
MemSaver: Enabling an All-in-memory Switch Experience for
Many Apps in a Smartphone

Prajwal Challa
vxc5208@mavs.uta.edu

University of Texas at Arlington
Arlington, Texas, USA

Baohua Song
21cnbao@gmail.com
Coredump Limited

Auckland, New Zealand

Song Jiang
song.jiang@uta.edu

University of Texas, Arlington
Arlington, Texas, USA

ABSTRACT
The availability of diverse applications (apps) and the need to
use many apps simultaneously have propelled users to constantly
switch between apps in smartphones. For an instantaneous switch,
these apps are often expected to stay in the memory. However,
when a user opens more apps and memory pressure increases, An-
droid kills background apps to relieve the memory pressure. When
the user switches a killed app back to the foreground, the user expe-
riences a laggy response that compromises his experience. To delay
this killing under memory pressure for a smoother user experi-
ence, we propose MemSaver, a low-cost approach for preemptively
swapping selected pages of the background apps out of memory to
avoid or postpone the killing of apps while ensuring their near-ideal
switch time. MemSaver uses pages accessed during events similar
to the switch and about the same app context for predicting the
pages to be accessed in the next switch. Evaluations on OnePlus 9
Pro using representative apps show that up to 60% of app’s memory
(RSS) can be saved while maintaining the switch time within the
acceptable range.

CCS CONCEPTS
• Software and its engineering → Memory management; •
Human-centered computing → Ubiquitous and mobile com-
puting systems and tools.

KEYWORDS
Android, Memory reclamation, App hot launch
ACM Reference Format:
Prajwal Challa, Baohua Song, and Song Jiang. 2024. MemSaver: Enabling
an All-in-memory Switch Experience for Many Apps in a Smartphone. In
Proceedings of the 15th ACM/SPEC International Conference on Performance
Engineering (ICPE ’24), May 7–11, 2024, London, United Kingdom. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3629526.3645050

1 INTRODUCTION
The explosive advancement of mobile technology has carved itself
into the daily lives of people. Combining ever-increasing compu-
tational power along with a wide variety of feature-rich mobile
applications (apps), use of smartphones have become an integral
part in one’s daily life. To accommodate their diverse needs, studies

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0444-4/24/05.
https://doi.org/10.1145/3629526.3645050

have shown that smartphone users usually run ten or more apps
daily [7], often requiring a large memory capacity for a smooth
user experience. However, smartphone manufacturers often have
to limit the amount of DRAM due to a trade-off with affordability
and battery capacity. This leads to high memory pressure when the
user wants to keep more apps alive in memory.

Mobile OSes, like Android OS, follow the foot steps of traditional
desktop/server OSes and support virtual memory, which is an ap-
proach that allows multiple processes to run concurrently even
with limited physical memory via page swapping. The swapping
strategy searches the space occupied by any of the in-memory pro-
cesses for pages that are less likely to be accessed and swap them
out to the secondary storage to make more free memory available.
However, this widely-accepted practice of memory usage control
becomes highly undesirable in the smartphone environment. In
a smartphone, there is only one foreground app at a time that is
actively interacting with the user and the remaining apps run in the
background. Performance of the foreground app is of the highest
priority as it directly determines user experience. In mobile devices,
the swapping strategy, despite its benefits, may potentially bring
unacceptable performance issues for the foreground app. As some
of its pages may be selected for swapping due to lack of recent
accesses, a shift of working set to access these pages again will
result in a surge of page faults and turbulent user experience. Even
worse, using the swapping approach for tackling high memory pres-
sure could lead to memory page thrashing and render the mobile
device inoperative. Disrupting use experience of the app the user
is actively interacting with should be avoided at any cost and be
used only as a last line of defence under extremely high memory
shortage.

To this end, Android chooses to relieve high memory pressure
by first killing background apps using its Low Memory Killer Dae-
mon (lkmd) [12]. To protect the foreground app from being subject
to swapping, lkmd kills the least essential app(s) to free memory as
a response to high memory pressure. Killing apps is carried out in a
selected manner where apps are assigned different priorities based
on their execution state. For example, an app that contains An-
droid Activities that are still visible to the user or runs background
services is of higher priority than apps that are not visible to the
user (background state). It is noted that the killing usually does
not affect the app’s functionalities. When an Android app correctly
implements its Activity component for saving its current state, the
state will be saved before its killing. When the user switches back to
the app, its Activity will restore all its visible state as if it remained
in the background.

267

https://doi.org/10.1145/3629526.3645050
https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F&data=05%7C02%7Cvxc5208%40mavs.uta.edu%7C0f299fb0cbca49dd27cf08dc3e2e0929%7C5cdc5b43d7be4caa8173729e3b0a62d9%7C0%7C0%7C638453614638841919%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=Sfa1OeGbLKhRX8Ff4xUY8OMmEtvJNiCTwEfVXwuYH5M%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F&data=05%7C02%7Cvxc5208%40mavs.uta.edu%7C0f299fb0cbca49dd27cf08dc3e2e0929%7C5cdc5b43d7be4caa8173729e3b0a62d9%7C0%7C0%7C638453614638846774%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=%2FCHjqGr52RNv%2FsUv%2Bs%2Fk0PUtX9PUx20yvaC3k6wOq4M%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F&data=05%7C02%7Cvxc5208%40mavs.uta.edu%7C0f299fb0cbca49dd27cf08dc3e2e0929%7C5cdc5b43d7be4caa8173729e3b0a62d9%7C0%7C0%7C638453614638846774%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=%2FCHjqGr52RNv%2FsUv%2Bs%2Fk0PUtX9PUx20yvaC3k6wOq4M%3D&reserved=0
https://doi.org/10.1145/3629526.3645050

ICPE ’24, May 7–11, 2024, London, United Kingdom Prajwal Challa, Baohua Song, and Song Jiang

	0
	100
	200
	300
	400
	500
	600
	700
	800
	900

YouTu
be Twitte

r
Chrom

e
Redd

it
Disco

rd

Subw
aySur

fers

Ti
m
e	
(m

s)
Hot	Launch
Cold	Launch

Figure 1: Hot and cold launch latencies for various apps in
OnePlus 9Pro.

As users interact only with the app displayed on the screen and
usually keep many apps in the background, frequent switches be-
tween the apps are expected. Studies have found that users switch
between apps over 100 times a day [2]. With such a high switch
frequency, switch time is highly impactful on users’ perceived smart-
phone service quality. An app may be switched from its background
state to the foreground state when it still runs in the background.
This switch is named hot launch. In contrast, a switch of an app
to the foreground after it has been killed is named cold launch. To
understand the impact of lkmd on the switch time (which turns a
hot launch into a cold launch), we select some popular apps and
experimentally compare their hot and cold launch latencies in an
Android smartphone (see Section 4 for details). These apps include
entertainment app (YouTube), social media apps (Twitter, Reddit,
Discord), utility app (Chrome), and gaming apps (Subway Surfers).
The results are shown in Figure 1. The hot launch latency of each
of the apps is much lower than its cold launch latency. As shown,
the hot launch latency is around 100 ms. Studies have suggested
that when an event’s response time is less than 100 ms people feel
that the event is instantaneous [1]. And a response time less than
150ms does not compromise user satisfaction [14]. A time that is
significantly higher than the 150 ms latency indicates a laggy re-
sponse. For example, cold launch latencies of most of the apps are
over 400 ms. Repeated cold-launch experience due to the aggressive
lkmd’s action to reclaim memory is annoying, though the effort is
currently deemed necessary and often unavoidable.

While it is known that system-wide page swapping takes the risk
of compromising foreground app’s user experience, selected killing
of background apps leads to laggy smartphone use experience. In
this paper, we propose a solution, named MemSaver, that reclaims
memory pages to ease memory pressure without killing apps or
compromising the foreground-app’s user experience. It carries out
page swapping for background apps with minimal impacts on their
hot launch latency. To this end, there are some significant challenges
to address, including how to predict pages currently in the memory
space occupied by a background app, or its RSS (Resident Set Size),
that will be (or equivalently, will not be) accessed in its next hot
launch, how to collect history access information for the prediction
without disruption of foreground app’s execution, how to store the

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

YouTub
e Twitter Chrom

e
Subwa

ySurfer
s 	0

	200
	400
	600
	800
	1000
	1200
	1400
	1600

%
	o
f	R

SS

La
te
nc

y	
(m

s)

LRU-B	Swapout	Memory
LRU-F	Swapout	Memory

LRU-B	Latency
LRU-F	Latency

Figure 2: Amount of memory swap-out and hot launch la-
tency with different LRU strategies for various apps, includ-
ing LRU-background (denoted "LRU-B") and LRU-foreground
(denoted "LRU-F").

information in a light-weight way, and how to strike a trade-off
between saving memory and keeping launch latency low.

To this end, we make a number of contributions in the paper to
address the challenges.

• We show that the commonly-used LRU-like history access
information becomes much less relevant for prediction of
pages to be used in the next hot launch.

• For the first time we found that pages accessed in the history
hot launches of a context are highly predictive of those to be
accessed in the upcoming hot launch of the same context.

• We developed a series of low-cost approaches to collect and
record the relevant history accesses.

• We implemented Memsaver into Android and extensively
evaluate its performance on six commonly-used apps. The
results show that application’s RSS can be reduced by up to
60% while keeping the hot0launch latency in an acceptable
range.

2 RELEVANT HISTORY FOR PREDICTION
In the swapping of a background app, we need to predict its pages
that are likely to be accessed in its next hot launch and only keep
them in the memory. Obviously, we have to make the prediction
based on access history. A common wisdom is to look into the
recent accesses and identify pages that have been recently and
frequently accessed - the LRU strategy used in Linux (the Android’s
kernel).

2.1 Recency-based History
The LRU policy is based on recent access history, or recency-based
history. To understand the impact of using recent access in a page
swapping strategy on an Android app, we design two controlled
experiments. When an app is in the background, a time is chosen
as its swap moment when its selected pages are swapped out of
the memory to the flash. In this study, the intended swap moment
is usually well before the available memory is to be exhausted to
keep enough idle memory in the system always available. This is
important for smooth user experience because the foreground app

268

MemSaver: Enabling an All-in-memory Switch Experience for Many Apps in a Smartphone ICPE ’24, May 7–11, 2024, London, United Kingdom

or newly started apps may need substantial amount of free memory
at any time to quickly expand its memory allocation.

The two experiments differ at how the "recently" in the LRU
policy is defined. In the first experiment named LRU-background,
only the time period fromwhen the app has completed its transition
to the background and before the swap moment is considered as
"recent". In the second experiment named LRU-foreground, the time
period starts when the app is still in its previous foreground (10
seconds before a switch to the background). That is, it covers recent
accesses in the last foreground execution. In each of the experi-
ments, only pages that are accessed during its defined recent time
period are kept in the memory in the swapping. This is a simulation
of LRU’s behavior.

We are interested in knowing (1) howmany pages can be swapped
and (2) how longer the next hot launch latency will become after
a swapping. The desired result is that significant memory can be
saved without substantial increase of the latency. Figure 2 shows
percentage of the app’s RSS that can be reclaimed and the corre-
sponding hot launch latency for various apps. We observe that in
LRU-background very few pages are accessed and most of the RSS
pages (over 90%) can be swapped. However, this large memory
saving comes with an unacceptably high hot launch latency. For
example, for YouTube the latency is increased by over 6X over its
120ms ideal latency (with no swapping). In contrast, LRU-foreground
has little increase over the latency. However, it saves much less
memory (LRU-background can swap 2.1X-6.5X as many pages as
LRU-foreground from the memory). However, the experiments sug-
gest that making the choice by adjusting the recency does not lead
to a solution with both goals (large memory swapout and low hot
launch latency) well achieved. The key to a success relies on the
accurate prediction of pages to be accessed in the upcoming hot
launch.

2.2 Event-based History
While the recency-based history is not well indicative of pages
required in the next hot launch (aka hot-launch pages), we need
to turn to more relevant history. Similar to process scheduling,
an app’s hot launch involves a fixed set of operations and data
accesses to re-establish its previous execution state. Accordingly,
the set of pages in different hot launches are likely to bear some
similarity, and provide a clue on which pages should be retained
in the memory. As a hot launch is a user-triggered event, we are
defining and exploiting a locality based on the same type of events
in the history.

To observe whether such similarity exists across the hot launches
in an app’s execution, we examine and compare the pages accessed
in consecutive hot launches of YouTube. To assess the potentially
maximal similarity, we consider an app’s activity context in the
investigation. An app usually has a number of predefined activity
contexts, such as video, shorts, search, and library in YouTube. A
hot launch resumes its foreground execution in the same context
as the one it stayed in immediately before its switch to the back-
ground. Resuming the execution in different contexts may require
different context-specific pages. Therefore, in this experiment we
only conduct the comparison between hot launches of the same
context.

0%

10%

20%

30%

40%

50%

60%

Video Shorts Search LibrarySettings

%
	o

f	R
SS

Hot-Launch	1	(H1)
Hot-Launch	2	(H2)

H1∩H2

(a) Consecutive hot launch
page’s overlap

	0

	50

	100

	150

	200

	250

	300

Video Shorts Search LibrarySettings

Ho
t	L
au
nc
h	
La
te
nc
y	
(m
s)

Based	on	Last	Hot-Launch	Pages
Without	Swapping

(b) Hot launch latency with and
without swapping

Figure 3: Overlap of hot launch pages between two consecu-
tive hot launches (H1 and H2) with the same context as well
as impact of using the last hot-launch pages for swapping on
the hot launch latency.

Figure 3a shows the size of hot-launch page set as a percentage
of its RSS for each of the two consecutive hot launches of a specific
context. The RSS represents the amount of memory held by the
app in the background. The figure also presents size of the inter-
section of the two sets. As shown, the two sets contain about 80%
of common pages, suggesting that accesses in a recent hot-launch
event are predictive of that in the next hot launch. The hot launch
pages are almost all in the memory before a swapping. This is the
reason why a background app has a satisfactory hot launch latency
if no swapping was conducted. If we only keep the last hot launch
pages in the memory (about 30-45% of the RSS), about 55-70% of
the memory pages can be swapped. The potential memory saving
is significant. Meanwhile, Figure 3b shows next hot launch latency
with or without swapping based on the event-based history. The
time increase is about 10-30 ms, which is moderate and stays in the
acceptable range.

2.3 Challenges of Exploiting History
While we reveal the more relevant locality in the event-based his-
tory, there are a number of challenges on translating this finding
into an online system design. First, it can be too expensive to on-
line detect pages accessed during a hot launch. A straightforward
approach for the detection requires two scans of the app’s entire
page table: in the initial scan reset reference bits in the PTEs (Page
Table Entry) and then check them in the following scan when the
launch is completed. Each of the full-table scans can be very ex-
pensive. The cost is especially problematic for the first one, as it
takes place when the user initiates the app’s hot launch. It would
essentially block user’s interaction during the scan.

The second challenge is on the cost of recording the detected
pages. Following the conventional wisdom, it is tempting to con-
sider introducing a new data structure to accurately record the
pages. However, this approach would carry significant time and
space overheads. In particular, the data structure for tracking all
accessed pages would increase the memory usage, which is in con-
flict with the goal of this work for reducing memory footprint. In
addition, it may be necessary to record multiple sets of pages, each
about a different history event/context, which further inflates the
costs.

269

ICPE ’24, May 7–11, 2024, London, United Kingdom Prajwal Challa, Baohua Song, and Song Jiang

Figure 4: Representative events in an app’s life time.

Third, assuming that a light-weight approach for detecting and
storing hot-launch pages is available, we may have multiple hot-
launch page sets recorded during an app’s execution, each for one
recent history hot launch. These hot launch events are of differ-
ent recency, and may be associated with different contexts. It is
unknown which of the page sets should be used in the decision of
page swapping for more memory saving and lower launch latency.
For example, in a situation where a hot launch of the same context
hasn’t been recorded, or the most recent hot launch is about a dif-
ferent context, it is not straightforward to understand the impact of
using the sub-ideal history data and to make the best page swapping
decision. The design of MemSaver addresses the challenges.

3 THE MEMSAVER DESIGN
An ideal design should have a light-weight approach to accurately
detect history pages, along with an efficient way to store the pages.
Such approach should also ensure that history information is uti-
lized in a manner such that app’s RSS is effectively reduced and does
not lead to undesirable latency in the next hot launch. In this sec-
tion we present MemSaver, an efficient design for identifying and
recording pages that are likely to be accessed in an app’s upcoming
hot launch and selectively retaining them in memory and swap-
ping the remaining pages to the flash. We dive into various design
choices and take a close look at their corresponding performance
implications. As MemSaver is deployed in Android, the design is
tailored to the smartphone’s hardware and software designs.

3.1 Phases in an Android App’s Execution
It is necessary to know the phases and relevant events experienced
during an app’s execution that are relevant to the MemSaver’s
design. As illustrated in Figure 4, the app constantly alternates
between the foreground state (the red zone in the figure) and back-
ground state (the green zone). In the red zone, any substantial over-
head added by the external facility is likely to be felt by users and
compromises their use experience. In contrast, a green zone allows
such overhead without users’ notice. Therefore, all MemSaver’s
operations are carefully carried out in the green zones.

As the swapping takes place at a moment during the background
execution, we need to understand the memory usage during the
time period to select the moment. In Android, after an app is sent
to the background, within the first few seconds (about 5 seconds)

0

5k

10k

15k

20k

25k

30k

0 5 7 10 15 20 25 30 35 40

Transition	State

Stable	State

W
SS

	(#
	o
f	p

ag
es
)

Time	in	sec	after	App	is	sent	to	background

YouTube
Twitter
Chrome
Reddit

SubwaySurfers

Figure 5: Background App’s WSS reduction

we observe that the app’s resident memory space (RSS) remains
about the same as that of the app during its foreground execution,
as shown in Figure 4. After this it reduces to a smaller size by re-
leasing its allocated space and then stays at the memory footprint.
We name these two time periods in the background as the tran-
sition and stable states, respectively. In the two states the size of
actively accessed memory space (aka working set size or WSS) is
very different. Figure 5 shows the change in the WSS of various
apps over time after the app is sent to the background. During
the transition state, the Android app is in the onPause() life-cycle
activity state, a state where Android OS expects the app likely to go
back to onResume() activity state (re-launch back to the foreground)
soon. Consequently, an app’s RSS is observed to remain the same
as that of in the foreground to continue its normal execution in
the background for a short time period in anticipation of a possible
quick switch back. After this period WSS is dramatically reduced
and stabilized as the app continues its execution into the stable
state. This uniqueWSS/RSS behaviour of Android apps is one of the
necessary elements the design of MemSaver will take into account.
Integrating Android specific functionality along with careful design
enables MemSaver to efficiently detect, collect, and use hot launch
pages.

270

MemSaver: Enabling an All-in-memory Switch Experience for Many Apps in a Smartphone ICPE ’24, May 7–11, 2024, London, United Kingdom

3.2 Detection and Storage of Hot-Launch Pages
To allow access prediction based on prior hot-launch events, Mem-
Saver needs to collect pages accessed during a hot launch (hot
launch pages). As a hot launch needs to be associated with an activ-
ity context, MemSaver integrates itself with Android OS to identify
the current context when user interacts with the app in the fore-
ground. As only the last context before a switch to the background
will resume its execution in the next hot launch, MemSaver appends
the last context’s name before the app goes into the background
to the next hot launch. That is, the context of a set of history hot
launch pages is known when they are used for deciding swappable
pages.

When MemSaver is informed by Android of an app’s hot launch,
MemSaver starts to collect accessed pages during the launch. As
we have mentioned, the two full-scan approach requires a traversal
of an app’s entire address space, whose cost is unacceptable. As an
example, for YouTube it represents a coverage of a 17GB address
space, much larger than its RSS at the time of the hot launch (about
400MB). Accordingly, the time spent on one scan is about 100ms,
which is too expensive.

In an app’s address space, there are two types of pages: anony-
mous and file-backed pages. Since they have different properties,
we design different light-weight approaches for access detection.
As anonymous pages are more scattered in a larger space, it’s not
effective to identify a much reduced scope for efficient scanning.
Instead, MemSaver artificially generates minor page faults to reveal
what pages are accessed in a hot launch. Specifically, we leverage a
Linux facility – zRAM– that is enabled in Android by default. zRAM
is an in-memory compression-based swap space. When the app is
in the background, MemSaver swaps out all its anonymous pages
to the zRAM using madvise() syscall with the MADV_PAGEOUT
flag. At this time the hot launch has not yet started. The swapout
cost during the background execution is not felt by the user

During the hot launch, any accessed page will trigger a page
fault for loading it from the zRAM. Consequently, MemSaver can
identify the hot-launch pages by intercepting page faults during
their handling in Linux. As page faults in zRAM do not involve any
flash I/O operations, and only decompression of anonymous pages
instead, the cost is moderate. Compared to that of true page faults
from the flash, this cost is close to that of minor page faults.

The approach of using zRAM for generating page faults cannot
be applied to the file backed pages, as these pages would only be
swapped to the file system on the flash. To address the issue, we
choose to narrow the scan scope. This is made possible by the
observation that file-backed pages (1) are often clustered and (2) are
mostly also accessed in the foreground phase. The idea is to collect
the VMAs (the data structure the Linux kernel uses to manage
contiguous virtual memory areas) covering file backed pages that
have been accessed in the foreground. This set of VMAs will be the
focused scope where MemSaver will look for accessed file-backed
pages in the next hot launch.

However, detection of the VMAs for accessed file-backed pages
during the foreground execution is intrusive to the foreground
app’s execution. To address this issue, we leverage the unique WSS
behaviour of Android apps, which is the existence of the transition
state. The brief pseudo background period is in the green zone but

retains foreground’s access behavior. Therefore, MemSaver moves
its detection of the focused scope from the foreground to this special
background period. As this operation, named transfer collection, is
in the green zone, it is affordable to use two scans to identify the
VMAs that have been accessed. The VMAs will then be the scope for
the two-scan operation in the next hot launch for file-backed pages.
To further reduce the scope we use the 2MB aligned memory region
in a VMA as the unit (representing 512 4KB-pages) for tracking file-
back accesses. All detected VMA regions are recorded in an index
(the scope index) for quick access. Within this focused page-scan
scope, the two scans in the reduced scope takes only about 1 ms.
This time overhead becomes acceptable even in the red zone.

Instead of using a data structure to store the detected hot launch
pages, MemSaver records them in the unused PTE bits (bits 60-63)
in the page table. At the time when an accessed page is detected,
its PTE is likely to be the CPU cache. The cost for updating the
PTEs is negligible. To determine pages for swapping, MemSaver
does need to scan the page table to know the recorded hot launch
pages. However, this will take place only when the app is in the
background. Furthermore, using the idle PTE bits avoids inflating
memory usage. The availability of four bits for recording accesses
in the history presents MemSaver with choices of tracking multiple
selected events. As a page swapping policy, MemSaver needs to
know the specific events whose page accesses should be collected
and which of the history events should be involved in a swapping
decision making. To this end, we adopt a heuristic approach whose
design is driven by targeted experiments (to be discussed).

3.3 Incorporating Working Sets in the Recent
History

We have suggested retaining history hot launch pages in memory
during the swapping. In the meantime, there are two sets of actively
accessed pages (working sets) that may need to be kept in memory.
One of them is that right before the app switches to the background.
A hot launch is essentially a resumption of the last foreground
execution. Pages in the working set at the end of the foreground
phase is likely to be accessed at the beginning of the next foreground
phase (i.e., the hot launch time period). The other working set
is the one during the stable state in the background. Its pages
need to be kept in memory even after the swapping to support its
background execution. One challenge is that the detection of pages
in the foreground working set would take place in the red zone in
Figure 4. Its cost is simply not acceptable during the foreground
execution. Fortunately, the existence of the transition state right
after the switch to the background makes a non-intrusive detection
of the pages possible. As it is in the background, we can use the two-
scan approach to get its working set. Because the app maintains its
foreground activities in the transition state, the working set right
after the switch can be an approximation of the one before the
switch. We denote this background working set 𝐵1. In contrast, the
working set in the stable state is denoted 𝐵2.

MemSaver initiates its swapping during the background execu-
tion after the transition state. To understand the impact of addi-
tionally keeping 𝐵1 and/or 𝐵2 on the swapping efficacy in terms of
swap-out memory amount and hot launch latency, we experiment
with keeping different combinations of the working sets along with

271

ICPE ’24, May 7–11, 2024, London, United Kingdom Prajwal Challa, Baohua Song, and Song Jiang

0%

10%

20%

30%
40%

50%

60%

70%

YouTub
e Twitter Chrom

e Reddit
Subwa

ySurfer
s 	0

	50
	100
	150
	200
	250
	300
	350
	400
	450

%
	o
f	R

SS

La
te
nc
y	
(m

s)

Swapout	Memory
Hot	Launch	Latency

Ideal	Latency

(a) Keep hot launch pages 𝐻1 and
Working set 𝐵2 in memory

0%

10%

20%

30%
40%

50%

60%

70%

YouTub
e Twitter Chrom

e Reddit
Subwa

ySurfer
s 	0

	50
	100
	150
	200
	250
	300
	350
	400
	450

%
	o
f	R

SS

La
te
nc
y	
(m

s)

Swapout	Memory
Hot	Launch	Latency

Ideal	Latency

(b) Keep hot launch pages 𝐻1 and
Working sets 𝐵1 and 𝐵2 in memory

0%

10%

20%

30%
40%

50%

60%

70%

YouTub
e Twitter Chrom

e Reddit
Subwa

ySurfer
s 	0

	50
	100
	150
	200
	250
	300
	350
	400
	450

%
	o
f	R

SS

La
te
nc
y	
(m

s)

Swapout	Memory
Hot	Launch	Latency

Ideal	Latency

(c) Keep hot launch pages 𝐻1 and
Working set 𝐵1 in memory

Figure 6: Impact of Background Active pages on RSS reduction and Hot launch latency

the set of pages accessed in the last hot launch in memory (denoted
as 𝐻1). Note that we assume the app stays in the same context
across the events. Apparently, it is necessary to keep 𝐵2 in memory,
as pages in 𝐵2 continue to be accessed after the swapping (during
the background execution period). The question is whether 𝐵1 also
needs to be considered. In the first experiment, we leave out 𝐵1.
Figure 6a shows the amount of swap-out memory (as a percentage
of its RSS at the time of the swapping) and the corresponding hot
launch latency after swapping any pages in the RSS that are not
in either 𝐻1 or 𝐵2 for various apps. As seen, though an app’s RSS
can be effectively reduced (up to 60%), the hot launch latency is
much higher than the ideal hot launch latency (the one without
swapping). As it is necessary to maintain an acceptable hot launch
latency, it is not sufficient to only consider 𝐵2 in the swapping
decision.

In an attempt to reduce the hot launch latency, we add the 𝐵1
to the set of pages that are kept in memory (i.e., 𝐵1, 𝐵2, and 𝐻1)
in the swapping decision. Figure 6b shows its swapout memory
amount and the corresponding launch latency. As expected, the
amount of swapout memory is reduced. However, the reductions
represent small percentages of respective RSSes. In the meantime,
the hot launch latencies become close to their respective ideal ones.
To know if it is still necessary to consider 𝐵2 after 𝐵1 is included,
we then remove 𝐵2 (i.e., only 𝐵1 and 𝐻1 pages are not swapped
out). Figure 6c shows that both the memory swap-out amount
and the hot launch latency do not have any substantial changes.
Examining background active pages, we observe that some of the
𝐵1 pages continue to be active over the execution of the app in
the background and consequently cover about 95% of 𝐵2 pages.
Figure 7 shows the overlap of 𝐵1 and 𝐵2 for various apps. For this
reason, regarding 𝐵1 and 𝐵2, 𝐵1 MemSaver only collects 𝐵1 pages
of an app and retains these pages in memory (if they have been in
memory before the swapping).
3.4 Incorporating Context-aware Hot-launch

Pages
As discussed, the set of pages that have been accessed during the
prior hot launch is a potentially strong indicator of pages to be
used in the upcoming hot launch. Multiple such prior page sets
may have been recorded, and they may be associated with different

0%

20%

40%

60%

80%

100%

YouTub
e Twitter Chrom

e Reddit
Subwa

ySurfer
s

%
	o
f	B

2	c
ov

er
ed

	b
y	
B 1

Figure 7: Overlap between 𝐵1 and 𝐵2

	0

	50

	100
	150

	200

	250
	300

	350

	400

YouTube Twitter
Chrome Reddit

SubwaySurfers

Ho
t	L

au
nc

h	
La

te
nc

y	
(m

s)

H1Context2+B1Context1

H1Context1+B1Context1

H2Context1+B1Context1

Ideal

Figure 8: Hot launch latency when different history hot
launch page set is used for the swapping before the hot
launch.

app contexts. Intuitively, the most relevant one among all possibly
recorded page sets is the one about the most recent hot launch and
of the same context as the one for the upcoming hot launch. To

272

MemSaver: Enabling an All-in-memory Switch Experience for Many Apps in a Smartphone ICPE ’24, May 7–11, 2024, London, United Kingdom

Table 1: Apps and Contexts

App Context1 Context2
YouTube Video Shorts
Twitter Search Tweet
Chrome Web page Tabs
Reddit Message Search

Subway Surfers Game Pause Shop

have a sensible design, we need to experimentally confirm or dis-
confirm this conjecture and the impact of different sets of history
hot launches. In the interest of clarity, the set of pages accessed in
a history hot launch (𝐻) is denoted 𝐻𝑐𝑥𝑡

𝑘
, where 𝑐𝑥𝑡 is the context

when the hot launch take places,𝑘 indicates how recently the launch
is. For 𝑘 = 1, it is the most recent one, or the last one, and for 𝑘 = 2,
it is the second to the last one, and so on. Figure 8 shows the hot
launch latency when different history access information was used
for a swapping in the background before the hot launch for various
apps. The latency is compared with the ideal latency, the one when
swapping is not conducted. In the experiment, two contexts were
selected for each of the apps (Youtube, Twitter, Chrome, Reddit,
and SubwaySurfers), namely context1 and context2. Table 1 depicts
the contexts for each of the apps. In the experiments, context1 is
designated as the current background context, which is also the one
for the upcoming hot launch. Context2 is a context appearing in the
past. In a swapping, we keep pages in the most recent background
working set 𝐵1 (with context1) and pages in an 𝐻 set. As shown in
the figure, if the history 𝐻 is 𝐻𝑐𝑜𝑛𝑡𝑒𝑥𝑡1

1 (the assumed most relevant
𝐻), or pages in the 𝐻𝑐𝑜𝑛𝑡𝑒𝑥𝑡1

1 𝑈𝐵𝑐𝑜𝑛𝑡𝑒𝑥𝑡11 are retained in memory,
the next hot launch latencies stay in the acceptable range (about less
than 200ms). Admittedly, some of them are substantially higher than
the ideal one (e.g., Reddit). In practice, smartphone use experience
is more impacted by the unexpectedly long latency than by latency
variations within an acceptable range.

While an 𝐻 is associated with a context, we need to understand
how strongly it is correlated with its context. This is important
because sometimes a history 𝐻 with context1 (the current context)
is not available. In the situation, MemSaver may have to choose an
𝐻 whose context is different from context1 for its swapping decision.
Figure 8 also shows the hot launch latency after retaining pages in
𝐻𝑐𝑜𝑛𝑡𝑒𝑥𝑡2
1 𝑈𝐵𝑐𝑜𝑛𝑡𝑒𝑥𝑡11 in memory during the swapping. Using an 𝐻

with an unmatched context (context2), the hot launch latency can
increase to an unacceptable level (370ms for YouTube). The latency
for Reddit also increases to over 250ms. These drastic increases
do not take place for all the apps (e.g., the increases for Twitter
and SubwaySurf are moderate.). To be a reliable design, memSaver
chooses to be conservative by not carrying out swapping if an 𝐻

with a matched context has not yet been recorded.
A more common situation is that a history 𝐻 with a matched

context does exist but it is not the most recent one. To understand
the impact of the recency on the swapping effectiveness, we ex-
periment with the case where pages in 𝐻𝑐𝑜𝑛𝑡𝑒𝑥𝑡1

2 𝑈𝐵𝑐𝑜𝑛𝑡𝑒𝑥𝑡11 are
retained in memory. Figure 8 also shows its hot launch latency. As
shown, using 𝐻𝑐𝑜𝑛𝑡𝑒𝑥𝑡1

2 produces the hot launch latency almost
the same as that using 𝐻𝑐𝑜𝑛𝑡𝑒𝑥𝑡1

1 . This observation suggests that

0

5k

10k

15k
20k

25k

30k

35k

H1	∪	H2	∪	H3 H1
	0

	50

	100

	150

	200

	250

#	
of
	in
	m

em
or
y	
pa
ge
s

La
te
nc
y	
(m

s)

Swapout	Memory
Hot	Launch	Latency

Ideal	Latency

Figure 9: Comparison of swapout memory and hot launch
latency for YouTube between using its three recent 𝐻s and
using only one recent 𝐻 . All 𝐻s are associated with the same
context (’video’).

0%

20%

40%

60%

80%

100%

H2 H3 H4 H5

%
	o
f	H

1	c
ov

er
ed

Figure 10: Overlap of earlier 𝐻 with the most recent 𝐻 (𝐻1

for YouTube. All 𝐻s are associated with the same context
(’video’).

recency, or time-defined locality, is less relevant for identifying use-
ful access history. This is consistent with the rationale of adopting
event-based history in this study. Therefore, MemSaver chooses to
use the latest 𝐻 with the matched context (if available), whether
it is for the latest hot launch or not, in its recorded history for
swapping out the app’s memory.

The last design question is on the choice of 𝐻 when there are
multiple 𝐻s with the matched context in the recorded history. One
might expect that using all the ’qualified’ 𝐻s would help to keep
more pages to be used in the next hot launch in memory and thus
further reduce the hot launch latency. To understand its impact,
we carried out swapping for YouTube with ’video’ as context1 (the
current context) and using either one or three history 𝐻s of the
same context1. Figure 9 shows their respective hot launch latency
and number of swapout pages. Using additional 𝐻s doesn’t help
to further reduce the hot launch time. It is not necessary to con-
sider more than one (earlier) 𝐻s. Furthermore, using multiple 𝐻s
has a side effort. As shown, using three 𝐻s reduces the number
of swapout pages by about 32%. Figure 10 shows overlap of each
of the four earlier 𝐻s with the 𝐻1 (all 𝐻s are associated with the
same context). The overlap is consistently about 75%. This sug-
gests that this 75% subset represents an invariant that persists over
the different hot launches. It is this invariant that contributes to

273

ICPE ’24, May 7–11, 2024, London, United Kingdom Prajwal Challa, Baohua Song, and Song Jiang

0%

10%

20%

30%

40%

50%

60%

Video Shorts Settings Search Library 	0

	50

	100

	150

	200

	250
%
	o
f	R
SS
	S
wa
pp
ed
	o
ut

Ho
t-L
au
nc
h	
Ti
m
e(
m
s)

Anon	Swapout

(a) YouTube

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Video Image Tweet SearchNotifica
tions

	0

	50

	100

	150

	200

%
	o
f	R

SS
	S
wa

pp
ed
	o
ut

Ho
t-L

au
nc
h	
Ti
m
e(
m
s)

Anon+File	Swapout

(b) Twitter

0%

10%

20%

30%

40%

50%

60%

70%

Pause Leader
board Shop Setting

s Explore
	0

	50

	100

	150

%
	o
f	R
SS
	S
wa

pp
ed
	o
ut

Ho
t-L
au
nc
h	
Ti
m
e(
m
s)

Anon	Hot	Launch	Time

(c) Subway Surfers

0%

5%

10%

15%

20%

25%

30%

Webpage Search Tabs Settings History 	0

	50

	100

	150

	200

%
	o
f	R

SS
	S
wa

pp
ed

	o
ut

Ho
t-L

au
nc

h	
Ti
m
e(
m
s)

Anon+File	Hot	Launch	Time

(d) Chrome

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Video Image Message SearchNotificat
ions 	0

	50

	100

	150

	200

	250

	300

	350

%
	o
f	R

SS
	S
wa

pp
ed
	o
ut

Ho
t-L

au
nc
h	
Ti
m
e(
m
s)

Ideal	Hot	Launch	Time

(e) Reddit

Figure 11: RSS reductions and hot launch times with different swapping methods for apps at different contexts.

MemSaver’s effective prediction. The remaining 25% subsets in the
respective 𝐻s are not essential for the prediction. This corroborates
the finding shown in Figure 8 about using a non-most-recent 𝐻 . As
long as it is an 𝐻 of the same context, the 𝐻 can effectively serve
the purpose. For this reason, as an optimization MemSaver doesn’t
have to collect and record 𝐻 for every hot launch.

3.5 A Summary of MemSaver Policy
MemSaver consists of two operations: access collection and page
swapping. There are four bits for each page in an app’s page table
entry for recording history, each for one history event. Because
of limited number of bits and cost of access collection, MemSaver
follows this collection policy.

(1) One bit is reserved for the 𝐵1 pages. 𝐵1 is collected with
each switch to the background (during the transition phase);

(2) The remaining three bits are used for up to three 𝐻s. They
are logically organized as an LRU stack. The most recently
recorded 𝐻 is at the stack top. The one at the bottom is to
be replaced by recording of a new 𝐻 ;

(3) For a new hot launch with context1:
(a) If there hasn’t been an 𝐻 of context1 recorded in the stack,

collect its accessed pages and place the corresponding 𝐻
at the stack top (by replacing the one at the bottom);

(b) Otherwise, an 𝐻 of context1 exits in the stack. In the case,
if it’s in the stack bottom, collect a new𝐻 to replace it. Oth-
erwise, skip the collection for this hot launch. This is for
three reasons. (1) A history 𝐻 of the same context is still
usable; (2) Making fewer collections helps improve effi-
ciency. And (3) an 𝐻 earlier than two other 𝐻s of different
contexts is updated for freshness.

In the meantime, MemSaver follows this swapping policy.
(1) If there are not any 𝐻 of the matching context, do not swap.

(2) Otherwise, use the 𝐻 of the matching context and 𝐵1 to
decide the pages that will be retained in the memory and
swap out other in-memory pages.

4 ADDITIONAL EVALUATION RESULTS
To understand the efficacy of MemSaver, we implemented and eval-
uated it in Android using various representative apps (YouTube,
Twitter, Subway Surfer, Chrome, and Reddit). We compared its hot
launch latency after an app’s RSS has been reduced against the hot
launch latency of all-in-memory apps (the ideal case). The evalua-
tions were performed on a OnePlus 9 Pro phone with Qualcomm®
Snapdragon™ 888 processor containing 12GB RAM and running
Android version 11.

As mentioned, MemSaver has two objectives for a background
app, which are to reduce its memory footprint and keep its hot
launch latency within an acceptable range. While MemSaver uses
different methods for detecting hot-launch pages (page faults from
zRAM for anonymous pages vs. page table scans in a reduced scope
for file-backed pages), we break down their impacts in the exper-
iments. For each app, we assume availability of 𝐻𝑐𝑜𝑛𝑡𝑒𝑥𝑡1

1 with
various current contexts (context1). Figure 11 shows the RSS re-
duction in percentage and the corresponding hot launch latency
when swapping is applied only on anonymous pages or on both
anonymous and file-backed pages. It also shows the ideal hot launch
latency.

There are some interesting observations. First, RSS can be sub-
stantially reduced. With only anonymous pages are considered, up
to 48% of the memory can be saved with an average of 23%. If file-
based pages are also considered, up to 60% of memory can be saved
with an average of 34%. Second, the increase of hot launch latency
is mostly in the range of 10-50 ms, leaving the latency usually under
150 ms and thus making users mostly feel it as an instantaneous

274

MemSaver: Enabling an All-in-memory Switch Experience for Many Apps in a Smartphone ICPE ’24, May 7–11, 2024, London, United Kingdom

launch. This is an impressive result. As an example, with an average
of 33% memory saving, a smartphone that currently can hold 10
background apps in the memory without being killed will be able
to keep 15 apps alive in the background with MemSaver. For a user
whose number of actively used apps is moderately over existing
limit, with MemSaver his bumpy app switch experience is removed.
Third, additionally considering file-backed pages for swapping ei-
ther doesn’t increase the launch time substantially or sometime
even reduce the time. This is because file-backed pages are usually
sequentially accessed and prefetching could be activated. Four, we
do observe that for some apps (e.g., Figure 11b and Figure 11e) at
some contexts (e.g, search and image) MemSaver may occasionally
produce a hot launch latency as high as 200-300 ms due to exces-
sive number of page faults. In summary, in general MemSaver can
reduce apps’ RSS while maintaining near-ideal hot launch latency.
In a few cases the latency can be high when compared to the ideal
time. However, if compared to the often much higher cold launch
times (see Figure 1), the time still represents an improvement.

5 RELATEDWORKS
User experience is often dictated by the availability of memory in
smartphones. Prior works have focused on improving user expe-
rience on many fronts including improving app’s memory man-
agement and launch performance. To improve app switch time,
ASAP [13] uses multiple threads to prefetch pages that are likely
to be accessed during a switch. IORap [4] in Android 11 predicts
data required by an app ahead of time by profiling its I/O in several
cold runs. FALCON [15] uses information including user location
and temporal access patterns to predict an app’s launch time and
preload its data.

Under high memory pressure Android triggers lkmd [9] to kill
background apps to ease memory pressure. To avoid the killing,
Marvin [6] swaps out memory that is less likely to be used in the
object granularity with ahead-of-time swap, which requires An-
droid Run Time (ART) modifications. In contrast, MemSaver swaps
out pages unlikely to be used in an app’s upcoming hot launch
in an attempt to postpone the inevitable killing. It doesn’t require
any modification of apps themselves. SmartSwap [16] predicts least
likely used app using information like location and usage history
to swap out pages of those apps. Rather than predicting which app
will be relaunched, MemSaver only considers app’s event-based
access history to selectively swap pages out of memory. To avoid
disruption of foreground app, Acclaim [8] frees pages from back-
ground apps and provide them to foreground apps. A2S [5] inte-
grates process-level kill approach and page-level swap approach by
using a threshold to decide processes for killing and by estimating
page lifetime to decide pages for swapping out. Instead of predict-
ing which pages to swap out or prefectch or predicting apps as a
whole [10, 11], MemSaver uses more intricate information of app-
specific context to reduce app’s RSS while maintaining near-ideal
hot launch time. A more extensive coverage and analysis of related
efforts on the improvement of app launch time can be found in the
survey paper [3]. It helps to further understand that MemSaver’s
unique approach and techniques represent a step forward in the
improvement of smartphones’ use experience.

6 CONCLUSIONS
In this paper we present MemSaver, a low-cost approach for pre-
emptively swapping selected pages of the background apps out of
memory while ensuring their near-ideal hot-launch time. Different
from conventional LRU-like strategies for selecting memory pages
for swapping, MemSaver uniquely resorts to event-specific history
to accurately determine the pages for swapping. Evaluation of an
implementation of MemSaver in Android shows that up to 60%
of application’s RSS can be reduced while ensuring that its hot
launch time remains in the range friendly to users for real apps of
representative types.

REFERENCES
[1] Stuart K Card, George G Robertson, and Jock DMackinlay. 1991. The information

visualizer, an information workspace. In Proceedings of the SIGCHI Conference on
Human factors in computing systems. 181–186.

[2] Tao Deng, Shaheen Kanthawala, Jingbo Meng, Wei Peng, Anastasia Kononova,
Qi Hao, Qinhao Zhang, and Prabu David. 2019. Measuring smartphone usage and
task switching with log tracking and self-reports. Mobile Media & Communication
7, 1 (2019), 3–23.

[3] Max Hort, Maria Kechagia, Federica Sarro, and Mark Harman. 2022. A Survey of
Performance Optimization for Mobile Applications. IEEE Transactions on Software
Engineering 48, 8 (2022), 2879–2904. https://doi.org/10.1109/TSE.2021.3071193

[4] IORAP. 2023. IORAP. https://medium.com/androiddevelopers/improving-app-
startup-with-i-o-prefetching-62fbdb9c9020

[5] Sang-Hoon Kim, Jinkyu Jeong, and Jin-Soo Kim. 2017. Application-aware swap-
ping for mobile systems. ACM Transactions on Embedded Computing Systems
(TECS) 16, 5s (2017), 1–19.

[6] Niel Lebeck, Arvind Krishnamurthy, Henry M Levy, and Irene Zhang. 2020.
End the senseless killing: Improving memory management for mobile operating
systems. In Proceedings of the 2020 USENIX Conference on Usenix Annual Technical
Conference. 873–887.

[7] Yu Liang, Jinheng Li, Rachata Ausavarungnirun, Riwei Pan, Liang Shi, Tei-Wei
Kuo, and Chun Jason Xue. 2020. Acclaim: Adaptive Memory Reclaim to Improve
User Experience in Android Systems. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). USENIX Association. https://www.usenix.org/conference/
atc20/presentation/liang-yu

[8] Yu Liang, Jinheng Li, Rachata Ausavarungnirun, Riwei Pan, Liang Shi, Tei-Wei
Kuo, and Chun Jason Xue. 2020. Acclaim: Adaptive memory reclaim to improve
user experience in android systems. In Proceedings of the 2020 USENIX Conference
on Usenix Annual Technical Conference. 897–910.

[9] LKMD. 2023. Low Memory Killer Daemon. https://source.android.com/docs/
core/perf/lmkd

[10] Nagarajan Natarajan, Donghyuk Shin, and Inderjit S. Dhillon. 2013. Which
App Will You Use next? Collaborative Filtering with Interactional Context. In
Proceedings of the 7th ACM Conference on Recommender Systems (Hong Kong,
China) (RecSys ’13). Association for Computing Machinery, New York, NY, USA,
201–208. https://doi.org/10.1145/2507157.2507186

[11] Abhinav Parate, Matthias Böhmer, David Chu, Deepak Ganesan, and Benjamin M.
Marlin. 2013. Practical Prediction and Prefetch for Faster Access to Applications
on Mobile Phones. In Proceedings of the 2013 ACM International Joint Conference
on Pervasive and Ubiquitous Computing (Zurich, Switzerland) (UbiComp ’13).
Association for Computing Machinery, New York, NY, USA, 275–284. https:
//doi.org/10.1145/2493432.2493490

[12] Sam Son, Seung Yul Lee, Yunho Jin, Jonghyun Bae, Jinkyu Jeong, Tae Jun Ham,
Jae W. Lee, and Hongil Yoon. 2021. ASAP: Fast Mobile Application Switch via
Adaptive Prepaging. In 2021 USENIX Annual Technical Conference (USENIX ATC
21). USENIX Association, 365–380. https://www.usenix.org/conference/atc21/
presentation/son

[13] Sam Son, Seung Yul Lee, Yunho Jin, Jonghyun Bae, Jinkyu Jeong, Tae Jun Ham,
Jae W Lee, and Hongil Yoon. 2021. ASAP: Fast Mobile Application Switch via
Adaptive Prepaging.. In USENIX Annual Technical Conference. 365–380.

[14] N. Tolia, D.G. Andersen, and M. Satyanarayanan. 2006. Quantifying interactive
user experience on thin clients. Computer 39, 3 (2006), 46–52.

[15] Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie Liu. 2012. Fast
App Launching for Mobile Devices Using Predictive User Context. In Proceedings
of the 10th International Conference on Mobile Systems, Applications, and Services
(Low Wood Bay, Lake District, UK) (MobiSys ’12). Association for Computing Ma-
chinery, New York, NY, USA, 113–126. https://doi.org/10.1145/2307636.2307648

[16] Xiao Zhu, Duo Liu, Kan Zhong, Jinting Ren, and Tao Li. 2017. SmartSwap:
High-performance and user experience friendly swapping in mobile systems. In
Proceedings of the 54th Annual Design Automation Conference 2017. 1–6.

275

https://doi.org/10.1109/TSE.2021.3071193
https://medium.com/androiddevelopers/improving-app-startup-with-i-o-prefetching-62fbdb9c9020
https://medium.com/androiddevelopers/improving-app-startup-with-i-o-prefetching-62fbdb9c9020
https://www.usenix.org/conference/atc20/presentation/liang-yu
https://www.usenix.org/conference/atc20/presentation/liang-yu
https://source.android.com/docs/core/perf/lmkd
https://source.android.com/docs/core/perf/lmkd
https://doi.org/10.1145/2507157.2507186
https://doi.org/10.1145/2493432.2493490
https://doi.org/10.1145/2493432.2493490
https://www.usenix.org/conference/atc21/presentation/son
https://www.usenix.org/conference/atc21/presentation/son
https://doi.org/10.1145/2307636.2307648

	Abstract
	1 Introduction
	2 Relevant History for Prediction
	2.1 Recency-based History
	2.2 Event-based History
	2.3 Challenges of Exploiting History

	3 The MemSaver Design
	3.1 Phases in an Android App's Execution
	3.2 Detection and Storage of Hot-Launch Pages
	3.3 Incorporating Working Sets in the Recent History
	3.4 Incorporating Context-aware Hot-launch Pages
	3.5 A Summary of MemSaver Policy

	4 Additional Evaluation Results
	5 Related Works
	6 Conclusions
	References

