segment F500

500 513

F500
14F500

1

time

series

Figure 1: Forecast segment within the time series.

Ultimately, for each TSF method and time series, we obtain 89
forecast segments 𝐹 𝑖 , with 482 ≤ 𝑖 ≤ 570, where 482 denotes the
starting position of the first forecast segment appearing in the time
series, and 570 denotes the starting position of the last forecast
segment of the time series.

Implementation details. The experiment has been implemented
in Python. The SARIMAX class of statsmodels2 library has been used
for implementing SARIMA models. RNNs have been implemented
using SimpleRNN (for FC-RNN models), LSTM and GRU classes of
Tensorflow3.

2https://www.statsmodels.org/stable/index.html
3https://www.tensorflow.org/
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4 RESEARCH QUESTIONS AND FINDINGS
In this section, we describe in detail the research questions and
experimental results of our empirical study. For sake of clarity,
we address each research question in a separate subsection. Each
subsection is structured as follows: we first outline the objective of
the research question, then we describe the methodology used to
gather the answers, and finally we discuss the results.

4.1 RQ1: How effective are TSF methods when
applied to predict short-term runtime
software metrics?

Objective. With the first research question, we want to study the
effectiveness of TSF methods in predicting short-term runtime soft-
ware metrics. Specifically, our focus is on evaluating the accuracy
of these methods in “one-step-ahead” forecasting, which entails
predicting runtime software metrics for the immediate next day.

Methodology. To address this research question, we employ a
commonly used metric for measuring forecasting accuracy, namely
SMAPE (Symmetric Mean Absolute Percentage Error).

The values of SMAPE range from 0% to 200%, where 0% indicates
perfect forecasting accuracy, while 200% represents the worst accu-
racy. Given that the aim of this research question is to evaluate the
forecasting accuracy of TSF methods in predicting next-day met-
rics, we calculate the SMAPE by focusing exclusively on the first
element of each forecast segment 𝐹 𝑖 , i.e., the next-day prediction.

Formally, given a time series 𝑌 and a particular TSF method, we
calculate the corresponding SMAPE as follows:

SMAPE =
100%

𝑛 − 𝑘 + 1

𝑛∑︁
𝑡=𝑘

��𝐹 𝑡1 − 𝑌𝑡
��

1
2

(��𝐹 𝑡1 �� + |𝑌𝑡 |
) (2)

where 𝑘 and 𝑛 denote the positions of the first and last elements
of the time series used for evaluation (specifically, 𝑘=482 and 𝑛=513
in our case). 𝐹 𝑡1 denotes the first element of the forecast segment 𝐹 𝑡

(i.e., the next-day prediction of the TSFmethod for the 𝑡𝑡ℎ element of
the time series), and 𝑌𝑡 denotes the actual time series measurement
at position 𝑡 .

As a result of this process, for each TSF method, we obtain 25
SMAPE results, i.e., one per time series.

In order to assess (and compare) the forecasting accuracy of
different TSF methods, we plot the SMAPE distribution of each
TSF method using box plots, and report the associated descriptive
statistics (e.g., mean, median). Additionally, we conduct an analysis
to determine whether each TSF method outperforms the naive base-
lines. Indeed, the practical applicability of a TSF method may be
questioned if it does not improve upon these baselines. To accom-
plish this, we employ the Wilcoxon signed-rank test [61] for each
pair of <TSF method, baseline> to compare their respective SMAPE
values. We set the significance level at 0.05, meaning that differ-
ences with p-values below this threshold are considered statistically
significant. In addition to the Wilcoxon signed-rank test, we utilize
the common language effect size [39], in the version proposed by
Vargha and Delaney (𝐴12) [57], to assess the magnitude of the dif-
ferences observed. Given two related paired samples 𝑋 and 𝑌 , the

common language effect size is the proportion of pairs where 𝑋 is
higher than 𝑌 .

𝐴12 = 𝑃 (𝑋 > 𝑌 ) + .5 × 𝑃 (𝑋 = 𝑌 ) (3)
The𝐴12 value, which ranges from 0 to 1, is interpreted using the

thresholds provided by Vargha and Delaney [57]. A 𝐴12 value of
0.5 suggests that there is no significant difference in forecasting
accuracy between the TSF method and the baseline. A value of 𝐴12
larger than 0.5 indicates that the TSF method is likely to yield more
accurate forecasts than the baseline, i.e., lower SMAPE. Specifically,
the magnitude of the difference is considered as small (S+),medium
(M+) and large (L+) if the 𝐴12 value is greater than or equal to 0.56,
0.64 and 0.71, respectively. Conversely, a value of 𝐴12 lower than
0.5 indicates that the TSF method yields worse forecasting accuracy
than the baseline. In this case, the effect size is considered as small
(S−), medium (M−) and large (L−) if the 𝐴12 value is lower than or
equal to 0.44, 0.34 and 0.29, respectively. We consider comparisons
that report 𝐴12 larger than 0.44 and lower than 0.56 as negligible,
and therefore not meaningfully different.

sNaive sMM SARIMA FC-RNN LSTM GRU
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Figure 2: RQ1. SMAPE distribution for each TSF Method.
Boxplots are highlighted in red for RNN models, grey for
SARIMA and white/silver for the baselines.

SMAPE Statistics

Mean (𝜇) Median (𝑥̃ ) Std Dev (𝜎 ) Min Max

sNaïve 19.53 16.88 14.23 3.23 55.54
sMM 18.52 15.76 15.77 2.62 70.65

SARIMA 28.75 15.48 33.02 2.09 116.95
FC-RNN 14.09 12.64 10.31 2.44 44.30
LSTM 15.14 13.65 10.94 2.27 43.99
GRU 14.26 13.48 9.91 2.49 40.82

Table 1: RQ1. SMAPE descriptive statistics for TSF methods
and baselines.

Results. We reported the results concerning the SMAPE distri-
bution of TSF methods in Figure 2 and Table 1. A first observation
is that RNN-based methods demonstrate promising forecasting
accuracies, as evidenced by their average SMAPE values: 14.09%
for FC-RNN, 15.14% for LSTM, and 14.26% for GRU. Among them,
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sNaïve sMM

SARIMA 0.50 (-), p=0.596 0.48 (-), p=0.164
FC-RNN 0.63 (S+), p=<0.001 0.57 (S+), p=0.001
LSTM 0.59 (S+), p=<0.001 0.55 (-), p=0.027
GRU 0.60 (S+), p=<0.001 0.56 (S+), p=0.006

Table 2: RQ1. Results of the comparison between TSF meth-
ods and baselines. Each cell is formatted as “𝐴12, 𝑝-𝑣𝑎𝑙𝑢𝑒”,
where 𝐴12 represents the Vargha-Delaney effect size, and the
p-value is the result of the Wilcoxon signed-rank test. The
interpretation of the 𝐴12 value is also provided in brackets.
Comparisons where TSF methods outperform baselines with
statistical significance (𝑝-𝑣𝑎𝑙𝑢𝑒< 0.05) and a non-negligible
effect size are highlighted in bold.

FC-RNN appears to be the most effective, by providing the lowest
median and mean SMAPE values. These results are comparable to,
or even better than, those reported in recent TSF research [9, 10, 37].
From Figure 2, it can be observed that RNN-based methods (shown
in red in Figure 2) demonstrate better forecasting accuracy than
baselines, as indicated by their lower SMAPE values. In support
of this, we also notice in Table 1 that RNN models show consider-
ably lower mean and median SMAPE values than those provided
by baselines. For example, if we compare the worst-performing
RNN model in terms of mean and median SMAPE (i.e., LSTM) with
the best-performing baseline (namely, sMM) we still observe an
improvement in mean (18.52% versus 15.14%) and median (15.76%
versus 13.62%) values. Another interesting result is that RNN-based
methods exhibit higher stability in forecasting accuracy when com-
pared to other approaches, i.e., the prediction error tends to vary
less from one time series to another. Indeed, as shown in Table 1,
RNN-based methods exhibit lower standard deviations in SMAPE.
Specifically, among RNN-based methods we observe a maximum
standard deviation of 10.94% (LSTM), which is notably lower than
the 14.23% and 15.77% standard deviations observed for sNa"ive
and sMM baselines, respectively. This observation is remarked by
Figure 2, which displays a narrower inter-quartile range (IQR) for
RNN-based methods that is also more shifted towards the bottom,
thus indicating lower errors. This suggests that RNN-based meth-
ods provides more accurate and stable prediction than baselines.
Further confirmation of this finding comes from the results of the
Wilcoxon signed-rank test presented in Table 2. Both FC-RNN and
GRU demonstrate statistically significant improvements over the
baselines (𝑝 < 0.05), with a non-negligible effect size (𝐴12 ≥ 0.56).
Additionally, LSTM outperforms sNaive with a small effect size.
These results indicate considerable benefits in employing RNN for
TSF of short-term runtime software metrics.

An analysis of Figure 2 reveals that SARIMA results in the widest
SMAPE IQR, thus indicating significant variation in its forecast-
ing accuracy. This observation is further supported by the data in
Table 1, which shows SARIMA having the highest standard devia-
tion, at 33.02%, among all evaluated methods. Moreover, SARIMA
provides the worst average forecasting accuracy, with an average
SMAPE of 28.75%. While these results might suggest that SARIMA
is poorly suited for predicting short-term runtime software met-
rics, a closer examination of its SMAPE distribution reveals some
interesting insights. For example, as shown in Table 1, SARIMA

achieves the lowest minimum SMAPE value (2.09%) and its me-
dian SMAPE (15.48%) is lower than those of the naive baselines.
Additionally, Figure 2 shows that SARIMA provides the lowest first
quartile in SMAPE. These observations indicate that SARIMA per-
forms quite well on a specific subset of time series, potentially even
outperforming other approaches on these instances.

Summary. RNN-based methods are more effective in predict-
ing short-term runtime software metrics, with FC-RNN being the
most effective one (average SMAPE of 12.64%). FC-RNN and GRU
outperform both baselines with statistical significance (𝑝 < 0.05)
with non-negligible effect sizes (𝐴12 ≥0.56). SARIMA is less stable
in forecasting accuracy, by exhibiting SMAPE values that signif-
icantly vary from one time series to another (standard deviation
of 33.02%). To answer RQ1, our analysis demonstrates that TSF
methods, particularly RNN-based methods, are quite effective in
accurately predicting short-term runtime software metrics. These
findings highlight the potential benefits of applying TSF methods
into real-world software monitoring contexts.

4.2 RQ2: Do TSF methods exhibit diverse
forecasting accuracy over different classes
of runtime software metrics?

Objective. The second research question aims to assess the fore-
casting accuracy of TSF models for each class of runtime software
metric (i.e., crashes rate/hang times/waiting times). We want to study
whether TSF methods perform consistently across diverse metric
classes or their accuracy varies significantly depending on the spe-
cific class of metric being forecasted.

Methodology. To address this research question, we reuse the
SMAPE values previously calculated for RQ1. However, rather than
examining these values in aggregate, we group them per metric
class.We investigate the forecasting accuracy of TSFmethods across
each metric class by analyzing their corresponding SMAPE distribu-
tions through box plots, and by examining the associated descriptive
statistics. For each metric class, we also compare the forecasting
accuracy of TSF methods with naive baselines using Wilcoxon
signed-rank test. This is done for each <TSF method, baseline> pair
to determine if there is a statistically significant difference in their
SMAPE values. Additionally, we employ the Vargha-Delaney 𝐴12
to assess the effect size.

Results. The SMAPE distribution computed over all the metric
classes is depicted in Figure 3, and the associated descriptive statis-
tics are reported in Table 3. We examined the results in two ways:
(i) by evaluating the general forecasting accuracy of TSF methods
on individual software metric classes, and (ii) by analyzing how
each TSF method behaves in relation to each software metric class.

With the first analysis, we want to study how TSF methods
collectively perform when applied to different classes of metrics. In
Figure 3, we observe that SMAPE box plots for same metric classes
exhibit similar behavior across various TSF methods. For instance,
when observing the SMAPE distribution related to waiting time,
we notice significantly lower errors compared to those reported
for other metric classes. This can be observed in both Figure 3
and Table 3: the IQR, mean, and median of SMAPE for waiting

53



Time Series Forecasting of Runtime Software Metrics: An Empirical Study ICPE ’24, May 7–11, 2024, London, United Kingdom

Baselines TSF Methods

sNaive sMM SARIMA FC-RNN LSTM GRU
Metric Class SMAPE Stat

Crash Rate

Mean (𝜇) 24.48 24.05 38.76 17.40 19.07 17.95
Median (𝑥̃ ) 18.55 15.76 18.24 13.56 14.70 14.97
Std Dev (𝜎 ) 16.40 20.88 37.06 9.72 11.21 9.82
Max 55.54 70.65 116.95 32.51 39.83 35.10
Min 6.12 5.07 4.55 5.24 5.03 5.33

Hang Times

Mean (𝜇) 21.62 18.33 39.32 16.24 16.52 15.86
Median (𝑥̃ ) 19.02 16.61 34.91 13.44 14.01 13.40
Std Dev (𝜎 ) 14.31 13.18 36.52 12.70 12.33 11.48
Max 50.65 46.35 116.26 44.30 43.99 40.82
Min 5.65 3.98 3.64 3.97 4.09 4.07

Waiting Times

Mean (𝜇) 11.87 12.50 6.91 8.20 9.34 8.53
Median (𝑥̃ ) 8.72 8.78 4.19 5.90 6.34 6.86
Std Dev (𝜎 ) 8.85 9.98 5.77 6.01 7.38 6.03
Max 28.39 29.99 17.28 18.04 21.77 19.08
Min 3.23 2.62 2.09 2.44 2.27 2.49

Table 3: RQ2. SMAPE descriptive statistics for TSF methods and baselines grouped by software metric class.
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Figure 3: RQ2. SMAPE distribution of TSF methods grouped
by metric class.

time are consistently lower than those reported for other metric
classes, regardless of the TSF method employed. This suggests
that time series pertaining to the same metric classes may share
common characteristics that influence the forecasting accuracy of
TSF methods, thus leading to consistently better or worse outcomes.
Indeed, time series related towaiting time appear significantly more
predictable than those related to crash rate or hang time. Both hang
time and crash rate show larger and more dispersed (i.e., higher
standard deviation 𝜎) SMAPE values, with crash rate looking as
the hardest to predict. A possible motivation for this result could
be that waiting time metrics exhibit a seasonal pattern that recurs
over time, while crash rate (or hang time) metrics are influenced by
more unpredictable factors, such as unexpected software bugs or
hardware malfunctions.

In our second analysis, we investigate the forecasting accuracy
of various TSF methods for each class of runtime software metric. In
Figure 3 we observe that RNN-based methods, i.e., FC-RNN, LSTM,
and GRU, perform generally well across the different metric classes.
RNN-based methods show lower (or comparable) SMAPE distribu-
tions than those reported by naive baselines. This is confirmed by

the results of the Wilcoxon signed-rank test, reported in Table 4.
For instance, FC-RNN outperforms sNaive in all the metric classes
with a statistically significant difference (𝑝 < 0.05) and a medium
effect size (𝐴12 ≥ 0.64). LSTM also outperforms sNaive with a small
effect size (𝐴12 ≥ 0.56) on crash rate and hang time. GRU, similarly,
outperforms sNaive with small and medium effect sizes on crash
rate and hang time, respectively. Compared to the sMM baseline,
both LSTM and GRU report statistically significant lower SMAPE
values on hang time and waiting time, with either small or medium
effect sizes. Overall, FC-RNN demonstrates the best forecasting ac-
curacy across the different metric classes, by providing statistically
significant improvement over both naive baselines in all metric
classes, except on crash rate when compared to sMM.

Another noteworthy result concerns the diverse forecasting ac-
curacy provided by SARIMA over different metric classes. By ex-
amining Figure 3, we observe that SARIMA provides substantially
different SMAPE values over different metric classes. For instance,
while it reports relatively high errors for crash rate and hang time
(e.g., average of 38.79% and 39.32%, respectively), considerably low
SMAPE values are reported for waiting time (e.g., average of 6.91%).
This diversity is remarked in the comparison with naive baselines.
According to Table 4, SARIMA outperforms both sNaive and sMM
on waiting time with statistically significant difference, and large
and medium effect sizes, respectively. However, for other metric
classes, SARIMA does not provide any improvement over the base-
lines. Even more, it provides worse forecasting accuracy than sMM
on crash rate. Nonetheless, by analyzing both Figure 3 and Table 3,
we can notice that SARIMA provides the best forecasting accuracy
on waiting time among different TSF methods, with the lowest
mean and median values (respectively, 6.91% and 4.19%). This may
suggest that such method performs particularly well when deal-
ing with more predictable time series that show recurring patterns,
while it may not fit well on more irregular runtime software metrics,
such as crash rate or hang time.

Summary. When collectively analyzed, TSF methods exhibit di-
verse forecasting accuracy depending on the class of runtime soft-
ware metric. For instance, TSF methods show higher effectiveness
when dealing withwaiting timemetrics, while they are less effective
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Software Metric Class

TSF Method Baseline Crash Rate Hang Times Waiting Times

SARIMA sNaive 0.42 (-), p=0.129 0.36 (-), p=0.312 0.73 (L+), p=0.008
sMM 0.38 (S− ), p=0.008 0.34 (-), p=0.148 0.70 (M+), p=0.008

FC-RNN sNaive 0.65 (M+), p=0.004 0.64 (M+), p=0.008 0.69 (M+), p=0.008
sMM 0.52 (-), p=0.496 0.59 (S+), p=0.008 0.64 (M+), p=0.016

LSTM sNaive 0.60 (S+), p=0.012 0.62 (S+), p=0.008 0.61 (-), p=0.109
sMM 0.53 (-), p=0.57 0.56 (-), p=0.055 0.59 (-), p=0.109

GRU sNaive 0.59 (S+), p=0.02 0.64 (M+), p=0.008 0.61 (-), p=0.055
sMM 0.52 (-), p=0.652 0.58 (S+), p=0.023 0.62 (S+), p=0.023

Table 4: RQ2. Results of the comparison between TSF methods and baselines over each class of metric. Each cell is
formatted as “𝐴12, 𝑝-𝑣𝑎𝑙𝑢𝑒”, where 𝐴12 represents the Vargha-Delaney effect size, and the p-value is the result of the
Wilcoxon signed-rank test. The interpretation of the 𝐴12 value is also provided in brackets. Comparisons where TSF
methods outperform baselines with statistical significance (𝑝-𝑣𝑎𝑙𝑢𝑒< 0.05) and a non-negligible effect size are highlighted
in bold.

on classes of metrics more closely related to software malfunctions,
such as hang times and crash rate. RNN-based methods demonstrate
the most consistent effectiveness across different metric classes,
with FC-RNN being the most effective one. However, when deal-
ing with classes of more predictable metrics, such as waiting time,
SARIMA has been shown to be the most effective.

4.3 RQ3: To what extent does forecasting
accuracy degrade when applied to predict
longer-term runtime software metrics?

Objective. The goal of this research question is to assess how
forecasting accuracy decreases when predicting longer-term run-
time software metrics. The TSF methods that we consider are able
to generate multi-step ahead forecasts. This means that, at any
given time, a TSF method can be queried to predict (for instance)
the runtime software metrics of the next 14 days. It is expected that
near-term predictions (e.g., for the forthcoming days) will generally
be more accurate than those for longer terms (e.g., the following
week). Through this research question, we aim to evaluate the ex-
tent to which the accuracy decreases as the forecasting horizon is
progressively extended.

Next Day

Forecast Segment

Forecast Segment

Offset (h = 6)
One Week


Ahead

Two Weeks

Ahead

Offset (h = 0)

Forecast Segment

Offset (h = 13)

Forecast

Target

Figure 4: RQ3. Three representative offset scenarios: next day
(ℎ = 0), one week ahead (ℎ = 6), and two weeks ahead (ℎ = 13).

Methodology. To achieve this research goal, we introduce the
concept of offset (ℎ), which we define as the number of days be-
tween the last time step used as input and the forecast target. This
essentially simulates scenarios where, at a given moment, the goal

is to predict the metric for a specific future day. For example, an
offset ℎ = 0 indicates a scenario where the forecast target is the
next day, while an offset ℎ = 6 corresponds to a scenario where the
goal is to predict runtime software metrics for the same day in the
following week. Figure 4 graphically illustrates the concept of offset
and forecast target. The first scenario represents the case where
the goal is to predict the metrics of next day (ℎ = 0), the second
scenario targets predictions for the same day in the following week
(ℎ = 6), and the third scenario uses the same day of two weeks
ahead as forecast target (ℎ = 13).

For each specific offset ℎ, we calculate the SMAPE of a given TSF
method applied to a particular time series 𝑌 as follows:

SMAPE =
100%

𝑛 − 𝑘 + 1

𝑛∑︁
𝑡=𝑘

���𝐹 𝑡1+ℎ − 𝑌𝑡+ℎ
���

1
2

(���𝐹 𝑡1+ℎ ��� + |𝑌𝑡+ℎ |
) (4)

where 𝐹 𝑡1+ℎ represents the (1 + ℎ)𝑡ℎ element of the forecast
segment 𝐹 𝑡 , corresponding to the prediction for the 1+ℎ steps ahead
day (i.e., the forecast target). 𝑌𝑡+ℎ indicates the actual measurement
observed in the time series on that particular day. For example, with
a ℎ = 6 offset, SMAPE is calculated by considering exclusively the
errors at the 7th elements across all forecast segments of the time
series. This corresponds to assessing the forecasting accuracy of a
TSF method in predicting the runtime software metric for the same
day in the following week.

As results of this process, for each TSF method, we compute 350
SMAPE values, corresponding to each combination of time series
and offset ℎ, with 0 ≤ ℎ ≤ 13.

We employ box plots and line plots to illustrate the relationship
between SMAPE and the offset ℎ. The analysis of these plots aids
in gaining a better understanding of how forecasting accuracy
degrades as the forecasting horizon is extended.

Results. Figure 5 displays the SMAPE distribution of each TSF
method for three representative offset scenarios: next day (ℎ=0),
one week ahead (ℎ=6), and two weeks ahead (ℎ=13). Figure 6 shows
the trend of the mean SMAPE of each TSF method as the offset ℎ
increases. Figure 7 reports the same information for each metric
class, separately.
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Figure 5: RQ3. SMAPE distribution of TSF methods under three representative offset scenarios: next day (ℎ = 0), one week ahead
(ℎ = 6), and two weeks ahead (ℎ = 13).
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Figure 6: RQ3. Relationship between mean SMAPE and offset
(ℎ).

Figure 6 clearly highlights an increasing trend in the mean
SMAPE as the offset increases. This increasing trend is also ob-
servable in individual classes of metrics, as shown in Figure 7. By
looking at Figure 5, we can also notice that the SMAPE tends to
become more variable as the offset increases, thus indicating less
stability in forecasting accuracy on long-term predictions. This is

particularly visible in RNN-based methods, which show an IQR
that consistently increases with each offset scenario.

Another interesting outcome of our analysis concerns the com-
parison of the forecasting accuracy of TSF methods with the base-
lines. Specifically, upon examining Figure 6, we notice a critical
offset beyond which RNN-based methods begin to achieve compa-
rable or even worse forecasting accuracy than the ones of baselines.
This specific turning point is observed at approximately a week
ahead (ℎ ≈ 7). A similar behavior is also observable on each in-
dividual class of runtime software metric, as shown in Figure 7.
Nonetheless, each class of metric exhibits slightly different patterns.
For instance, in Figure 7, we notice that mean SMAPE of RNNs
begin to exceed those of baselines at offset ℎ = 9 on crashes rate,
instead RNNs start to exceed baselines error at offset ℎ = 6 for wait-
ing times, . This finding is also evident in Figure 5, where a clear
degradation is observed in the SMAPE distribution, moving from
the next day to the one week ahead scenario. Overall, these results
suggest that the benefits of employing RNNs for predicting runtime
software metrics vanish when the prediction target exceeds the
current week. Our results highlight the importance of accounting
for the changing dynamics of runtime software metrics, thus out-
lining the necessity of incorporating recent temporal patterns. In a
practical software monitoring context, this emphasizes the need to
regularly update predictions as new data becomes available.

Another interesting observation is that, albeit RNN models ex-
hibit similar behavior, in some cases they start to exceed the base-
lines at different offsets. For example, by looking at Fig. 7, we noticed
that LSTM start to exceed the sMM on hang time as early as offset is
equal to ℎ = 3, while for FC-RNN this happens at offset ℎ = 6. Fur-
thermore, on hang times, GRU outperforms the baselines across the
entire offset range, although from offset ℎ = 6 its SMAPE becomes
very similar to that of sMM. This reveals that the choice of the
specific RNN model can have non-trivial impact on the forecasting
accuracy of longer-term runtime software metrics.

We then examined the accuracy of TSF models in detail for each
class of software metrics. In line with the findings discussed in
RQ2, Figure 7 reveals that predictions for waiting times metrics
consistently displayed lower errors than other metric classes, even
in longer-term forecasts, with a maximum mean SMAPE of 16%. It
is interesting to note that SARIMA, which is the best-performing
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Figure 7: RQ3. Relationship between mean SMAPE and offset (ℎ) grouped by metric class. The first row displays results for
SARIMA, while the second row shows the results of RNN-based methods.

method for waiting time according to RQ2, shows here a similar
behavior to that of RNN-based methods. In fact, we observe that
SARIMA only begins to underperform the baselines when the offset
exceeds one week (ℎ = 6).

Summary. By answering RQ3, our findings reveal that short-
term forecasts are consistently more accurate than longer-term
ones. Namely, the SMAPE values demonstrate a rising trend as the
offset increases. Our results suggest that the advantages of using
TSF methods vanish if the offset exceeds approximately one week.
These findings offer practical insights into the suitability of TSF
methods for predicting long-term runtime software metrics.

5 THREATS TO VALIDITY
Construct validity. A potential threat to construct validity in

our study pertains to the selection of TSF methods. The choice of
different TSF methods might yield different results. To mitigate this
threat, we selected well-established TSF methods, by including a
traditional autoregressive moving average model and three types
of recurrent neural networks. Another threat concerns the choice
of a metric for assessing the effectiveness of the TSF methods.
The forecasting accuracy of the studied methods was evaluated
using SMAPE, which is a widely accepted scale-independent error
measure. However, it is important to note that other error metrics
could partially alter the study outcomes.

Internal validity. The implementation of RNN and SARIMAmod-
els in our study was carried out by using tensorflow and statsmodels,
respectively. The choice of these specific libraries might introduce
biases that could potentially influence the study results. Nonethe-
less, these are well-established libraries in the field of data anal-
ysis. The choice of hyper-parameters can significantly affect the
forecasting accuracy of TSF methods. Different hyper-parameter

configurations might lead to different outcomes. To mitigate this,
we tried to maintain consistent hyper-parameter settings across dif-
ferent TSF methods wherever feasible. For example, all RNN-based
methods were configured with an identical number of layers and
units, while utilizing the same optimizer. Furthermore, we applied
uniform early stopping strategies and epochs.

External validity. The results of our empirical study may not
generalize to other different runtime software metrics. However,
our analysis was based on a dataset comprising 25 different runtime
software metrics collected from 8 distinct software applications,
which span three metric classes (i.e., crash rate, hang times, and
waiting times). To the best of our knowledge, there are no other
TSF studies that have utilized a dataset involving such diversity in
runtime software metrics.

6 CONCLUSION
In this empirical study, we investigated the effectiveness of pop-
ular TSF methods for predicting runtime software metrics. Our
results demonstrate that: (i) TSF methods are indeed effective for
short-term predictions, with RNN-based methods emerging as the
most effective ones; (ii) no single method offers the best forecasting
accuracy across all runtime software metrics; (iii) the benefits of ap-
plying TSF methods diminish when the forecasting horizon extends
beyond the current week. We encourage future research to expand
upon the depth and breadth of our study scope. For instance, future
studies could delve into hyper-parameter tuning and explore further
TSF methods, including multivariate ones that can simultaneously
consider multiple runtime metrics. Additionally, given the rapid
expansion of transfer learning in various domains [4, 41, 66], the
investigation of the application of pre-trained TSF models for pre-
dicting runtime software metrics is a promising avenue for future
research.
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