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ABSTRACT
Alibaba’s 2021 and 2022 microservice datasets are the only publicly
available sources of request-workflow traces from a large-scale
microservice deployment. They have the potential to strongly
influence future research as they provide much-needed visibility
into industrial microservices’ characteristics. We conduct the first
systematic analyses of both datasets to help facilitate their use by
the community. We find that the 2021 dataset contains numerous
inconsistencies preventing accurate reconstruction of full trace
topologies. The 2022 dataset also suffers from inconsistencies, but
at a much lower rate. Tools that strictly follow Alibaba’s specs for
constructing traces from these datasets will silently ignore these
inconsistencies, misinforming researchers by creating traces of the
wrong sizes and shapes. Tools that discard traces with inconsisten-
cies will discard many traces. We present Casper, a construction
method that uses redundancies in the datasets to sidestep the
inconsistencies. Compared to an approach that discards traces with
inconsistencies, Casper accurately reconstructs an additional 25.5%
of traces in the 2021 dataset (going from 58.32% to 83.82%) and an
additional 12.18% in the 2022 dataset (going from 86.42% to 98.6%).

CCS CONCEPTS
• Computer systems organization → Cloud computing;
Reliability; • Software and its engineering→ Traceability.
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1 INTRODUCTION
Today, organizations build distributed applications using a mi-
croservice architecture [5, 10]. This architecture—which involves
decomposing applications’ functionalities into many lightweight
services that coordinate over well-defined APIs to process user
requests—has many advantages. It facilitates development teams’
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independence, increases deployment velocity, and enables fine-
grained scaling [8, 20]. But, apart from this shared understanding,
microservice deployments’ concrete characteristics are invisible out-
side of their respective organizations. This lack of visibility depresses
research into microservices. Especially affected are efforts on sched-
uling, problemmitigation, and debugging, which rely on knowing
deployments’ scale and emergent properties of how and which ser-
vices interact to process requests. Published microservices research
on these topics [9, 12, 23, 26, 27, 29] are often informed by simple
testbeds [4, 10, 30], making their applicability to the large-scale
organizations that benefit most frommicroservices questionable.

Large-scale organizations, such as Alibaba [16], Google [24],
and Meta [13] recently published quantitative analyses of their
respective microservice architectures. These published studies
provide much needed insight into the scale and complexity of the
architectures as well as detailed studies of request workflows within
them—i.e., how services interact to process requests. Many research
efforts are using these analyses to inform their work [3, 7]. Unfor-
tunately, these studies do not provide the raw datasets used for their
analyses [24] or only provide summary statistics [13]. This prevents
the community from independently verifying results, finding new
insights themselves, or using the datasets directly in their work.

To address this concern, Alibaba released two datasets capturing
traces of request workflows observed in their microservice architec-
ture [1, 2]. Traces are call graphs, where nodes are services and edges
indicate caller/callee relationships between them. Additional anno-
tations on nodes and edges include (but are not limited to) response
times, communication protocols used, and service instance ID. The
datasets store traces in tabular formwith rows corresponding to calls
betweenservice.The2021dataset coversa12-hour time-period, total-
ing20million traces.The2022dataset coversa13-dayperiod, totaling
over 13 billion traces (estimated). These datasets are treasure troves
for research and they are already being used extensively [15, 17, 18,
31]. But, without independent analyses to verify datasets’ fidelity,
researchers run the risk of basing theirwork on inaccurate trace data.

This paper provides the needed independent analysis.We analyze
the entire 2021 dataset and a 12-hour period of the 2022 dataset.
We find that numerous 2021 traces are stored in the dataset in
ways inconsistent with Alibaba’s specifications. The 2022 traces
also exhibit inconsistencies, but at a lower rate. As a result of
these inconsistencies, trace graphs built from the datasets will not
represent requests’ workflows, misleading users. We find that the
inconsistencies can be explained by two types of events within the
distributed-tracing infrastructure [16] responsible for capturing
traces: data-loss and context-propagation errors. The former occurs
when log messages (or parts of them) representing individual calls
are dropped. The latter occurs when services fail to differentiate
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different calls made on behalf of a single request.
To mitigate these inconsistencies, we present Casper, a trace

construction toolkit that uses hidden redundancies in the datasets
to recover from data loss and disambiguate merged calls. We show
that Casper creates larger and wider traces than other construction
methods—e.g., ones that operate unaware of the inconsistencies
or which discard traces with inconsistencies.

We present the following contributions:
(1) We identify and systematize cases where trace data stored

in the datasets is inconsistent with the stated specifications.
Specifically, 99.48% of traces in the 2021 dataset suffers from
these inconsistencies and 85.77% of traces the 2022 dataset suffer
frommissing calls, contradicting values within rows, and rows
that appear more times than expected. We discuss how these
inconsistencies affect traces’ shapes.

(2) We describe how many of these inconsistencies are explained
by: 1) data-loss events and: 2) services incorrectly propagating
trace context to differentiate inter-service calls. We show
how redundancies between rpcid values in trace context
and caller/callee names within datasets’ rows allow many
inconsistencies to be circumvented.

(3) We present Casper, a trace construction algorithm that
circumvents the inconsistencies1. For the 2021 dataset, Casper
creates traces that have average sizes, max depths, and max
widths that are: 1.14x, 1.22x, and 1.08x larger than a construction
method that blindly ignores inconsistencies and 2.71x, 1.32x, and
2.02x larger than a method that discards inconsistent traces. It
creates an additional 25.5% of traces with complete connectivity
between services for the 2021 dataset (increasing the total to
83.82%) and an additional 12.18% with complete connectivity
for the 2022 dataset (increasing the total to 98.6%).

2 ALIBABAMICROSERVICEDATASETS
This section describes the Alibaba datasets’ tabular format and the
specifications describing traces that are stored within in them (§2.1).
We also describe how traces can be constructed from the tabular
data using the specifications (§2.1). §3 discusses how the datasets
are inconsistent from the specifications and their impact on traces
constructed assuming consistency.

We start with a brief description of Alibaba’s distributed-tracing
infrastructure,whichwas responsible for capturing the traces. Please
seeLuoet al. [16] and thedatasetsREADMEs [1, 2] for amoredetailed
descriptionof the tracing infrastructure and thedatasets respectively.

Alibaba’s distributed-tracing infrastructure for capturing
request-workflow traces: Like most distributed-tracing infras-
tructures [14, 21, 25], Alibaba’s infrastructure works by propagating
context with requests’ execution. For Alibaba, context includes
a per-request unique ID (traceid) and a per-call path unique ID
(called the rpcid). The traceid uniquely identifies calls made on
behalf of a single request. The rpcid uniquely identifies calls and
their depth within the trace call graph. It is specified as a series of
delimiter ’.’ + IDs. Each service adds a delimiter and adds a unique
ID before calling a downstream service. The number of delimiters is
equal to the depth of the call. When requests execute log messages,
records of them are enriched with context and stored in long-term

1Source code and sample data: https://doi.org/10.7910/DVN/SS9SIY

storage. The trace datasets are comprised of the subset of these logs
indicating caller/callee relationships.

2.1 Tabular format & storage specifications
Format: Figure 1a shows a simplified version of the tabular format,
which is largely the same for both datasets. It also shows the graph
representation of the trace in Figure 1b. Various columns provide
information needed to create the trace topology (nodes and edges)
and add annotations. Rows represent log messages or edges of
the trace graph—i.e., communication calls between an upstream
service (caller) and downstream service (callee). Up to two rows
may correspond to a single communication call.

Specifications: The traceid, rpcid, UM, and DM columns encode
traces’ topological information. The first three fields are propagated
in context as described above. For a given call the UM and DM
fields identify the corresponding upstream service (caller) and
downstream service (callee).

The remaining columns are used to annotate trace nodes or
edges. We discuss only ones relevant to our analyses. The rpctype
column describes the protocol used for a given call. It can be either
RPC,HTTP,mc (Memcache),mq (Message queue), or db (database).
The rt column describes the call’s response time and ts denotes
a timestamp indicating when the row was recorded by a service.
There are two rows for each RPC andHTTP-based call. The first row
records the end-to-end response time as measured by the upstream
service. The second row records the processing time of the request
within the downstream service—i.e., the latency between receiving
the request and sending a reply.

Differences between 2021 and 2022 datasets In the 2021 dataset,
the row corresponding to end-to-end latency records a positive
response time whereas the row corresponding to downstream
processing records a negative one [1]. Both response-time values are
positive in the 2022 dataset [2]. The 2022 dataset includes additional

Topology Annotations

ts traceid rpcid UM DM rpctype rt

166370 1 0 A B http 8
166374 1 0 A B http -7
166376 1 0.1 B C db 0
166372 1 0.2 B D mc 0

(a) An encoded trace in tabular form

0

0.1 0.2

Legend
Call

Microservice

0.1 rpcid

A

B

DC
(b) Corresponding constructed trace

Figure 1:A trace in tabular form& its constructed version.Not
all annotations are shown in the tabular version. Annotations
are omitted from the graph. Table follows the 2021 data
format.
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annotation fields.

2.2 Constructing traces
The construction process described below is general to accommo-
date traces that start at any arbitrary point of request workflows’
execution (i.e., not necessarily at frontend services whereworkflows
typically originate). Responses to questions about the datasets from
Alibaba indicate such intermediate starting points are possible [11].
Figure 1b shows the trace that would be constructed from the
tabular data in Table 1a.

To build a trace: 1) Extract all rows of the table with the same
traceid. 2) Group rows with the same rpcid together as they
represent the same call. 2) Find roots, which are named by the UM
or DM field of calls with the fewest number of ’.’ delimiters in their
rpcid values. The UM is the root if it is defined, else DM is the root.
The former accommodates intermediate starting points and the
latter frontends. 3) Find calls made by roots, which have the same
rpcid prefix as roots with one extra ’.’ delimiter, and attach their
DM values as children. 4) Repeat step 3 recursively for all leaves in
the trace until there are no remaining calls left. Nodes and edges
can be optionally annotated during this process.

3 TRACE INCONSISTENCIES
We identified four types of inconsistencies in the Alibaba trace
datasets that invalidate the assumptions mentioned in §2. We found
these inconsistencies to be prevalent within the datasets with almost
all traces having at least one inconsistency. For the remainder of this
section, we discuss inconsistencies within the context of a single
trace. We focus mainly on the 2021 trace dataset since it has higher
error rates, but all inconsistencies discussed were also observed in
the 2022 dataset.

Analysis of Alibaba’s responses to questions about the
datasets [6, 19, 28] indicate that these inconsistencies are explained
by data loss and context-propagation errors (CPEs). Data loss results
in rows being dropped or fields in rows missing values. Context
propagation errors occur when a user does not correctly increment
the rpcid, assigning the same rpcid tomany calls. This non-unique
rpcid is propagated downstream, resulting in downstream calls
also having non-unique rpcids. The last subsection (§3.5) gives an
example on how many of these inconsistencies may arise given a
context propagation error.

Table 1 lists the percentage of unique traces affected by each
inconsistency. We next describe each inconsistency in detail.

3.1 Missing rows
There are many missing rows in the trace datasets. We categorize
missing rows into two groups: missing duplicate rows and missing
rpcids. The duplicate row (i.e. the call or reply) for two-way
communication (http or rpc) is often missing, leaving only one row
with either a positive or negative rt value. Most traces are missing
a duplicate row in both datasets.

A missing rpcid is defined to be when we are missing all rows
for a rpcid. Since rpcids encode topological information about the
request workflow, we know all rows for a rpcid are missing when
we are missing a rpcid that is ancestrally between two captured
rpcids and is needed to form a call path. We call these missing

Inconsistency 2021 2022

Missing duplicate row 99.48% 85.77%
Missing rpcid 35.23% 11.42%

Unexpected row 30.16% 6.86%

Contradicting UM 33% 7.94%
Contradicting DM 26.84% 2.56%

Missing value 94.2% 67.05%

Table 1: Inconsistency frequencies. The portion of traces that
have at least once occurrence of each inconsistency.

rpcids internal rpcids (since they are internal nodes in a call
graph). A trace may have missing rows before the smallest rpcid
or after the largest rpcid, but there is no way to detect this.

Example: Table 2 gives an example of a missing row and rpcid.
We are missing the negative rt row for the http request 0.2.
Additionally, we are missing all rows for the rpcid 0.2.1, which is
the connection between 0.2 and 0.2.1.1.

Implication: Missing duplicate rows does not impact the shape of
the trace since the remaining row contains the call path information.
Weonly lose thert for onedirectionof communication.Whenweare
missing rpcids in a trace, naive rebuilding (using the assumptions
outlined in §2) would result in a disconnected trace, under-counting
the number of calls and not preserving the true topology.

How to address the inconsistency: Data loss causes us to lose rows,
which can present as either a missing duplicate row or a missing
rpcid. We can use redundant information about the structure of
a trace in the rpcids to replace missing internal rpcids, when it’s
available. For example, in Table 2, the missing rpcid 0.2.1 should
have UM B and DM C to form a valid call path.

3.2 Additional unexpected rows
As described in Section 2, rpcids are assumed to be unique for each
call in the system.We expect to see one row per message sent; for
two-way communication, there should be two rows (call& reply) and
for one-way communication there should be one row. Additionally,
when we have a reply row for an rpcid, all structural information
(e.g. UM, DM, rpctype) should be identical since it references a single
call. Despite this assumption, we often see additional rows past
these thresholds for a single rpcid. In the 2021 traces, 42.18% of
traces have at least one rpcidwith unexpected rows.

Example: Table 3 shows an example of additional unexpected
rows where 0.3.1 is repeated many times. We have four rows to DM
C (counting both the + and - rt rows) and one row to DMD.

rpcid UM DM rpctype rt

0.2 A B http +
0.2.1.1 C D db +

Table 2: Missing rpcids. The rpcid 0.2.1 is missing from the
table since it’s needed to connect 0.2 and 0.2.1.1. Additionally,
a duplicate row ismissing for the http request 0.2.
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rpcid UM DM rpctype rt

0.3 A B http +/-
0.3.1 B C rpc +/-
0.3.1 B C rpc +/-
0.3.1 B D mq +
0.3.1.1 C E mq +

Table 3: Unexpected rows. rpcid 0.3.1 is repeated above the
expected threshold for the rpctype. +/- rt is used to indicate
we have both the positive and negative rows.

Implication: The assumption that rpcids are unique is invalidated
and rebuilding the trace naïvely would under-count the number
of unique calls. Additionally, when there are multiple UM, DM pairs,
it’s not clear which should be used for the rpcid.

How to address the inconsistency Additional unexpected rows are
caused by context propagation errors (CPEs), where the user of the
tracing infrastructure did not increment the rpcid for each unique
call. This appears in the table as additional rowswith the same rpcid
and UM, but potentially different DMs. In Table 3, the CPE originates
from service B, which makes at least two calls to service C and
one to D. The non-unique rpcids are passed downstream, creating
more non-unique rpcids (and call paths) further downstream. For
example, 0.3.1.1 (in Table 3) has UM C, but we do not know which
of B’s calls to C made the subsequent call to E.

3.3 Contradicting Values
There are inconsistencies in the datasets where rows that should
contain identical values have conflicting values (e.g. the two rows
corresponding to the call and reply for a two-way communication
call should have the same UM and DM). We categorize contradicting
values into two groups: contradicting DMs are when all rows with
a UM has multiple DMs and contradicting UMs are when one or more
of the UMs for an rpcid don’t match the upstream call’s DM (i.e. not
forming a valid call path). Contradicting UMs are independent of
the DM value. A single rpcid can have both types of contradicting
values in their rows. A large portion of the 2021 traces (26%) have at
least one rpcidwith contradicting DM values and 37% of the traces
have contradicting UMs.

Example: Table 4 shows two rows for rpcid 0.3.1.1. There is
conflicting UM and DM information in the two rows. Since there
are multiple UM values, at least one of the rows may not connect
upstream resulting in an invalid path.

Implication: Naïvely rebuilding trace with contradicting values
could create invalid call paths, depending on which row’s infor-
mation is added to the trace topology. Since each unique rpcid is
assumed to have one UM and one DM, naïvely rebuilding would not
check for this inconsistency.

How to address the inconsistency Contradicting values are the
result of context propagation errors. Contradicting DMs appear
when the user does not increment the rpcidwhenmaking calls to
different downstream services. Upon cursory inspection, we found
contradicting UMs are either downstream from CPEs or seem to have
an incorrect rpcid that could be remedied by adding a ’.’ followed
by an integer to connect the call one level downstream. We can
use redundant information about the call paths to help determine

rpcid UM DM rpctype rt

0.3.1.1 C E mq +
0.3.1.1 D F mq +

Table 4: Contradicting values.

accurate UMs and DMs (or if the rpcid is not unique).

3.4 Missing Values
Many values in the datasets are missing or contain ’(?)’/UNKNOWN
as the value. In fact, most traces in both datasets contain at least
one missing UM or DM value (94.2% and 69%).

Implication: Naïvely rebuilding traces with missing values misses
opportunities to uncover the true value, resulting in skewed metrics
about the frequency of specific microservices.

How to address the inconsistency Missing values are the result
of data loss, which is not uncommon in large distributed systems.
For two-way communication, there is often a duplicate row for
the rpcid which contains the missing information. If there is no
duplicate row, these missing values can be recovered using call path
information from an upstream or downstream call.

3.5 Combination of inconsistencies
Context propagation errors (CPE) often show up as a combination
of the inconsistencies.We always see unexpected rows for CPEs, but
this is typically combined with contradicting values. For example
Table 3 showed both DM values C and D, which are contradicting.

Downstream from CPEs, the same rpcid is used as a seed for
downstream calls. In the Table 3 example, 0.3.1 is the seed rpcid for
all downstream calls made from C and D. If we added an additional
row to this example with rpcid 0.3.1.1.1, UMX and DM Y, we would
have a contradicting path (since X is not the same as upstream call
0.3.1.1’s DM E). To make things more complicated, the contradicting
path inconsistency would no longer exist if we assumed we were
missing its’ upstream rpcid (which could have DM X). The point
here is that CPEs cause many inconsistencies since they invalidate
the assumption that rpcids are unique. This makes it challenging
(and sometimes impossible) to decipher the trace topology.

4 CASPER
We introduce Casper, which aims to create the largest accurate re-
questworkflowtopologies. Buildingon the intuition in§3,wediscuss
which inconsistencies can be circumvented (e.g., are recoverable),
and how to recover from them (§4.1). We also discuss when incon-
sistencies are not recoverable (§4.2). We then present Casper’s algo-
rithm for rebuilding the traces (§4.3). We conclude with limitations
of our approach (§4.4). Casper is implemented in 711 lines of Python
code. It takes as input all rows for a trace and outputs the constructed
trace in Alibaba tabular or OpenTelemetry JSON [21] format.

4.1 Recoverable inconsistencies
4.1.1 Data loss. Missing internal calls: Observing missing
internal calls due to data loss, we can determine the exact number
of missing calls on the call path using the rpcid structure. We find
the call that is missing its upstream call and recursively drop the
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trailing ’.’ from the rpcid until we reach an existing rpcid. Each
new rpcidwe create by dropping a ’.’ becomes a call in the trace.

Example: In figure 2, (1) shows how rpcids 0.1.1 and 0.1.1.1 are
added to the trace to fill the hole between the existing rpcids.

Missing values captured in redundant rows: We use
information captured in duplicate rows or through call paths to fill
in missing UMs and DMs.

Example: In figure 2, (2) shows a recovered (missing) rpcid 0.2.1,
which was added to connect the existing rpcids. In table format,
we can refill 0.2.1’s UMwith DM B (from its upstream call) and DM C
(from its downstream call).

4.1.2 Context propagation errors (unique paths). Context prop-
agation errors (CPEs) can be fixed at the source: As stated in
§3, a CPE originates from a service which incorrectly uses the same
rpcid for different calls. We call a CPE’s origin the source of the
error. By differentiating each rpcid, we can always rebuild the trace
structure at the source of a CPE.

First,we calculate thenumberof unique calls thatwere incorrectly
assigned the same rpcid. The 2021 traces and 2022 traces use rts dif-
ferently, so we handle each case independently. The 2021 traces use
negativerts for reply rows.When thert is belowa certain threshold,
it is rounded down to 0 (both for the call and reply edges). The call
rt includes the child execution time plus the network latency while
the reply rt is only the child execution time, so the reply edges must
have art less thanor equal to the callrt.Weuse these characteristics
to calculate the number of calls for a given rpctype to each DM. For
one-way communication, thert values should all be positive (mostly
0), so the number of calls is equivalent to the number of rows.

For two-way communication in the 2021 dataset, we calculate
number of calls as follows:

𝑛𝑢𝑚_𝑓 𝑎𝑠𝑡_𝑐𝑎𝑙𝑙𝑠 = ⌊ (𝑟𝑡 ==0)
2

⌋

𝑒𝑥𝑡𝑟𝑎_𝑓 𝑎𝑠𝑡_𝑟𝑜𝑤 = (𝑟𝑡 ==0)%2
𝑛𝑢𝑚_𝑠𝑙𝑜𝑤_𝑐𝑎𝑙𝑙𝑠 =max(−rt,𝑎𝑏𝑠 (+rt−𝑒𝑥𝑡𝑟𝑎_𝑓 𝑎𝑠𝑡_𝑟𝑜𝑤))

𝑛𝑢𝑚_𝑐𝑎𝑙𝑙𝑠_𝑡𝑜_𝐷𝑀 =𝑛𝑢𝑚_𝑓 𝑎𝑠𝑡_𝑐𝑎𝑙𝑙𝑠+𝑛𝑢𝑚_𝑠𝑙𝑜𝑤_𝑐𝑎𝑙𝑙𝑠

(1)

-rt is the number of rows with negative response times and +rt
is the number of rows with non-zero positive response times. Since
two-way communication should have one positive and one negative
row, where the negative row could be 0, we get the minimum
number of unique calls if wemaximize the number of +/- pairs made.
𝑛𝑢𝑚_𝑓 𝑎𝑠𝑡_𝑐𝑎𝑙𝑙𝑠 counts the pairs of rowswith 0 rt. 𝑒𝑥𝑡𝑟𝑎_𝑓 𝑎𝑠𝑡_𝑟𝑜𝑤
is 1 if there is an odd number of rows with 0 rt. We try to pair any
leftover 0 rt rows with +rt rows. 𝑛𝑢𝑚_𝑠𝑙𝑜𝑤_𝑐𝑎𝑙𝑙𝑠 tries to match
the 0 rt row with a positive rt row (taking the absolute value when
there are no positive rt rows), and then counts the pairs between
the remaining + rt rows and - rt rows. Taking themax gives us the
total number of pairs and the remaining unpaired rows. Finally, we
add the fast and slow calls to get the total number.

The 2022 traces only have positive rts, the number of calls is
calculated by:

𝑛𝑢𝑚_𝑐𝑎𝑙𝑙𝑠_𝑡𝑜_𝐷𝑀 =𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑟𝑡/2) (2)

for two-way communication calls (and is the number of rows for
one-way communication).

Figure 2: CASPER example trace. Regions of the trace that
are corrected are highlighted in yellow and regions that are
fundamentally unfixable are highlighted in red.

Since we can always be missing rows, the true number of unique
calls is unknown. These calculations determine the minimum
number of unique calls.

Using the minimum number of calls to each DM, we can fix the
topology at the source of a CPE. We do this by updating the rpcids
to be unique for each call. Wemodify the rpcids to be of the form
𝑟𝑝𝑐𝑖𝑑 −𝐷𝑀 −𝑖 where 𝑖 is between 1 and the minimum number of
calls to the DM.

Example: In figure 2, (3) shows how the rpcids are updated to
be unique for a CPE. The tabular version of this data (table 3) has
five rows for the rpcid 0.3.1. We calculate that there are two calls
to C and one to D.We update the rpcids to be: 0.3.1-C-1, 0.3.1-C-2,
and 0.3.1-D-1.

Unique call paths downstream from CPEs: When there is
only one call to a DM at the source of a CPE, there is a possibility that
we can rebuild the trace downstream from this service. If there are
multiple calls to a DM, we cannot determine which instance of the
DMmade which downstream calls.

All downstream rpcids from CPEs are not assumed to be unique
because they share a non-unique rpcid in their ancestry. As a result,
we can only rely on the call depth information from rpcids as being
accurate. We can use UM and DM information to rebuild call paths
downstream fromCPEswhen the call path is 1) unique (i.e. the chain
of UM,DM, andcalldepth information formsasinglevalidcallpath)and
2) complete (there is no data loss or unknown values in the call path).

Example: In figure 2, (5) shows a unique path downstream from
a CPE that we can connect to the trace. Table 4 shows the tabular
version of this portion of the trace, where there is a row for 0.3.1.1
with UMD, connecting to the single D node in the trace. We update
the rpcid to be unique by changing its non-unique ancestor to be
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unique (e.g. 0.3.1.1→ 0.3.1-D-1.1).

4.2 Unrecoverable inconsistencies
4.2.1 Data loss. Data loss that has no redundancies: Most
instances of data loss have redundancies in the dataset. However,
there are some instances where there are no redundancies and the
data is unrecoverable. For example, when sequential rpcids are
missing, not all UM and DM information is recoverable.

Example: In figure 2, (1) shows that we are able to recover the
missing rpcids 0.1.1 and 0.1.1.1, but we cannot determine the
service name for the additional node.

4.2.2 Context propagation errors (non-unique paths). Non-unique
call paths downstream from CPEs: We cannot remedy calls
downstream from CPEs when they do not form unique call path. In
the presence of data loss, it is fundamentally not possible to replace
the missing calls since we cannot determine a unique ancestry to
reconnect via. When we have missing UM or DM values, they are not
recoverable since there are often many unique possible values.

Example: In figure 2, (4) shows how the rpcid 0.3.1.1 (from
table 3) cannot be uniquely connected to the trace. Since we cannot
definitively connect this edge to the existing trace, we remove it and
all rows downstream from it. Figure 2 (6), which visually represents
the data in table 5, is affected by data loss. We are missing a row
for the rpcid 0.3.1.1.1, which is needed to determine if the node X
connects uniquely to the trace via the node F or non-uniquely to
the trace via node E.

Conflicting paths, where the UM does not connect upstream:
As described in section 3.3, conflicting UMs have a special case where
they are not downstream from a CPE. In this case, there is only
one service upstream. Any rows with UMs that do not match the
upstream’s DM are dropped as they form invalid call paths.

4.3 Casper algorithm
The Casper algorithm performs a best case reconstruction of the
trace topologies and guarantees that the edges in the resulting
graphs are accurate. We keep track of the number of unrecoverable
rpcids that are omitted from the traces. Casper begins with general
preprocessing of the data including filling missing values with
duplicate rows. The meat of the program is in handling data loss
and CPEs, which is outlined below.

At a high-level, Casper performs a breadth first search (BFS)
traversal over the rpcids in each trace. When it identifies data loss
upstream from a rpcid, it recursively fills in missing calls until it
connects upstream.When it identifies a CPE, it fixes the error at the
source and attempts to reconstruct the rpcids downstream from the
CPE (algorithm 2) before returning to the BFS traversal (algorithm 1).

For each trace, Casper is initialized by sorting the rpcids in
BFS order and identifying all root rpcids, which have no upstream

rpcid UM DM rpctype rt

0.3.1.1.1.1 X Y db +
0.3.1.1.1.2 X Z db +

Table 5: Unrecoverable call paths downstream from CPE,
affected by data loss.

Algorithm 1 Casper algorithm for a single trace
1: 𝑟𝑝𝑐𝑖𝑑𝑠←𝐵𝐹𝑆 𝑠𝑜𝑟𝑡𝑒𝑑 𝑟𝑝𝑐𝑖𝑑𝑠 𝑓 𝑜𝑟 𝑡ℎ𝑖𝑠 𝑡𝑟𝑎𝑐𝑒

2: 𝑟𝑜𝑜𝑡_𝑟𝑝𝑐𝑖𝑑𝑠←𝑎𝑙𝑙𝑟𝑜𝑜𝑡𝑠

3: for rpcid in rpcids do
4: 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝑟𝑝𝑐𝑖𝑑 = 𝑟𝑝𝑐𝑖𝑑.𝑟𝑠𝑝𝑙𝑖𝑡 (′ .′,1) [0];
5: if Data loss then
6: while𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝑟𝑝𝑐𝑖𝑑 not in trace do ‘
7: Add edge for𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝑟𝑝𝑐𝑖𝑑 ;
8: 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝑟𝑝𝑐𝑖𝑑← next𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝑟𝑝𝑐𝑖𝑑 ;
9: endwhile
10: end if
11: if Context propagation error then
12: 𝐷𝑀𝑠← unique DMs for rpcid;
13: forDM in DMs do
14: 𝑚𝑖𝑛_𝑐𝑎𝑙𝑙𝑠_𝑡𝑜_𝐷𝑀←𝑚𝑎𝑥 (𝑅+,𝑅−);
15: for i in min_calls_to_DM do
16: Add edge for 𝑟𝑝𝑐𝑖𝑑_𝐷𝑀_𝑖;
17: end for
18: end for
19: Rebuild downstream CP rpcids (Alg 2);
20: end ifAdd edge for 𝑟𝑝𝑐𝑖𝑑 ;
21: end for

rpcids (alg 1, lines 1–2). It then iterates over the rpcids in BFS
order from each root and performs:

(1) Check for data loss: if the rpcid is not a root, drop the trailing
’.’ and check for a𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝑟𝑝𝑐𝑖𝑑 (alg 1, lines 4–5).
(a) If the𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝑟𝑝𝑐𝑖𝑑 does not exist, recursively add calls

(with UM/DM values when possible) until we connect to the
trace (alg 1, lines 6–9).

(2) Check for CPE: Calculate the minimum number of calls made
by this rpcid. If there are more than the expected number
of rows (alg 1, line 11):

(a) Extract the list of unique DMs called by the UM. For
each DM, calculate the number of calls to the DM. Create
a unique rpcid for each call to the DM of the form
rpcid=rpcid−DM−𝑖 where i ranges from 1 to the number
of call (alg 1, lines 12–18).

(b) Extract all rpcids downstream from the CPE and rebuild
independently. These rows have different assumptions
(i.e. that the rpcid is not unique) so must be handled
separately (alg 1, line 19).

(3) Add edge to the trace, if no errors (alg 1, line 20)
Algorithm 2 describes howwe remedy rpcids downstream from

CPEs. At a high-level, Casper first identifies and removes subtrees
in the trace that are downstream from data loss (i.e. disconnected
subtrees). Next, Casper performs call path validation, filtering out
non-unique call paths. Algorithm 2 is initialized with only the
rpcids downstream from the source of a CPE, which are sorted in
BFS order (alg 2, lines 1–2).

(1) Check for downstream data loss: For each rpcid, check if
it has a dangling tree below it. If the rpcid has no direct
children, but has descendants (alg 2, lines 3–4):

(a) Get the list of descendant rpcids and delete all rows with
these rpcids (alg 2, line 5–6).
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(2) Foreach row that isdownstreamfromtheCPEandnotaffected
by data loss, calculate the number of calls this row connects
to upstream. This is done by generating the 𝑝𝑎𝑟𝑒𝑛𝑡_rpcid,
filtering the parent rows that connect to this row’s UM, and
calculating thenumberof calls for those rows (alg 2, line 9–10):

(a) If this row connects to a unique call path: update it’s rpcid
to be unique, by replacing its ancestry rpcid with its
corrected 𝑝𝑎𝑟𝑒𝑛𝑡_rpcid (alg 2, line 11–12).

(b) If this row connects to a multiple call paths: delete the
row and any connecting downstream call paths. (alg 2,
line 13–14)

Algorithm 2 supports fixing sequential CPEs as long as the call
paths are unique.

Algorithm 2 Casper rebuild calls downstream from CPE
1: 𝑟𝑜𝑤𝑠← rows with rpcids downstream from CPE;
2: 𝑟𝑝𝑐𝑖𝑑𝑠←BFS sorted rpcids downstream from CPE;
3: for rpcid in rpcids do
4: if No child rpcid exists but exists descendents then
5: 𝑑𝑒𝑐𝑒𝑛𝑑𝑒𝑛𝑡_𝑟𝑝𝑐𝑖𝑑𝑠←𝑟𝑝𝑐𝑖𝑑.∗ from rpcids;
6: delete rows for 𝑑𝑒𝑐𝑒𝑛𝑑𝑒𝑛𝑡_𝑟𝑝𝑐𝑖𝑑𝑠 ;
7: end if
8: end for
9: for row in rows do
10: 𝑛𝑢𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔_𝑐𝑎𝑙𝑙𝑠← num calls row connects upstream

to;
11: if 𝑛𝑢𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔_𝑐𝑎𝑙𝑙𝑠 ==1 then
12: update rpcid in row;
13: else
14: delete row & connecting downstream rows;
15: end if
16: end for

4.4 Limitations
Missing rpcids before or after all recorded rpcids: Missing
rpcids that are smaller than the smallest rpcid in the table or
larger than the largest rpcid in the table. As mentioned in [6], root
rpcids can be anything (although it’s most commonly 0 or 0.1).
Additionally, we found there can be multiple roots in a single trace.
When the root rpcid is larger than 0.1 (i.e. starting at a ’depth’ of
greater than 2), it could be the true root of the trace or it could be
missing rpcids before it.

Corrupted values: We must make assumptions about the
trace data that allow us to rebuild the topology. In addition to the
assumptions provided byAlibaba, we assume traceids are accurate.
If traceids (or any other fields for that matter), are corrupted in
unpredictable ways, we cannot guarantee we will identify it and
can remedy it.

5 EVALUATIONOF CASPER
We seek to answer the following regarding Casper’s efficacy in
circumventing inconsistencies in the Alibaba datasets.

Q1: How are traces generated by Casper different from traces
generated with other approaches? More specifically, what trace

topological characteristics change using different reconstruction
approaches?

Q2 How much do the recovery mechanisms in Casper impact
trace topologies?

Q3Howmany additional complete traces doesCasper reconstruct
compared to filtering out all traces with any inconsistencies?

The answers toQ1 are a cautionary tale to researchers using the
Alibaba trace dataset that reconstructing traces ignoring errors
will lead to vastly skewed results that may impact the design or
evaluation of their research artifacts. The answers to Q2 evaluate
the effectiveness of the recovery mechanisms in Casper. The answer
to Q3 informs us howmuch the built-in side-channel redundancies
in the Alibaba traces are able to help correct the inconsistencies
without dropping communication calls or filtering entire traces.

For all of these analyses, we use a randomly sampled 10.8%
(2,240,550) of the 2021 trace data and 1% (5,079,746) of the 2022 trace
data. We use a lower sampling rate for the 2022 dataset because
it contains many more traces than the 2021 version. We used
six r6.xlarge instances to split the datasets as per traceid and
one c5a.23xlarge EC2 instance w/90 threads to run the Casper
algorithm and other construction approaches described in this
section. The other construction methods are variants on the Casper
implementation and run inline with its execution.

5.1 Comparing constructionmethods
5.1.1 Methodology. We consider three alternative approaches
to Casper for constructing traces without deep knowledge of the
inconsistencies in the datasets: naive-rpcid, naive-accurate,
and partial. Figure 3 illustrates how the four approaches differ
when reconstructing one example trace that has inconsistencies.
We describe the alternative rebuild modes below.

naive-rpcid: keeps the first occurrence of a unique rpcid in the
table and neither detects nor recovers any inconsistencies (similar
to construction process in §2). Figure 3 shows the first row for each
rpcid represented as a graph. The trace is disconnected since rpcid

rpcid UM DM rpctype rt

0.1 A B rpc +/-
0.1.1.1 C D rpc +/-
0.1.1.1 C E db +

(a) Trace Example

(b) Modes
Figure 3: Trace building modes. Four different modes for
building trace graphs, eachhas adifferentmethodofhandling
errors and inconsistencies.
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Figure 4: Trace sizes for differentmodes

0.1.1 is missing. Additionally, we are missing node E since it was
not captured in the first row for its rpcid.

naive-accurate: detects inconsistencies and ignores the entire
trace if an inconsistency is identified. Figure 3 shows once the
missing rpcid 0.1.1 is detected, all rows for the trace are deleted.

partial: keeps calls in the traces that are not affected by an
inconsistency. When an inconsistency is identified, the entire
downstream call path is removed from the trace. partial traces
preserve the accurate portions of traces. Figure 3 shows once the
missing rpcid 0.1.1 is detected, all downstream rows are deleted.

Casper: as described in section 4. Figure 3 shows how Casper
fixes the missing call 0.1.1 and the CPE at 0.1.1.1, updating the
repeated rpcid to be unique for each call.

For naive-accurate and partial, we allow inconsistencies
that are trivial to fix (e.g. missing values andmissing duplicate rows)
since they do not affect the trace topology.

To compare the four approaches, we analyze the following
topological characteristics of the reconstructed traces: trace size,
call depth, and width. Trace size represents the total number of
microservices in the trace. A microservice can be called many
times within a trace and each call is included in the trace size. Call
depth is the maximum depth of the call paths in the traces. Width
is the maximum number of calls made by a single microservices. In
graph form, this is the largest fan-out. We compare the cumulative
distribution functions (CDFs) for all metrics.

5.1.2 Results. Overall, we find that Casper traces are larger, wider,
and deeper than all other methods of constructing traces for
both the 2021 and 2022 datasets. The 2022 traces are smaller (size,
depth, and width) than the 2021 traces. The 2022 traces have less
inconsistencies, so Casper’s impact on the trace topology compared
to naive-rpcid is less significant.

Trace size: For both the 2021 and 2022, Casper builds larger traces
than all other approaches by correcting data loss and CPEs. Figure 4
shows the CDF of trace sizes for both years. For 2021, at the 50th per-
centile (P50), a Casper trace is the same size as naive-rpcid traces.
However, Casper produces larger traces at P75 than all other modes.
On average, Casper traces have size 33.08 whereas the size is 12.22,
15.50, and 29.11 for naive-accurate, partial and naive-rpcid re-
spectively. For 2022, Casper traces have similar, the same or slightly
bigger, size compared to all other modes at all percentiles. Traces
from2022 are overall smaller than those from2021. The average trace
size naive-accurate is 12.22 in 2021, but is decreased to 4.98 in 2022.

Call depth: For both the 2021 and 2022, Casper builds deeper
traces than all other approaches by reconnecting call paths that
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Figure 5: Maximum trace depth for differentmodes
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Figure 6: Maximum trace width for differentmodes

have missing rpcids. Figure 5 shows the CDF of the maximum
call depth of a trace for both years. For 2021, at P50, Casper traces
have the same depth as the other modes. However, Casper produces
deeper traces at P75 than all other modes. On average, Casper
traces have depth 6.40 whereas the depth is 4.84, 4.56, and 5.26
for naive-accurate, partial and naive-rpcid respectively. For
2022, Casper traces have the same depth or slightly deeper than all
othermodes at all percentiles. Traces from2022 are overall shallower
than those from 2021. The average depth for a naive-accurate
trace is 4.84 in 2021, but is decreased to 3.01 in 2022.

Width: For both the 2021 and2022,Casper buildswider traces than
all other approaches by differentiating repeated rpcids generated
by CPEs. Figure 6 shows the CDF of maximumwidth of a trace for
both years. For 2021, P25 and P50, a Casper trace has similar width
as the other modes. At P75, Casper traces are wider. On average,
Casper traces have width 10.73 whereas the width is 5.30, 5.91, and
8.97 for naive-accurate, partial and naive-rpcid respectively.
For 2022, Casper traces are similarly wide or slightly wider than all
othermodes at all percentiles. Traces from 2022 are overall narrower
than those from 2021. The average width for naive-accurate
traces is 5.30 in 2021, but is decreased to 1.92 in 2022.

5.2 Impact of recoverymechanisms
5.2.1 Methodology. WebreakdownCasper’s recoverymechanisms
(described in §4.3) into four parts and quantify their impact. 1) Adds
missing calls counts the number of new calls added to a trace. 2) Fills
inmissing values counts the originally unknownmicroservice names
that Casper recovers. 3)Updates rpcids at a CPE sourcemeasures the
number of rpcids addedwhen differentiating calls at the first occur-
rence of a CPE in a call path. 4) Recovers rpcids downstream from a
CPE source counts the number of calls Casper identified as uniquely
connected to the trace downstream from the first CPE in the call path.

283



Systemizing andMitigating Topological Inconsistencies in Alibaba’s Microservice Call-graph Datasets ICPE ’24, May 7–11, 2024, London, United Kingdom

Casper collects metrics for each of the recovery mechanisms
when reconstructing the traces. We calculate the number of traces
that are affected by each recovery and its impact within the trace.

5.2.2 Results. Adds missing calls: Casper recovers all missing
internal calls in a trace. For 2021, 30.47% of traces have at least one
missing internal rpcid, with the average number of calls 10.7 (std:
23.79, P99: 115). For 2022, 8.77% of traces have at least one missing
call added by Casper, with average 3.57 (std: 13.12, P99: 30). Casper
reconnects broken traces, resulting in longer call paths.

Fills inmissing values: Casper fills in missing DM values using
duplicate information stored in rows or call paths. For 2021 traces,
we are able to recover at least one DM in 99.98% of traces. On average,
traces have 2.84 recovered DM names (std: 5.61, P99: 27). For 2022
traces, we are able to recover at least one DM in all traces. On average,
traces have 2.61 recovered DM names (std: 6.99, P99: 34).

Updates rpcids at aCPE source: Given a call path starting from
the root call, the first occurrence of a CPE is a CPE source. Casper
modifies rpcids to be unique to differentiate different calls that orig-
inally shared the same rpcid. This modification may preserve more
branches and yield wider traces. For 2021 traces, Casper modifies on
average 2.77 rpcids per CPE source (std: 2.65 and P99: 11). For 2022
traces, Casper modifies on average 2.02 rpcids at a CPE source (std:
0.18 and P99: 3).

Recovers rpcids downstream from a CPE source: Casper
connects unique call paths downstream from aCPE source, updating
their rpcids to be unique which may preserve longer call path
and yields deeper traces. We measure this impact by counting the
number of such updated rpcids per CPE source. For 2021 traces,
Casper modified on average 3.08 downstream rpcids (std: 11.22
and P99: 48). For 2022 traces, Casper modified on average 1.11
downstream rpcids (std: 32.97 and P99: 19). Note that additional
CPEs can occur downstream, but they are rare. For 2021, the average
number downstream CPEs is 0.23, (std: 1.5 and P99: 6). For 2022, the
average number downstream CPEs is 0.14, (std: 2.71 and P99: 3).

5.3 Additional complete traces
5.3.1 Methodology. We evaluate Casper’s effectiveness at rebuild-
ing complete traces bymeasuring the number of additional complete
traces output by Casper (when compared to naive-accurate). A
trace is complete if there are no unrecoverable rpcids (explained
in Section 4.3).

5.3.2 Results. For 2021, 58.32% of the traces have complete
topology without needing to remedy any inconsistencies. Casper
reconstructs an additional 25.5% of the traces, totaling to 83.82%.

For 2022, 86.42% of the traces have complete topology without
needing to remedy any inconsistencies. Casper reconstructs an
additional 12.18% of the traces, totaling to 98.6%.

6 DISCUSSION
Recommendation for consumers of the Alibaba datasets and
related research papers: Users of the datasets should always
specify their methodology for identifying and mitigating inconsis-
tencies in their analyses. They should prefer the 2022 dataset, which
contains fewer total inconsistencies. But, it is unclear if traces in the
2022datasetwere collected from the sameapplications or application

versions as the 2021 dataset. Themaximum trace sizes andmaximum
widths differ significantly between both years regardless of rebuild
mode. As such, consumers may wish to use both datasets to test
their work against a range of request-workflow characteristics.

We recommend caution when interpreting research that uses
the 2021 dataset without specifying a methodology for handling
inconsistencies. Readers should carefully consider if changes in
trace characteristics or connectivity would affect the results. Of
particular note is the Alibabamicroservice analysis by Luo et al. [16].
This analysis uses a 7-day dataset of which the 2021 public release
is a subset. But, does not specify whether the authors knew about
the inconsistencies or whether they addressed them. As such, the
presented graphs of trace characteristics, clustering results, and
distributions suggest for the artificial trace generatormay be suspect.

Exploring tradeoffs in capturing redundancies within
trace data: Casper’s functionality is possible because Alibaba’s
tracing infrastructure stores redundant data in caller/callee log
messages. Namely, rpcid uniquely locates a call in the trace,
allowing call-graph connectivity between services when interme-
diate calls are lost. But, rpcids’ expressiveness results in larger
context and larger network message sizes. Context-propagation
errors can be circumvented by using chains of UM / DM fields. In
contrast, the popular open-source model for distributed-tracing,
OpenTelemetry [21], does not capture any redundancies. Spans
(e.g., service executions) can be dropped if services’ are too resource
starved [22], leading to traces with (silent) missing nodes. Research
is needed to explore how to encode redundancies in trace data or
context and the overhead tradeoffs of doing so.

Tools to identify context-propagation errors: Capturing
high-fidelity traces that represent their workflow relies on correct
context propagation. Worse, context propagation errors can
propagate downstream, making it difficult to identify the offending
service. Tools, similar to lint, are needed that can detect whether
services are propagating context correctly. These tools should be
used prior to deploying new services or new versions.

7 SUMMARY
We systematized inconsistencies found in Alibaba’s distributed
tracing data and identified two root causes for these inconsistencies:
data loss and context propagation errors. We built Casper, an toolkit
which can remedymost inconsistencies in the trace data, building
the largest accurate topologies. We evaluated Casper against other
methods of constructing traces and show that our topologies are
larger and more complex than other methods.
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