
An Adaptive Logging System (ALS): Enhancing Software Logging
with Reinforcement Learning Techniques

Amirmahdi Khosravi Tabrizi

Brock University

St. Catharines, ON, Canada

akhosravitabriz@brocku.ca

Naser Ezzati-Jivan

Brock University

St. Catharines, ON, Canada

nezzati@brocku.ca

Francois Tetreault

Ciena

Ottawa, ON, Canada

ftetreau@ciena.com

ABSTRACT
The efficient management of software logs is crucial in software

performance evaluation, enabling detailed examination of runtime

information for postmortem analysis. Recognizing the importance

of logs and the challenges developers face in making informed log-

placement decisions, there is a clear need for a robust log-placement

framework that supports developers. Existing frameworks, how-

ever, are limited by their inability to adapt to customized logging

objectives, a concern highlighted by our industrial partner, Ciena,

who required a system for their specific logging goals in resource-

limited environments like routers. Moreover, these frameworks

often show poor cross-project consistency. This study introduces

a novel performance logging objective designed to uncover po-

tential performance-bugs, categorized into three classes—Loops,

Synchronization, and API Misuses—and defines 12 source code fea-

tures for their detection. We present an Adaptive Logging System

(ALS), based on reinforcement learning, which adjusts to specified

logging objectives, particularly for identifying performance-bugs.

This framework, not restricted to specific projects, demonstrates

stable cross-project performance. We trained and evaluated ALS on

Python source code from 17 diverse open-source projects within

the Apache and Django ecosystems. Our findings suggest that ALS

has the potential to significantly enhance current logging practices

by providing a more targeted, efficient, and context-aware logging

approach, particularly beneficial for our industry partner who re-

quires a flexible system that adapts to varied performance objectives

and logging needs in their unique operational environments.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Software post-development issues; •General and reference→
Performance; Empirical studies; • Computing methodologies
→ Reinforcement learning; Machine learning.

ACM Reference Format:
Amirmahdi Khosravi Tabrizi, Naser Ezzati-Jivan, and Francois Tetreault.

2024. An Adaptive Logging System (ALS): Enhancing Software Logging with

Reinforcement Learning Techniques . In Proceedings of the 15th ACM/SPEC

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPE ’24, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0444-4/24/05. . . $15.00

https://doi.org/10.1145/3629526.3645033

International Conference on Performance Engineering (ICPE ’24), May 7–
11, 2024, London, United Kingdom. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3629526.3645033

1 INTRODUCTION
Logging, as an ubiquitous programming technique, involves the

insertion of code that records key runtime information. Careful

consideration of log placement is imperative, as the data captured

by logs constitute a crucial source of information for postmortem

analysis. In the event of system failures, logs often remain the only

available source of data. For successful log analysis, it is crucial

to have a strong underlying logging, as it directly influences the

quality of the collected logs.

Given the importance of logging, it is crucial to strike a balance

[22]. Logging too little could result in missing essential runtime in-

formation needed for postmortem analysis, making it challenging to

diagnose failures in the field. On the other hand, logging too much

brings its own set of problems. This includes an increased code

volume that requires time for writing and maintenance. Moreover,

it consumes additional system resources, impacting overall system

performance, especially when dealing with high log volumes. Im-

portantly, excessive logging may generate numerous trivial and

unnecessary logs, masking crucial information and complicating

issue identification.

Despite its importance, not all developers possess the neces-

sary expertise to make informed logging decisions [4]. Previous

research has presented various frameworks to aid developers in

making logging decisions. Some frameworks help developers de-

termine which parts of the system to log [4, 22], while others help

to select appropriate log-levels for log statements [10, 11], and to

effectively structure log messages [5, 8]. Mastropoalo et al. [12]

introduced a comprehensive framework that integrates these three

logging aspects using transformer models. However, there are some

limitations towards existing frameworks, 1) they are limited to log-

ging objective of the project that trained on and are not capable

of adapting themselves to a desired logging objective. 2) None of

them have considered performance-bugs as a logging objective. 3)

Poor cross-project performance.

In collaboration with Ciena, we recognized the need for a logging

system that not only adapts to various performance objectives but

also addresses the specific logging needs in resource-constrained

environments. In response, we introduce the Adaptive Logging Sys-

tem (ALS) that leverages reinforcement learning, along with a new

logging objective—Performance Bug Logging Objective—designed

to capture and reveal performance-bugs through logs. This dual

approach of ALS, combining adaptability with a targeted logging

objective, makes it particularly suitable for varied operational needs,

37

https://doi.org/10.1145/3629526.3645033
https://doi.org/10.1145/3629526.3645033

enabling it to efficiently handle different performance objectives

and logging requirements. Such a system is invaluable in environ-

ments where resource constraints and the need for efficient logging

and performance analysis are critical.

Our contributions in this paper are as following:

• Proposing an Adaptive Logging system being able to adapt

itself to self-defined logging objectives using reinforcement

learning.

• Introducing performance-bugs logging objective to capture
and reveal performance-bugs through logs.

• Creating a dataset that includes static source code features

related to performance-bugs at the function-level for 17 dif-

ferent Apache and Django projects.

• Illustrating the cross-project efficiency of the proposed adap-

tive logging system by evaluating it on unseen environments.

This paper is structured as follows: Section 2 provides a back-

ground on software logging and reinforcement learning. Section

2.3 explores the motivations for our study. Sections 3 and 4 detail

our empirical study on performance-bugs and the ALS framework,

respectively. Section 5 presents our evaluation methodology and

results. Finally, Section 5.4 discusses the study’s limitations and

future directions, and Section 6 summarizes our findings.

2 BACKGROUND AND LITERATURE REVIEW
2.1 Software Logging
The placement of log statements is guided by one or multiple log-

ging objectives chosen by developers. These objectives include

Performance [21], which focuses on minimizing performance over-

head of logs; Unexpected Situations [4], which aim to identify errors;

and Execution Points [4], which track system runtime states and

execution path for root-cause analysis.

Developers face three crucial decisions when implementing a

logging strategy. Firstly, they must determine the most appropriate

location in the source code for logging (Where to log?) [4, 19, 21, 22].
Secondly, they must select the information to be logged and the log

statements to be used (What to log?) [8]. Lastly, they must choose

the appropriate log-level from a range of options including trace,

debug, warn, info, error, and fatal (Which log-level to choose?) [13].
Prior studies have introduced log-placement frameworks to aid

developers. Yuan et al. introduced ErrLog [19], a static program-

ming method that adds logging statements using generic error

patterns. Zhao et al. proposed Log20 [21], a DP-based framework

that recommends near optimal log placements with low overhead.

J. Zhu et al. developed LogAdvisor [22], a machine learning frame-

work that automatically learns common logging rules and provides

guidance.

2.2 Reinforcement Learning
In this part, we present the fundamental ideas of Reinforcement

Learning (RL), a subfield of machine learning (ML), which we utilize

in our research.

Definition. Reinforcement Learning is a goal-directed learning

method that allows agents to solve sequential decision problems

through trial-and-error and interaction [6, 17]. RL aims to deter-

mine the optimal mapping of situations to actions by maximizing a

reward signal that represents the problem’s goal.
A RLmodel consists of two components: Agent and environment.

The Environment provides information on the system state, and the

Agent selects actions based on that information and interacts with

the Environment. The Environment updates the state and returns

a reward after each action, creating a cycle of (state → action →
reward), depicted in Figure 1, until a predetermined terminal state

or timestep is reached.

Environment

Agent

reward rt

rt+1

state st

st+1

action at

Figure 1: The reinforcement learning control loop

Difference from Other Methods. RL differs from other ML tech-

niques such as supervised and unsupervised learning. Supervised

learning requires external knowledge in the form of a training set,

which specifies the correct behavior. However, in RL, this knowl-

edge is not provided and must be acquired through the pursuit of

objectives. In contrast, supervised learning only aims to learn the

correct behavior provided, limiting it to that specific behavior. The

objectives of RL and unsupervised learning are distinct from each

other. Unsupervised learning aims to uncover hidden structures,

while RL aims to maximize a reward signal to reach a specific goal.

The defining feature of RL models is their goal-seeking ability,

which aligns them with the learning processes in humans and ani-

mals. This property provides RL with a high degree of adaptiveness.

Its adaptive nature allows it to continually update and improve

upon its knowledge, even when faced with unseen projects. This

is a capability that is unique to RL, as other ML methods lack this

adaptiveness.

2.3 Research Gaps
While the preceding sections have laid out the fundamental con-

cepts in software logging and reinforcement learning, it is necessary

to identify the existing limitations within these domains. This sec-

tion briefly explains the motivation and research gaps in the current

state of the art of log-placement frameworks, particularly highlight-

ing the areas that remain unaddressed or inadequately tackled by

existing solutions.

Logging Objectives. Traditional log-placement frameworks are

typically limited in their scope, being designed to address specific

logging objectives based on the datasets or environments they were

originally trained in. This rigor presents significant challenges in

dynamic and varied operational contexts, such as resource-limited

environments, like network systems or routers. The logging ob-

jectives can vary greatly depending on the specific performance

requirements and resource constraints of each system.

38

ICPE ’24, May 7–11, 2024, London, United Kingdom Amirmahdi Khosravi Tabrizi, Naser Ezzati-Jivan, & Francois Tetreault

For instance, in a resource-constrained environment, the primary

logging goal may be to minimize performance overhead while max-

imizing the utility of each log entry for effective bug detection and

system monitoring. This differs from resource-abundant environ-

ments, where the emphasis may be on capturing comprehensive

data for in-depth analysis. The ability to dynamically adjust log-

placement strategies based on these different goals is crucial for

maintaining system efficiency and reliability, yet it is currently

lacking in existing frameworks [4, 22].

Moreover, the detection of performance-bugs, a critical aspect in

ensuring the smooth operation of resource-limited systems, is of-

ten underrepresented in existing logging frameworks. While these

frameworks primarily focus on capturing system errors and ex-

ceptions to aid in debugging and ensuring system reliability, they

typically do not prioritize the identification and logging of perfor-

mance anomalies. Effective logging of such anomalies is vital for

preemptive maintenance and avoiding system downtimes, making

the need for adaptable and performance-oriented logging frame-

works even more essential.

Therefore, there is a strong need for log-placement frameworks

that are not only adaptable to a broad spectrum of logging objec-

tives but also sensitive to the unique demands of resource-limited

settings. This adaptability is essential for tailoring logging strategies

to effectively balance performance, resource utilization, and diag-

nostic needs, thereby enhancing the overall resilience and efficiency

of the system.

Implementation Method. The complexity of log-placement, in-

fluenced by multiple factors such as system architecture, opera-

tional context, and specific performance requirements, poses signifi-

cant challenges for a comprehensive and adaptable implementation.

Traditional methods like LogAdvisor [22], while effective in certain

settings, are limited by their lack of flexibility and cross-project

accuracy. This constraint limits their effectiveness across diverse

projects, particularly when transitioning from one domain or tech-

nology stack to another.

To address these limitations, we propose the Adaptive Logging

System, which leverages Reinforcement Learning—a form of ma-

chine learning that excels in making decisions under uncertainty

and adapting to new environments. By employing RL, ALS can dy-

namically learn from the specific characteristics and requirements

of each project, continually refining its log-placement strategy to

maximize efficiency and relevance. This capability enables ALS to

provide tailored logging solutions that maintain high levels of accu-

racy and utility across various projects and environments, aligning

with the diverse and evolving needs of modern software develop-

ment.

3 LOGGING FOR PERFORMANCE-BUGS
To introduce performance-bugs as a logging objective, we must

first gain a clear understanding of what they are. This understand-

ing will enable us to subsequently establish appropriate metrics

and features for their description. To achieve this, we conducted

an empirical study of existing studies on performance issues. We

have categorized performance issues into three distinct categories

(Loops, Synchronization Issues and API Misuses) and devised 12

static source code features to characterize each of these categories

Table 1: performance-bugs and their defined features.

Categories Features

performance-bugs

Loops

- number-of-loops

- nested-loop-level

- loop-input-dependent-level

Synchronization issues

- number-of-defined-threads

- number-of-started-threads

- number-of-join-threads

- number-of-defined-locks

- number-of-acquired-locks-threads

- number-of-released-locks

API misuses

- number-of-usage-of-extra

- number-of-usage-of-order-by

- number-of-usage-of-select-related

(refer to Table 1). In the following parts of this section, we will

provide detailed explanations for each category along with their

corresponding features.

3.1 Loops
When addressing performance-bugs, loops create a challenging

context for their occurrence. This is because loops have the potential

to worsen the impact of performance-bugs, often accumulating

issues across multiple iterations of the loop [3, 15, 16]. What’s even

more significant is that a large portion of performance-bugs occur

within loops that depend on input data, accounting for nearly three-

quarters of such cases [9]. This highlights the importance of paying

close attention to loops in our efforts to mitigate performance-bugs.

We have established three distinctive features to encapsulate the

vital aspects concerning loops, aimed at characterizing pertinent

factors for integration into our RL model. These features are as

follows:

(1) Number of Loops (number-of-loops): This feature quanti-

fies the number of distinct loop constructs defined within a

given function. This feature only counts the outer loops in

case of having nested loops. For example, if a code snippet

contains one nested loop (with a nesting level of 2) and one

non-nested loop, the total number of loops in the snippet is

4, but the Number of Loops metric for the snippet is 2.

(2) Nested Loop Level (nested-loop-level): As a descriptor of
loop complexity, this feature indicates the total number of

loops within a function, including any nested loops. Using

the previous example of a nested loop with a nesting level

of 2 and a non-nested loop, the Nested Loop Level value here
would be 4.

(3) Loop Input Dependency Level (loop-input-dependent-
level): This feature identifies dependent variables, which are

variables that rely on a function to determine their values,

within the loop declaration. It provides information about

the count of these dependent variables if any are found.

3.2 Synchronization Issues
Synchronization challenges can arise in concurrent programming,

leading to performance issues [1, 7]. These problems often stem

from the improper use of synchronization techniques, especially

when selecting the wrong types of locks. Among the notable syn-

chronization challenges, two stand out: deadlocks and race condi-

tions.

39

ICPE ’24, May 7–11, 2024, London, United Kingdom Amirmahdi Khosravi Tabrizi, Naser Ezzati-Jivan, & Francois Tetreault

Race conditions happen when two different threads try to change

the same information at the same time without following a specific

order. On the other hand, Deadlocks occur when several threads

get stuck in their work because they are all waiting for something

that another thread in the same group is using. We have identified

six unique attributes related to synchronization challenges. These

features are customized for Python’s Thread library:

(1) Number of Thread Objects (number-of-defined-threads):

This attribute indicates the count of threads that are defined

within a given function.

(2) Number of start() Function Calls (number-of-started-

threads): Following the creation of a Thread object, its acti-

vation is initiated by invoking the start() function associated

with the created object. This feature quantifies the instances

of start() function calls, representing thread activation within

a specific function.

(3) Number of join() FunctionCalls (number-of-join-threads):

The join() function, when invoked, causes the calling thread

(typically the main thread) to wait until the thread on which

join() is called terminates. This feature quantifies the in-

stances of join() function calls.

(4) Number of Lock Objects (number-of-defined-locks): This

attribute signifies the count of locks defined within a given

function.

(5) Number of acquire() FunctionCalls (number-of-acquired-

locks-threads): The acquire() method is used to acquire a

lock. When a thread invokes acquire() for a lock, it gains

ownership of the lock if it is available. If the lock is cur-

rently held by another thread, the calling thread will enter

a blocking (waiting) state until the lock becomes available.

Subsequently, when the thread successfully acquires the lock,

it is able to execute the critical section of code that should be

accessed by a single thread at a time. This attribute records

the frequency of this method being called for a lock within

a specific function.

(6) Number of release() Function Calls (number-of-released-

locks): The release() method is employed to release a lock that

the calling thread currently possesses. Upon the completion

of the critical section of code protected by the lock, the thread

is expected to invoke lock.release() to release the lock. This

action enables other waiting threads to acquire the released

lock. This attribute quantifies the instances of this method

being called for a lock within a specific function.

3.3 API Misuses
API misuse refers to the incorrect use of an Application Program-

ming Interface (API), which violates the implicit usage constraints

set by the API. These constraints are in place to prevent errors and

exceptions that can occur when the API is not used as intended.

API misuse is a common cause of software bugs, crashes, and vul-

nerabilities [2, 9, 14, 20]. Guoliang Jin et al., [9] assert that more

than one-quarter of software bugs are linked to API misuses. Based

on our empirical study, we have categorized API misuses associated

with performance-bugs into three distinct groups: Object-Relational

Mapping (ORM) APIs, Deep Learning APIs, and Machine Learning

Cloud API misuses. However, for the scope of this study, we focus

exclusively on examining ORM API misuses, with a specific em-

phasis on Django ORM API misuses. We prioritize Django ORM

because our projects primarily involve Python. The exploration of

the other two categories is deferred to future research, as each re-

quires a separate study to accurately identify the necessary features

for precise characterization.

When it comes to Django ORM
1
API misuses there are some

common misuses which can cause performance issues and need to

be avoided [18]:

• Making complex queries: The more complex the query, the

harder it is for the ORM to transform it into an actual data-

base query. This can cause performance regressions, espe-

cially when dealing with large datasets. To avoid this, it is

recommended to keep queries as simple as possible and avoid

using sub-queries unless absolutely necessary.

• Retrieving too much data: When querying the database, it

is vital to fetch only the required data. Retrieving excessive

data can result in performance problems, particularly with

large datasets. In Django ORM, there is a built-in method

called select-related() that allows you to retrieve all relevant

data in a single query instead of making multiple database

queries. However, it is important to exercise caution and

avoid overusing this method, as it can lead to fetching too

much data and cause performance regression.

• Not using database-level constraints: Sorting records after

fetching data from the database instead of sorting the data-

base once can cause performance regressions. It is recom-

mended to use database-level constraints instead of using

order-by() to sort records at the query level.

Following three features represent the occurrence of threeDjango

ORM functions which overusing them could potentially lead to one

one of the performance issues mentioned above.

(1) extra() (number-of-usage-of-extra): Overusing extra() can

make queries more complex by using sub-queries.

(2) order_by() (number-of-usage-of-order-by): Overusing order

by() instead of using database-level constraints can lead to

performance issues.

(3) select_related() (number-of-usage-of-select-related): Overus-

ing select related() can also lead to retrieving too much data.

4 ADAPTIVE LOGGING SYSTEM (ALS)
To address the research limitation mentioned earlier, this study pro-

poses an Adaptive Logging System, which utilizes Reinforcement

Learning to provide a comprehensive log-placement framework.

The adaptiveness of the system offers two key benefits: (1) it allows

for the definition of any desired logging objective by modeling it

into the RL’s reward function, and (2) it ensures project indepen-

dence of the framework by eliminating low cross-project accuracy.

ALS takes Python source code files as input and guides devel-

opers in identifying which functions in the provided source code

should be logged to capture performance issues, along with the

recommended log-level. In Figure 2, we can observe that ALS com-

prises three primary modules: web scraping, feature extraction,

and an RL model. We will explore each of these modules in greater

1
https://docs.djangoproject.com/en/3.2/topics/db/optimization/

40

ICPE ’24, May 7–11, 2024, London, United Kingdom Amirmahdi Khosravi Tabrizi, Naser Ezzati-Jivan, & Francois Tetreault

Figure 2: Adaptive logging system overview

detail in the subsequent parts of this section. The source code and

training dataset for ALS are accessible via our git repository
2
.

4.1 Web Scraping
Since ALS relies on an RL model at its core, the collection of a

substantial amount of data is crucial for effective model training.

Additionally, ALS is specifically designed for Python, requiring

primary source code files to be in .py format. Manual data collection

becomes impractical due to this requirement. The ALS web scraping

module is designed to address these challenges.

This module’s task is to download Python files from a given list

of GitHub repositories using git command-line tool (PyGithub
3
). It

accomplishes this in two main steps:

(1) clones each of the GitHub repositories to a specified local

directory.

(2) Then, it scans through these cloned repositories to identify

Python files and saves them in a separate directory.

4.2 Feature Extraction and Data Collection
This module has the important task of carefully extracting the fea-

tures we defined in our previous discussion in part 3. However,

successfully implementing it presents a significant challenge. This

challenge revolves around obtaining the necessary access to com-

prehensively analyze the components of the source code.

To overcome this challenge, we have utilized Python’s Abstract

Syntax Tree (AST) library4. This advanced library provides us with
the tools to explore the complex structures of the source code. This

allows us to gain the required perspective to extract the specific

static features accurately and with precision.

The process of building our dataset by collecting and extracting

relevant features involves three distinct phases. In the following,

2
https://github.com/amirmahdiKhosravi/Adaptive-Logging-System

3
https://pygithub.readthedocs.io/en/stable/introduction.html

4
https://docs.python.org/3/library/ast.html

we offer a comprehensive explanation of each of these crucial steps

in our dataset preparation process.

Function Extraction (Phase 1). In the first step, we identify and

isolate individual functions from the source code of the projects

under investigation. For this, the feature extraction module takes

the source code as input, generates its AST, and searches "Function-

Def" nodes in the generated tree to find the functions in the source

code. The module do the same thing to every Python file obtained

through web scraping, resulting in a comprehensive list of function

nodes that serve as the foundation for our subsequent analysis and

feature extraction.

Function Identification (Phase 2). Subsequently, in the second

step, we assign meaningful and distinctive identifiers to each ex-

tracted function. This step is essential to facilitate seamless access

to the origin source code which these functions belong to, laying

the groundwork for subsequent in-depth investigations.

We follow a three-part approach: combining the function’s name,

the name of the file where the function is located, and its position

(index) in the list of functions. Then, we compute the hash value

of this combined string using the "hashlib" library
5
. This process

generates the final, unique identifier (ID) for the function.

Feature Extraction (Phase 3). The third and final step involves

the extraction of relevant features from the previously mentioned

functions. These extracted features are then integrated into our

dataset. Importantly, each row within the dataset is dedicated to

a single function, along with its corresponding set of extracted

features, ensuring a comprehensive and organized representation.

With the list of function nodes obtained from the preceding

phase, we iterate through this list, conduct feature searches, extract

the identified features, and seamlessly incorporate them into the

5
https://docs.python.org/3/library/hashlib.html

41

ICPE ’24, May 7–11, 2024, London, United Kingdom Amirmahdi Khosravi Tabrizi, Naser Ezzati-Jivan, & Francois Tetreault

dataset. The methodology employed for this process remains con-

sistent across all the features, involving a systematic traversal of

the AST.

4.3 RL Model
The RL model is the core component of ALS. It enables ALS to adapt

itself to different defined logging objectives through trial and error.

It is divided into two main parts: the Agent and the Environment,

which interact with each other to make decisions and learn from

their interactions. This section focuses on detailing the various

components of the RL model.

Environment. It is where the agent operates. It includes every-
thing outside the agent and serves as the backdrop for the agent’s

actions and interactions.

To accurately describe the environment, it is crucial to identify

its key components: the observation space, action space, and reward

function. By precisely defining these three essential elements, we

enable the RL model to make informed decisions and take suitable

actions within this well-defined environment.

• Observation Space Observation space is the part that mod-

els the space in which the agent interacts. In our study, it is

to demonstrate functions within the source code files. To rep-

resent functions as our observation space we take advantage

of the collected dataset in 4.2, as each row of it represents a

function by its related features. Equation 1 shows the obser-

vation space of the environment in the timestep t (𝑆𝑡). It is
a 1-dimensional Box

6
containing 12 features of our dataset.

Also, our environment here is deterministic, meaning that

the probability of the agent ending up in next state (𝑆𝑡+1),
while it is in 𝑆𝑡 taking action 𝐴𝑡 , is 1 (Equasion 2). The next

state here is the next function of our dataset that the agent

needs to take an action upon. Upon reaching the end of the

dataset and the last function (terminal state), signifying the

end of an episode, the agent seamlessly transitions back to

the starting state of the environment—the first function of

the dataset—to initiate a new episode of learning.

𝑆𝑡 = [𝑓 𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒2, 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒3, ..., 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒12] (1)

𝑃 (𝑆𝑡+1 |𝑆𝑡 , 𝐴𝑡) = 1 (2)

• Action Space It represents all the possible actions which

the agent can take within the environment. In this study we

defined a discrete action space which contains 5 different

actions. These actions are defined in a way that makes it pos-

sible for the agent to make decision about either a function

should be logged, and if so, what log-level should be chosen

for it.

Of the six existing log-levels (Trace, Debug, Info, Warn, Error,

Fatal), we excluded Error and Fatal from the set of log-levels

that our agent can select. This decision was based on the

observation that Error and Fatal are primarily associated

with runtime behavior, whereas our model relies solely on

static source code features to make logging decisions.

6
https://stable-baselines.readthedocs.io/en/master/index.html

Equation 3 presents the action space of our environment.

This set encompasses 5 distinct actions, each uniquely iden-

tified by a numerical assignment (Action ID). It is important

to note that while there is an action labeled as "not-log," we

deliberately omitted a separate "log" action. This decision

was made because actions associated with specific log-levels

inherently indicate the logging action. For example, selecting

the "Trace" action implies that the corresponding function

should be logged at the Trace level.

𝐴 = {0 : 𝑛𝑜𝑡_𝑙𝑜𝑔, 1 : 𝑇𝑟𝑎𝑐𝑒, 2 : 𝐷𝑒𝑏𝑢𝑔, 3 : 𝐼𝑛𝑓 𝑜, 4 :𝑊𝑎𝑟𝑛} (3)

• Reward Function The reward function guides the agent

toward the goal it aims to achieve through its actions. To

appropriately define the reward function, we need to incor-

porate our logging goal—deciding whether to log a function

and the appropriate log-level—into it. This is accomplished

through three main steps:

– Step 1: We establish our fundamental rules for achieving

our logging goal. These rules include: 1) logging functions

that exhibit potential performance-bugs by examining

performance-bug features in the observation space, and 2)

assigning lower verbosity log-levels to performance-bugs

with higher significance. This ensures that we capture

all important information about performance-bugs, even

when monitoring logs with the lowest verbosity. For this

purpose, we assigned Trace and Debug log-levels to Syn-

chronization issues, and Info and Warn log-levels to API

misuses and Loops, respectively. If a function does not fall

into one of these categories, it will not be logged.

– Step 2: Based on the rules established in the previous

step, we classify the actions performed by the agent into

three distinct categories: "Good", "Intermediate" and "Bad".

This categorization is determined through a comprehen-

sive assessment of potential action outcomes: 1) Good:

In scenarios where the agent’s decision fully aligns with

the criteria defined in the previous step, we provide the

agent with a positive reward. For example, when a func-

tion exhibits potential synchronization issues based on

its feature set in the observation space, the correct action

is "Trace". The agent’s action is deemed "Good" if it also

selects "Trace" as the action. 2) Bad: Conversely, if the

agent opts to log a function that should not be logged, or

fails to log a function that should be logged based on the

features extracted from the observation space, it incurs a

negative reward as a punitive measure. 3) Intermediate:

Any scenario falling outside the ”Good” or ”Bad” classifi-

cations is deemed ”Intermediate.” For example, if the agent

correctly decides to log a function but selects an incorrect

log-level, or if the action should have been categorized as

”IDK” but the agent selects a different action, it does not

receive a positive reward, as its behavior remains subopti-

mal. However, the negative reward incurred in such cases

is comparatively smaller than the penalty associated with

”Bad” behavior.

– Step 3: The agent’s reward depends on the category of

its action and falls within a range of -4 to +2. We offer a

42

ICPE ’24, May 7–11, 2024, London, United Kingdom Amirmahdi Khosravi Tabrizi, Naser Ezzati-Jivan, & Francois Tetreault

detailed breakdown of this reward scale for each possible

category (good, bad, and intermediate) in the following

section: 1) Good Reward (𝑅𝑔): When the agent’s action

is categorized as ”good,” it receives an immediate reward

of +1 (dense reward), supplemented by a sparse reward

ranging from 0 to 1. The amount of the sparse reward de-

pends on the function’s vulnerability to performance-bugs,

which is determined by the features within the function

(𝑆𝑡). To compute the sparse reward, we employ the Sig-

moid function, with the coefficient providing adjustability

for the slope of the Sigmoid curve (detailed elaboration

is presented in chapters 4 and 5). Equation 5 shows the

reward function for this specific category, denoted as 𝑅𝑔 .

ST is the sum of the 12 features in the vector 𝑆𝑡 . 2) Bad
Reward (𝑅𝑏): The reward for the ”bad” category is rela-

tively straightforward, with the agent receiving the lowest

reward within the range. In instances where the agent’s

action is categorized as ”bad,” it incurs a negative reward

of -4 (𝑅𝑏 = 4). 3) Intermediate Reward (𝑅𝑖): It is cal-
culated as the negative absolute value of the difference

between the action ID of the chosen action and the ac-

tion that was intended to be selected. For instance, if the

intended action is ”Trace” (action ID = 1), but the agent

selects ”Warn” (action ID = 4), the reward will be -3. This

relationship is depicted in Equation 6.

𝑆𝑇 =

11∑︁
𝑓 =0

𝑆𝑡 [𝑓] (4)

𝑅𝑔 (𝑆𝑇) = 1 + 1

2

(1

1 + 𝑒−𝛾𝑆𝑇
) (5)

𝑅𝑖 = −|𝑠𝑢𝑝𝑝𝑜𝑠𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝐼𝐷 − 𝑡𝑎𝑘𝑒𝑛𝐴𝑐𝑡𝑖𝑜𝑛𝐼𝐷 | (6)

Agent. In this study, our primary focus is not on creating new

RL algorithms. Instead, we choose to use well-established RL algo-

rithms that already exist and apply them in our custom-designed

environment. To make this possible, we rely on the Stable Base-

lines library, known for its high-quality implementations of Rein-

forcement Learning algorithms, all of which are based on OpenAI

Baselines6 . Therefore, our approach involves making use of these

pre-built and thoroughly developed algorithms from the Stable

Baselines library. In part 5, dedicated to evaluation, we perform a

comparative analysis to identify the most effective algorithm for

our specific application.

5 EVALUATION
Our goal in this part is to thoroughly assess the practical usefulness

and effectiveness of the Adaptive Logging System (ALS) in real-

world scenarios by subjecting it to real-world software projects

ranging from large-scale web applications to more specialized soft-

ware, reflecting the diverse challenges faced by industry practi-

tioners, such as those at Ciena. We will specifically explain how it

performs in two distinct case studies, each offering its own set of

challenges and opportunities.

In the upcoming sections, we detail our evaluation process. Sec-

tion 5.1 explains our experimental setup, covering data collection,

Table 2: Dataset information

Project Names Number of Python files Number of Functions

Training

Apache Projects

- Kibble

- Libcloud

- Allura

- Spark

1421 56755

Django Projects

- Connect

- Chat-app

- TrackTV

Testing

Apache Projects

- Avro

- Beam

- Cloudstack

- IoTDB

- PLC4X

- Thrift

- Yetus

2814 36729

Django Projects

- Django Website

- Djangogirls Website

- Django-jet

Total 4235 93484

choice of RL algorithms, and libraries. Section 5.2 is the core, exam-

ining each case study, including ALS performance utilizing different

RL methods and evaluations across projects. These sections show-

case ALS performance in diverse scenarios.

5.1 Experiment Setup
In this study, we provide a detailed account of our data collection

process, shedding light on the datasets that serve as the foundation

for our case studies. Then we shift our focus to configuring the RL

model, using established RL algorithms from the Stable-Baselines

library
7
, which is implemented based on the OpenAI Baselines

8
.

Data Collection. To prepare our dataset for training and testing

the RL model of ALS, we have utilized the first two modules of

the ALS framework. We conducted our experiments on a diverse

set of 17 projects (Table 2), encompassing 11 Apache projects and

6 Django-based projects. The inclusion of Django projects was a

deliberate choice, aimed at introducing diversity into our dataset,

given that certain features, such as Django ORM API Misuses, tend

to be less prevalent in Apache projects. These projects were selected

based on their continued active status, ensuring their reliability as

representative samples of ongoing software development projects.

As illustrated in Table 2, our dataset is partitioned into two dis-

tinct groups: training and testing. The training set is dedicated to

training the RL model and comprises a larger volume of data, with

56,755 unique functions. The Testing dataset, explored in forth-

coming sections, serves as the basis for our second case study and

contains 36,729 functions. This approach not only ensures that our

RL model is well-prepared with an extensive training dataset but

also facilitates the assessment of its cross-project performance, as

both datasets encompass a mix of Apache and Django projects. This

diverse dataset allows us to evaluate the adaptability and effective-

ness of our RL model on a wide array of software projects.

RLModel and Algorithms. With our experiment dataset in place,

the next step involves configuring the RL model. For its environ-

ment we use our own environment which we defined in 4.3. On the

other hand, for the agent, we use well-established RL algorithms

available in the Stable-Baselines library.

7
https://stable-baselines.readthedocs.io/en/master/index.html

8
https://github.com/openai/baselines

43

ICPE ’24, May 7–11, 2024, London, United Kingdom Amirmahdi Khosravi Tabrizi, Naser Ezzati-Jivan, & Francois Tetreault

Table 3: Stable-Baselines algorithms and features

A2C ACER ACKTR DDPG DQN GAIL PPO SAC TD3 TRPO

Discrete Action Support Yes Yes Yes No Yes Yes Yes No No Yes

Box Observation Support Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

On/Off Policy On On On Off Off Off On Off Off On

For our RL model, we selected Deep Q-Network (DQN), Advan-

tage Actor-Critic (A2C), and Proximal Policy Optimization (PPO)

based on their proven efficacy in complex decision-making tasks.

DQN’s stability in discrete action spaces, A2C’s balance between

policy and value-based methods, and PPO’s robustness in varying

environments make them ideal for evaluating ALS’s performance

in log-placement.

Table 3 presents an overview of the built-in model-free RL al-

gorithms integrated into the stable baselines framework. Within

this set of algorithms, there are a total of 11 options at our disposal.

However, due to the discrete nature of our action space, three of

these algorithms, namely DDPG, SAC, and TDT, are not compatible.

It is noteworthy that among the remaining nine algorithms,

only DQN and GAIL operate as off-policy algorithms, while the

remainder are on-policy methods. This distinction is pivotal as it

affects the manner in which these algorithms update their policies

based on historical data.

This experimental setup, encompassing a diverse dataset and a

range of RL algorithms, is specifically designed to test ALS’s core

objectives. The varied dataset ensures ALS’s adaptability to different

software architectures, while the selection of RL algorithms allows

us to assess the system’s effectiveness in making accurate log-

placement decisions under varying conditions.

5.2 Case Studies
To evaluate feasibility of ALS and to see whether it fulfills our

research goals we defined two different case studies which we

introduce and explain in more details in the following. We used the

reward received by the model as the evaluation metric, which we

illustrate by demonstrating the learning curve of the RL model.

ALS and Different RL Methods. This case study is to assess how
well ALS performs with various combinations of RL algorithms.

For this we test the RL model by setting three different RL methods

(DQN, A2C and PPO) to its agent and demonstrate the learning

curve of each of them while they are applied on the training en-

vironment (dataset). This case study is to evaluate the following

aspects of the ALS:

• The effectiveness and functionality of the ALS in adapting

itself to the defined logging objective.

• A comprehensive assessment of the performance of various

RL algorithms, shedding light on how effective suitable each

of them are for our environment.

Cross-project Evaluation. In this case study we apply the three

agents that have been previously trained on the training environ-

ment on the testing environment which includes functions from

projects that the agents have not been introduced to. This case

study is to evaluate the cross-project performance of the ALS.

Re
w

ar
d

Number of Timesteps

Figure 3: RL model’s learning curve for DQN

Re
w

ar
d

Number of Timesteps

Figure 4: RL model’s learning curve for A2C

Re
w

ar
d

Number of Timesteps

Figure 5: RL model’s learning curve for PPO

5.3 Results and Discussion
Figures 3, 4 and 5 illustrate the outcomes of our first case study

for DQN, A2C, and PPO, respectively. The broken vertical lines

mark the end of each episode. Each model interacted with the

environment across eight episodes. Initially, in the early timesteps,

all three RL methods incurred negative rewards, signifying their

initial struggle to make appropriate logging decisions, resulting

in negative rewards. However, by the end of the first episode, all

three models display a positive trend in reward values, showing

44

ICPE ’24, May 7–11, 2024, London, United Kingdom Amirmahdi Khosravi Tabrizi, Naser Ezzati-Jivan, & Francois Tetreault

Re
w

ar
d

Number of Timesteps

Figure 6: Evaluating DQN on testing environment

Re
w

ar
d

Number of Timesteps

Figure 7: Evaluating A2C on testing environment

Re
w

ar
d

Number of Timesteps

Figure 8: Evaluating PPO on testing environment

their capability to learn effective logging decisions and receive

positive rewards. Notably, among the examined RL methods, DQN

demonstrates the most stable results.

The results of our second case study are presented in Figures

6, 7 and 8. Observing the results, all three models exhibit a posi-

tive reward trend from the initial episode, even though they are

being evaluated in a testing environment containing functions not

encountered during their training. This underscores the reliable

cross-project performance of ALS. The rationale behind this lies

in the nature of RL methods, distinct from supervised learning;

RL methods do not attempt to imitate the behavior of the training

data or projects they encounter. Instead, they leverage this data

to acquire more generalized knowledge applicable across diverse

environments. In this context, DQN demonstrates the most stable

results in the second case study.

Further analysis of these results reveals insights into the adapt-

ability and effectiveness of different RL methods within ALS. The

superior stability of DQN, for instance, suggests that its approach

to learning and decision-making is particularly well-suited for the

complexities of log-placement in varied software projects. This sta-

bility is critical when deploying ALS in real-world environments,

where consistent performance is key to maintaining system re-

liability and efficiency. Additionally, the positive reward trends

across all models highlight ALS’s overall robustness and potential

as a scalable solution for diverse logging needs. These findings are

significant for industry applications, where adaptable and reliable

logging strategies are essential for optimizing system performance

and minimizing downtime, particularly in resource-constrained

settings like those encountered by companies such as Ciena.

In summary, our evaluation results demonstrate: 1) ALS’s func-

tionality and its ability to adapt to a predefined logging objective,

2) its reliable cross-project performance, and 3) the compatibility

of DQN as the most stable RL method for our environment, outper-

forming A2C and PPO in terms of stability.

The adaptability and effectiveness of ALS in diverse settings, as

demonstrated by our evaluations, are particularly pertinent for our

industrial partner, Ciena. In their resource-limited environments,

the ability of ALS to dynamically adjust log-placement strategies

is critical for maintaining system efficiency and reliability. These

attributes of ALS not only meet the specific requirements of Ciena

but also exemplify the system’s potential for broader application

in similar industrial contexts, where flexible and efficient logging

solutions are critical.

5.4 Limitations
While our proposed Adaptive Logging System framework, utilizing

Reinforcement Learning, effectively achieved its predefined logging

objective of identifying performance-bugs, we identified certain

limitations during the evaluation. These limitations open avenues

for further enhancements:

(1) Covered Programming Languages: At present, ALS is

limited to use in Python projects. This limitation arises from

the tool
9
we use to search the Abstract Syntax Tree of the

source code, which is designed specifically for Python. To

enhance the feature extraction module of ALS, future studies

could explore either using more comprehensive tools that

support other programming languages or leveraging Large

LanguageModels (LLMs) such as GPT-4
10
, alongwith feature

extraction models like Jina
11
.

(2) Dynamic Performance Features: The current iteration
of ALS focuses on specific performance-related logging ob-

jectives. Future versions could benefit from incorporating

dynamic performance metrics, such as CPU and memory

9
https://docs.python.org/3/library/ast.html

10
https://openai.com/gpt-4

11
https://huggingface.co/jinaai/jina-embeddings-v2-base-code

45

ICPE ’24, May 7–11, 2024, London, United Kingdom Amirmahdi Khosravi Tabrizi, Naser Ezzati-Jivan, & Francois Tetreault

overhead, which were not explored in this study. Integrating

these metrics into the RL model’s reward function could

enable ALS to tackle more complex performance logging

objectives, enhancing its applicability in various software

environments.

(3) RLModel Architecture: In our study, ALS employs a single

RL agent for both logging decisions and log-level determina-

tion. Future research might explore a dual-agent approach,

with one agent dedicated to logging decisions and another

to log-level determination. This two-tiered approach could

provide more precise control and potentially improve overall

effectiveness.

These limitations highlight areas for potential improvement and

demonstrate the evolving nature of adaptive logging systems in the

field of software performance engineering.

6 CONCLUSION, AND FUTURE DIRECTIONS
In this research, we developed the Adaptive Logging System, a novel

logging framework that utilizes Reinforcement Learning to adapt

dynamically to varying logging objectives, with a focus on identi-

fying and mitigating performance bugs. Our approach began with

an empirical study categorizing performance bugs into three main

types: Synchronization issues, Loops, and API misuses. This classifi-

cation guided the definition of 12 distinct static source code features,

which formed the basis of our dataset. Training ALS’s RL model on

this dataset, we evaluated its performance across 17 Django and

Apache projects. The results were promising, demonstrating ALS’s

effectiveness in adapting to different logging objectives. Notably,

the Deep Q-Network (DQN) model showed the most stable results

in terms of learning curve, performing well in both training and

cross-project evaluation scenarios.

The adaptability and robustness of ALS, while particularly ben-

eficial for Ciena in their resource-limited settings, extend its sig-

nificance to a wider range of industrial applications. The system’s

ability to tailor its logging strategies is not only essential for Ciena’s

operational efficiency and reliability but also indicative of its poten-

tial impact in broader software logging and performance evaluation

contexts.

However, this research study has certain limitations. The selec-

tion of RL algorithms and the scope of our dataset, while extensive,

may not fully capture the array of scenarios in different software

environments. Moreover, our focus was primarily on function-level

decisions, without delving into more detailed log-level determina-

tions.

Looking forward, there are several opportunities to expand this

research. One avenue of interest is the potential integration of ALS

with LLMs, where ALS could serve as the RLHF (Reinforcement

Learning from Human Feedback) reward model to optimize LLMs

for logging solutions. Another possibility is integrating ALS with

existing logging frameworks, which could lead to a more compre-

hensive logging solution. By combining ALS’s dynamic adaptability

with the proven capabilities of language models and traditional sys-

tems, this approach could greatly enhance the overall effectiveness

of software logging practices.

We further collaborated with them to develop an adaptive log-

ging system for their resource constrained environment. This paper

discusses our first steps in that direction, both defining a logging

system that solves their challenges and evaluating that system on

open source systems. This work is defined as a first gate towards

testing a system in production. In such a project, ALS’s effectiveness

in operational environments would be validated more accurately,

and essential feedback from users and developers would be gath-

ered. This feedback is vital for fine-tuning ALS, ensuring it meets

the complex demands of real-world applications. Future plans in

this regard include extensive deployment and evaluation within

Ciena’s operational context, aiming to demonstrate the system’s

practical utility and inform further development.

Further development could also involve incorporating dynamic

performance metrics such as CPU and memory usage into the

RL model, offering a more detailed understanding of system de-

mands. Moreover, exploring a dual-agent architecture in the RL

model—dividing responsibilities between logging decisions and log-

level determination—could potentially refine the system’s precision

and efficiency.

REFERENCES
[1] Alam, M. M. U., Liu, T., Zeng, G., and Muzahid, A. Syncperf: Categorizing,

detecting, and diagnosing synchronization performance bugs. In Proceedings of
the Twelfth European Conference on Computer Systems (2017), pp. 298–313.

[2] Amann, S., Nguyen, H. A., Nadi, S., Nguyen, T. N., and Mezini, M. A sys-

tematic evaluation of static api-misuse detectors. IEEE Transactions on Software
Engineering 45, 12 (2018), 1170–1188.

[3] Cao, J., Chen, B., Sun, C., Hu, L., Wu, S., and Peng, X. Understanding perfor-

mance problems in deep learning systems. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (2022), pp. 357–369.

[4] Fu, Q., Zhu, J., Hu, W., Lou, J.-G., Ding, R., Lin, Q., Zhang, D., and Xie, T. Where

do developers log? an empirical study on logging practices in industry. In Com-
panion Proceedings of the 36th International Conference on Software Engineering
(2014), pp. 24–33.

[5] Gholamian, S. Leveraging code clones and natural language processing for

log statement prediction. In 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE) (2021), IEEE, pp. 1043–1047.

[6] Graesser, L., and Keng, W. L. Foundations of deep reinforcement learning.
Addison-Wesley Professional, 2019.

[7] Gu, R., Jin, G., Song, L., Zhu, L., and Lu, S. What change history tells us

about thread synchronization. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (2015), pp. 426–438.

[8] He, P., Chen, Z., He, S., and Lyu, M. R. Characterizing the natural language

descriptions in software logging statements. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (2018), pp. 178–189.

[9] Jin, G., Song, L., Shi, X., Scherpelz, J., and Lu, S. Understanding and detecting

real-world performance bugs. ACM SIGPLAN Notices 47, 6 (2012), 77–88.
[10] Kim, T., Kim, S., Park, S., and Park, Y. Automatic recommendation to appropriate

log levels. Software: Practice and Experience 50, 3 (2020), 189–209.
[11] Li, H., Shang, W., and Hassan, A. E. Which log level should developers choose

for a new logging statement? Empirical Software Engineering 22 (2017), 1684–1716.
[12] Mastropaolo, A., Pascarella, L., and Bavota, G. Using deep learning to gen-

erate complete log statements. In Proceedings of the 44th International Conference
on Software Engineering (2022), pp. 2279–2290.

[13] Mizouchi, T., Shimari, K., Ishio, T., and Inoue, K. Padla: a dynamic log level

adapter using online phase detection. In 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC) (2019), IEEE, pp. 135–138.

[14] Ren, X., Ye, X., Xing, Z., Xia, X., Xu, X., Zhu, L., and Sun, J. Api-misuse detection

driven by fine-grained api-constraint knowledge graph. In Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering (2020),

pp. 461–472.

[15] Sandoval Alcocer, J. P., Bergel, A., and Valente, M. T. Learning from source

code history to identify performance failures. In Proceedings of the 7th ACM/SPEC
on International Conference on Performance Engineering (2016), pp. 37–48.

[16] Song, L., and Lu, S. Performance diagnosis for inefficient loops. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE) (2017), IEEE, pp. 370–
380.

[17] Sutton, R. S., and Barto, A. G. Reinforcement learning: An introduction. MIT

press, 2018.

[18] Yang, J., Subramaniam, P., Lu, S., Yan, C., and Cheung, A. How not to structure

46

ICPE ’24, May 7–11, 2024, London, United Kingdom Amirmahdi Khosravi Tabrizi, Naser Ezzati-Jivan, & Francois Tetreault

your database-backed web applications: a study of performance bugs in the wild.

In Proceedings of the 40th International Conference on Software Engineering (2018),

pp. 800–810.

[19] Yuan, D., Park, S., Huang, P., Liu, Y., Lee, M. M., Tang, X., Zhou, Y., and Savage,

S. Be conservative: Enhancing failure diagnosis with proactive logging. In 10th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 12)
(2012), pp. 293–306.

[20] Zhang, Y., Kabir, M. M. A., Xiao, Y., Yao, D., and Meng, N. Automatic detection

of java cryptographic api misuses: Are we there yet? IEEE Transactions on

Software Engineering 49, 1 (2022), 288–303.
[21] Zhao, X., Rodrigues, K., Luo, Y., Stumm, M., Yuan, D., and Zhou, Y. Log20:

Fully automated optimal placement of log printing statements under specified

overhead threshold. In Proceedings of the 26th Symposium on Operating Systems
Principles (2017), pp. 565–581.

[22] Zhu, J., He, P., Fu, Q., Zhang, H., Lyu, M. R., and Zhang, D. Learning to

log: Helping developers make informed logging decisions. In 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering (2015), vol. 1, IEEE,

pp. 415–425.

47

ICPE ’24, May 7–11, 2024, London, United Kingdom Amirmahdi Khosravi Tabrizi, Naser Ezzati-Jivan, & Francois Tetreault

	Abstract
	1 Introduction
	2 Background and Literature Review
	2.1 Software Logging
	2.2 Reinforcement Learning
	2.3 Research Gaps

	3 Logging for performance-bugs
	3.1 Loops
	3.2 Synchronization Issues
	3.3 API Misuses

	4 Adaptive Logging System (ALS)
	4.1 Web Scraping
	4.2 Feature Extraction and Data Collection
	4.3 RL Model

	5 Evaluation
	5.1 Experiment Setup
	5.2 Case Studies
	5.3 Results and Discussion
	5.4 Limitations

	6 Conclusion, and Future Directions
	References

