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ABSTRACT
Caching is a classic technique for improving system performance by

reducing client-perceived latency and server load. However, cache

management still needs to be improved and is even more difficult in

multi-tenant systems. To shed light on these problems and discuss

possible solutions, we performed a workload characterization of a

multi-tenant cache operated by a large ecommerce platform. In this

platform, each one of thousands of tenants operates independently.

We found that the workload patterns of the tenants could be very

different. Also, the characteristics of the tenants change over time.

Based on these findings, we highlight strategies to improve the

management of multi-tenant cache systems.
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•Computer systems organization→ Cloud computing; •Theory
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1 INTRODUCTION
Caching is a classic that never dies. From the bottom layers of

hardware CPU caches to the upper layers of web caches of cloud
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applications, caching reduces client-perceived latency and service

load.

To get the most out of a cache, one needs to understand the

characteristics of the workload submitted to the cache and configure

it accordingly. Failing to match parameters such as cache capacity

and eviction algorithms to the workload leads to direct impacts on

the quality of service (usually observed in miss/hit ratio indicators)

or resource waste (i.e., when the cache capacity is over-provisioned

and additional capacity does not improve performance).

As an example, when configuring a web cache system, a typical

starting point is to estimate the load level. The number of servers

used in a large cache service depends on this load-level information

since cache systems degrade when overloaded. Despite being useful,

one needs more than load levels to define other cache parameters.

For example, to determine cache capacity, it is necessary to consider

the popularity of cached items. Item popularity matters because

many requests sent to a cache might be related to a small number

of cached items, thus reducing the need for more cache capacity.

Also, caches typically show temporal locality [2]. Consequently,

the cache needs to retain only the current working set.

Practitioners are well aware of the importance of considering

these advises. However, one factor deviates practice from good

practice: multi-tenancy.

To illustrate, consider multi-tenant ecommerce platforms, the

case study of this paper. In these platforms, each tenant is an en-

terprise independent from the others; each tenant has its clients

and products. There must be tenants that sell more than others.

There must be tenants with large and small product inventories.

There must be tenants with seasonal and sporadic selling patterns.

However independent, the tenant’s ecommerce sites run on shared

resources and services (including caches) owned and managed by

the platform. Considering that cache services are sensitive to load

characteristics, as we described, and tenants are unlikely to have

the same workload, what are the challenges a multi-tenant cache

operator has to deal with?

To uncover these factors and highlight the challenges of multi-

tenant caching, we collected and analyzed a trace of one of the

cache services from VTEX, a large-scale ecommmerce platform
1
.
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The observed cache service supports a few thousand tenants for a

10 hours observation period.

We observed that the cache load varies up to three times, reach-

ing hundreds of thousands of requests per minute. Also, the load

follows the same overall platform traffic trend (high traffic until late

at night and lower traffic at dawn). However, we have a completely

different picture when we analyze tenants in isolation. Some ten-

ants exhibit stable load, others show a periodic load pattern, while

some show peak periods (even at unexpected hours). Also, the load

is highly concentrated among tenants: the 10% most loaded tenants

account for almost 80% of the aggregated load.

The item popularity is also concentrated. Around 10% of items

received about 50% of all requests. While there is a subset of very

popular items, there are many items on the opposite extreme; 69%

of the items are requested only one time (also known as one-hit

wonders).

We also analyzed the degree of repeated access to the same items

for each tenant. A high repetition degree indicates that the load is

cache-friendly. This is because, the higher the repetition, the higher

the chances of cache hits. Half of the tenants show less than 40%

of repetition; a direct implication is that these tenants cannot have

more than the 40% hit ratio, regardless of the cache configuration

and capacity. Repetition also varies over time. While some tenants

sustain low or high repetition during the observed period, others

change their behavior as time passes.

The remainder of this paper is organized as follows. Section 2

describes the procedure for collecting data from the ecommerce

platform in production. Section 3 describes the context and metrics

applied in the workload characterization presented in Section 4.

In addition, Section 5 describes the implications of the observed

workload characteristics for cache management. Section 6 presents

this research’s findings and future work.

2 SYSTEM OVERVIEW AND
INSTRUMENTATION

This section provides an overview of the Catalog system, the com-

ponent of the platform from which we collected cache information

(Section 2.1). We also describe the instrumentation procedure for

data collection on production servers (Section 2.2). Finally, we ex-

plain the data used in the analysis and describe how data normal-

ization is performed for anonymization purposes (Section 2.3).

2.1 Catalog Service
We collected data from a global business-to-consumer (B2C) and

business-to-business (B2B) ecommerce provider. This provider of-

fers tools and services to support ecommerce companies in creat-

ing and operating their online stores. This study focused on the

Catalog system. The Catalog system is responsible for managing

non-ephemeral product data (e.g., titles, descriptions, product iden-

tifiers, and enterprise identifiers) for all the tenants in the platform

using a cache layer to improve their Quality of Service (QoS).

The Catalog system is composed of three layers: i) the database

layer is responsible for the persistence of data and works as an

index for the product information; ii) the logic and load balancing

layer, responsible for providing access to product information and

load balancing of requests; and iii) the cache layer is the service

that temporarily stores product information for performance im-

provement. Figure 1 shows an overview of the system with the

three layers and their relationships.

Figure 1: Overview of the architecture of ecommerce plat-
form Catalog system. The cache layer stores database re-
sponses. The logic layer requests data from the database,
using the cache layer as a proxy. In case of a MISS, requests
are forwarded to the databases, and responses are cached. In
the case of a HIT, a cached response is directly returned from
the cache layer.

The Catalog services access the production information stored

on the database through HTTP using a key-value format to struc-

ture the data. A key is generated by hashing the URI that uniquely

identifies the request made to the database, and the value is the

descriptive information for the related product. A cache layer, imple-

mented as a cluster of NGINX [1] servers, is a proxy of the database

to the service layer. The cache layer returns product information

already cached by previous requests, thus reducing the load on the

database system and reducing the latency perceived by the clients.

As the ecommerce system provides Catalog services for different

online stores, the cache layer is shared by different tenants. Each

request for product information is related to a specific product of

a specific tenant in the same cache system. Thus, the cache stores

data from products of all tenants’ catalogs.

2.2 Data Collection
During our observation period, we activated a more verbose NGINX

logging mode to collect the data. The Catalog operates within a

high-traffic production environment, where misguided data instru-

mentation may cause disruption or system performance degrada-

tion. Therefore, we collected a 10% random sample of all requests

in 5-minute intervals to avoid affecting the reliability of the Cata-

log. An agent running on the cache service continuously sends the

log files to another server, to avoid fulfilling the NGINX servers’

disks. The observation period ranged from 21:00 to 7:00 GMT-3, on

December 13 and 14, 2022. After that, we stopped the observation

and resumed the NGINX logging level to its default value.

To support our analysis, the data we collected includes the in-

formation associated with the products requested to the Catalog,

cache status, and timing metadata. In summary, we considered the

following information for each observed request:

• The request URI. Product and tenant identifications are en-

coded as parameters in the URI;
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• Cache response status, which indicates when the cache an-

swered a request as aMISS or HIT (and other NGINX possible

statuses);

• The timestamp the request arrived at the cache layer;

• The identification of the NGINX node that received the re-

quests;

• The request-response wait time.

2.3 About the Data
The collected workload has up to tens of millions of requests. These

requests refer, approximately, to another tens of millions of products

from approximately a few thousand online stores. Notably, each

tenant exhibits unique and specific access patterns, which Section

4 will explore further.

To protect business-sensitive information, we anonymized the

dataset. All the data discussed in the following sectionswas anonymized

by applying the min-max normalization function. All the identifiers

were anonymized using a hash function. The data normalization

allows temporal comparison for all aggregated tenants, for one ten-

ant, as much as comparisons among tenants. For example, Figure

2 presents the normalized number of incoming requests received

per minute throughout the data collection period, illustrating the

overall variations and trends in request rates.

Figure 2: Normalized incoming request rates per minute for
all aggregated tenants. It highlights variations in the request
rate per minute and trends over the data collection period
where peak demand occurs at night, with a typical decline
in the dawn, followed by a resurgence of demand in the
following hours of the morning.

Furthermore, for this work, we have focused on three key data

fields crucial for understanding a multi-tenant cache system. These

fields include request timestamp, tenant identifier, and product (or

item) identifier.

3 BACKGROUND
In this section, we define the metrics we adopted to our charac-

terization analyzed in Section 4. While these metrics were already

described in the literature, some of them were not formally defined.

To evaluate the overall cache efficiency, we used the Hit Ratio.

This metric is the proportion of data requests that were successfully

met from the cache (referred to as Hit Status) relative to the total

number of requests made. Consider two multisets: R, containing all

data requests made during a specific period, and H, containing only

those requests fulfilled by the cache within the same period (𝐻 ⊆ 𝑅).

The Hit Ratio can be calculated using the following relation:

Hit Ratio =
|𝐻 |
|𝑅 | (1)

For example, consider a cache with a capacity of two items and

a sequence of requests for items, R = {"A": "MISS", "B": "MISS", "A":

"HIT", "A": "HIT", "C": "MISS", "B": "MISS", "A": "MISS"}, and a few hits,

represented by H = {"A", "A"}. To calculate the hit ratio, we divide

the number of hits by the total number of requests made, which in

this case is 2/7 or 0.29. This means that 29% of the requests were

successfully satisfied by the cache during the given time period.

To understand the demand, in addition to the number of requests

submitted to the cache, we considered the Footprint. The Footprint
metric measures the amount of data accessed within a specified

time window by quantifying the number of distinct requested items

in a given period [18]. This metric is essential for analyzing system

capacity utilization, as it allows us to see how many items are

requested in a given period. It also shares a close relationship with

the Working Set Size (WSS) theory, which helps to understand an

application’s memory requirements. Considering the sequence of

requests R and the set F (a subset of R) of distinct items requested,

the Footprint is defined as follows:

Footprint = |𝐹 | (2)

The Item Repetition Ratio (IRR) metrics, in its turn, gives

an indication on how a workload would take advantage of the

cache [9]. The IRR is an upper bound for the cache hit ratio for a

determined workload. Given the multiset P of repeated requests for

items in the period, the IRR is defined as follows:

𝐼𝑅𝑅 =
|𝑃 |
|𝑅 | (3)

For the previous example, P = {"A", "A", "B", "A"} and the IRR is

4/7 or 57.14%.

We also considered Temporal Locality in our characterization.

Temporal locality refers to the tendency of the same item to be

referenced within short intervals. It differs from concentration,

which refers to the aggregate reference counts for items, regardless

of the referencing order. Some metrics can be used to measure

temporal locality, for example, the LRU stack-depth [12] and Inter-

Reference Time [14]. In this work, we will focus on Inter-Reference
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Table 1: Normalized statistical measures of the number of
requests per minute. These statistics represent a substantial
difference between the mean and median to the maximum
value, suggesting a significant difference for the peaks.

Mean Median Max Min Std. Dev

0.41 0.37 1 0 0.20

Time [2]. This metric represents the time between references to

the same item. We calculated the mean of the Inter-Reference Time

(MIRT). MIRT sets itself apart from LRU stack-depth analysis by

focusing on the timing of data access rather than the order within

a stack. While LRU stack-depth provides insight into the sequence

in which a specific number of requests occurred within a particular

interval, MIRT’s primary objective is to define and analyze these

time intervals.

In addition to the metrics defined above, in the discussion pre-

sented in section 5, we adopted LRU as eviction policy. There is a

huge literature on eviction policies trade-offs and there are many

policies that can be better than LRU [7, 10, 11, 19, 20]. Notwith-

standing, we adopted LRU because: 1) it was the policy used by the

cache we observed (NGINX); and 2) some analytical methods (as

the one used in section 5) are based on LRU.

4 WORKLOAD CHARACTERIZATION
This section discusses the characteristics of the load submitted to

the cache of the Catalog system we observed. Section 4.1 focuses

on observing the demand for requests the caching system receives.

Next, section 4.2 explores the irregular popularity of the items

stored in the system, identifying "hot" and infrequently accessed

items. Section 4.3 highlights Footprint results, while section 4.4

presents IRR. Finally, section 4.5 evaluates the temporal locality of

the data by analyzing the Inter-Reference Time.

4.1 Request Load
The initial analysis centers on the volume of requests entering the

system over ten hours, as detailed in Table 1. The table provides

normalized statistical metrics derived from the load. The findings

reveal a mean of 0.41 and a median of 0.37, indicating that both

metrics deviate significantly from the maximum value. This sug-

gests a distribution pattern wherein a substantial proportion of

observations exhibit relatively low activity levels compared to the

peak request rate.

Regarding the temporal pattern of the request arrival, Figure 2

shows the number of requests per minute over time. The peak of

requests occurs in the evening — after working hours — when it is

common for demand for web services to be high. While there is a

tendency for demand to fall at daybreak, demand for services rises

again in the early hours of the morning [17].

The load is very concentrated in a small group of tenants: only

10% of tenants account for approximately 80% of all recorded re-

quests. Figure 3 illustrates the cumulative request count for each

tenant, ranked accordingly.

Tenants with a high number of requests can eventually worsen

the performance of tenants with a low number of requests. This

Figure 3: The cumulative sumof received requests, ranked by
descending number of requests by a tenant. A small number
of tenants are responsible for a large number of requests.

interference could happen when a burst of requests for new data

from tenants evicts other tenants’ popular data, so future requests

that can reuse this data will result in cache misses. Thus, tenants

with a high number of requests can quickly evict items and occupy

a big slice of the cache. This highlights the importance of the pro-

motion of fairness and mitigation of interference between tenants

in shared caches [3, 6, 13, 16].

The request load for each tenant also shows temporal variability.

This introduces an extra layer of complexity in resource alloca-

tion. Figure 4 illustrates the variation in the number of requests

over time for a sample of the biggest tenants. Some tenants exhibit

peaks in requests, indicating periods of significantly higher demand

than their usual levels. This may result from seasonal events, spe-

cial promotions, or product launches. Conversely, some tenants

maintain relatively constant activity over time, with no significant

fluctuations in request quantity. This suggests a more stable and

predictable traffic profile associated with a regular customer base.

Furthermore, some tenants may display intermittent request pat-

terns, alternating between intense activity periods and relatively

calmmoments. This oscillationmay be influenced by peak shopping

times or specific marketing actions.

These behaviors may indicate that system management could be

more dynamic and sensitive to tenants’ needs since the traditional

static resource allocation models can lead to provisioning problems.

A dynamic resource adjusts resource allocation based on the cur-

rent workload, trying to ensure that resources are neither wasted

nor insufficient. In this scenario, tenants with request peaks may

require more substantial cache allocations during these periods of

high demand. Conversely, tenants with stable request patterns may

benefit from conservative allocations.

In addition to the dynamic allocation of resources, the presence

of tenants with high demand at certain times also reinforces the

adoption of strategies to promote fairness and avoid inter-tenant

interference. This can reduce the effects caused by higher demand

in lower-demand customers.
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Figure 4: Request number variation over time for a sample
of the biggest tenants. Different access patterns emerge, with
some tenants experiencing request peaks, others displaying
fluctuations, and some exhibiting intermittent patterns.

Table 2: Frequency type distribution. There is a huge fraction
of the items that is requests only once.

Item Frequency Type Percentage

One Request 69%

Two Requests 13%

More Than Two Requests 18%

4.2 Concentration Of Access
Looking for requested items and evaluating the frequency of access,

we can see a discrepancy in popularity. Some can be classified as

"hot" itemswith a high access volume. These items are characterized

by their great popularity and constant demand. In contrast, other

items are rarely accessed and, in some cases, not accessed.

Figure 5 shows the non-uniform pattern in item referencing

behavior. Around 50% of all requests are directed at only 10% of

the distinct items in the system. This phenomenon suggests the

existence of a subset of items that are highly requested, while other

items show considerably less repetition. Braun and Claffy describe

this concentration phenomenon as a common characteristic of Web

traffic [4].

Also, as observed in Table 2, the portion of items that are accessed

only once (one-hit wonders) is very large. Items with no repeated

access could not take advantage of the cache. However, simply

ignoring an item in its first request can be a wrong choice because

this item can be re-accessed in the near future, not being a one-hit

wonder. Furthermore, the same table shows the percentage of two-

hit wonders, which must be understood if is a good choice to store

items like them too, since they will be reused only once. Therefore,

it is necessary to seek strategies that reduce the number of n-hit

wonders according to the particular cache objectives. Many policies

seek how to avoid storing unpopular items [5, 7, 8, 10, 20].

Figure 5: The cumulative sum of accesses per item, ranked
by decreasing the number of accesses. The curve experiences
rapid growth for a set of items, commonly called "hot" items.
A small number of items are accessed more frequently, while
the remaining are accessed sporadically. This pattern sug-
gests distinct popularity dynamics among the items.

4.3 Footprint
As mentioned in previous sections, the Footprint value depends on

the size of the window range chosen. For our trace, with a time

window of 10 hours, the Footprint is half the total of requests made

(tens of millions of requests). When we look at the Footprint per

tenant, we see a discrepancy in the distribution of Footprint values.

Figure 6 illustrates the distribution of Footprints among tenants,

highlighting a concentration of Footprint for a small portion of ten-

ants. In summary, the 10% of tenants represent a portion of around

75% of the total Footprint, suggesting that these entities may have

distinct usage patterns, potentially utilizing the system more in-

tensively or requiring more resources than the remaining majority.

On the other hand, the remaining 90% of tenants contribute only a

quarter of the total Footprint.

Additionally, the tenant’s Footprint varies over time, influenced

by their different workload patterns, such as changes in the number

of orders and access. As mentioned, variations in the observed time

window can lead to changes in the Footprint value. Figure 7 further

illustrates this dynamic, showing the variations in Footprint for the

six largest tenants. This emphasizes that a tenant’s Footprint can

change over time. Observing the Footprint in time windows can

help us understand the storage space requirements of each tenant

in the system over a given period.

4.4 Item Repetition Ratio
The data, with a time window of 10 hours, indicates variation in

IRR values among different tenants, suggesting that some tenants

are more adept at utilizing caching benefits, while others may not

exhibit behaviors favorable to caching. Figure 8 showsmany tenants

have low IRR. For example, around 50% of tenants have IRR less

than 40%. With low repetition, these tenants could be candidates for
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Figure 6: Cumulative distribution of Footprint. This illus-
trates the concentration of Footprint in a small portion of
tenants, around 75% of the total Footprint corresponds to 10%
of the tenants, so a small number of tenants occupy a large
slice of cached storage.

Figure 7: Footprint over time for a selected sample of the
biggest tenants by number of requests. This highlights the
variability in a tenant’s usage of resources throughout dif-
ferent periods of the day. Some tenants exhibit peaks and
valleys over time, while others consistently maintain either
a high or low usage Footprint.

not having items in the cache since their requests in a time window

are for different items, not contributing to the cache hit.

By decreasing the window size for adjacent one-hour windows,

we observe some IRR behaviors over time, as shown in Figure 9.

Some tenants show high IRR with slight variation, others low IRR

with little variation, and others show considerable variation in IRR

between windows. In addition to the tenants with a slightly variable

IRR, we also observed some that showed a large temporal oscillation.

This dynamic behavior emphasizes the importance of evaluating

the adequacy of the cache at specific time intervals. This approach

makes it possible to discern tenants whose caching behavior may

Figure 8: Cumulative distribution of Item Repetition Ratio.
Some tenants are better at reusing the cached data, taking
advantage of the cache usage. While others may not demon-
strate cache-friendly behavior, occupying memory and wors-
ening performance.

vary over time, thus requiring adaptive cache management strate-

gies for optimal performance. In this case, the system should ideally

have a mechanism for calculating IRR periodically that plays a cen-

tral role in fine-tuning cache capacity by selecting which tenant

should or should not be in the cache at a given time.

Figure 9: IRR over time for a selected sample of the biggest
tenants by number of requests. This illustrates diverse pat-
terns and variations in a tenant’s cache-friendliness.

Before entering the cache system, analyzing the tenants’ IRR

could be a strategy for allowing them in or not, section 5 will

describe this approach. For example, if the tenant’s IRR is high

and has little variation, it is a good candidate for cache entry. On

the other hand, if the IRR is low and with little variation, it is a

candidate for not entering the cache at any time.
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Table 3: MIRT statistical measures for the items.

Mean Median Max Min

0.26 0.19 1 0

4.5 Temporal Locality
The Inter-Reference Time can help us to understand the tendency

of reference to the items. Figure 10 exhibits the MIRT of the items

in the workload. As explained in Section 3, the MIRT is calculated

by finding the mean of the time intervals between references to the

same item. It is worth noting that items referenced only once lack

Inter-Reference Time values, making it impossible to calculate the

mean.

Figure 10: Percentage of items byMean Inter-Reference Time
ignoring items referenced only once. Most have MIRT lower
or equal to 150 minutes.

A significant portion of items have a MIRT lower or equal to 150

minutes, specifically 57.20% of them (including items referenced

once). Table 3 also reinforces this by showing that the measures of

central tendency (mean and median) are low. This is an indication

of good cache usage by the items. On the other hand, 42.80% of the

items have MIRT longer than 150 minutes. This indicates that many

items are idle during specific periods, taking up space in the cache.

Figure 11 shows the dynamic trend in item access patterns for

ten adjacent one-hour time windows, where each box corresponds

to an analyzed hour. The frequency of access to items changes over

different periods, indicating a dynamicity in the access patterns

over time. The first few hours have more items with low MIRT,

where the number of access is high, and the average number of hits

is concentrated mainly between 10 and 15 minutes. After that, the

number of accesses decreases and becomes increasingly dispersed,

with a reduction in items with low MIRT.

In general, we observe that the pattern of temporal locality

changes over time. This shows that tenants’ and items’ cache re-

quests are variable over time. This further reinforces the need for

dynamic management of the cache.

Figure 11: Percentage of items byMean Inter-Reference Time
for each one-hour window of items that are referenced more
than once. Showing the dynamic tendency in item access
patterns.

5 PERFORMANCE IMPLICATIONS AND
ISSUES

In this section, we discuss the possible consequences of the char-

acteristics observed in our multi-tenant trace. In particular, we

focus on adapting cache management strategies to be aware of the

tenants.

Unpopular items: A Case for Exclusion from Cache. Items

with low repetition may not justify their inclusion in the cache. Al-

locating cache resources to items with sporadic access may lead to

sub-optimal resource utilization. In this case, cache policies and sys-

tems that consider admission control like Lazy Adaptive CacheRe-

placement [10], CacheSack [21], and others [5, 7, 8, 11, 20].

One interesting possibility to explore is to consider data about

the tenants as hints to the admission control algorithm. For example,

would be useful to have more aggressive admission control policies

for tenants that have a low item popularity profile?

Item Repetition Ratio as a Filter for Tenants. As section
4 indicated, some tenants are not cache-friendly (because they

have low IRR). In addition to the item admission control, one can

consider a tenant admission control (using IRR as an indicator). To

provide a short overview of this idea, we evaluated the impact of

removing some tenants from ourmulti-tenant trace.We used a trace-

drive simulation that gives the overall hit ratio based on a given

trace capacity. Considering an optimal capacity to attend all the

tenants found on the trace as the baseline, we simulated scenarios

removing the tenants that have IRR below three different thresholds

(20%, 30%, and 50%). As Figure 12 shows, when tenants with 20% or

fewer IRR values were excluded, the optimal cache capacity was

reduced to 90% of the original capacity, resulting in an optimal hit

ratio of 61%. Similarly, imposing a stricter criterion of 30% IRR led

to an optimal capacity of 78% of the original, leading to a higher

hit rate of 64%. Excluding tenants with IRR values of 50% or less

further improved the efficiency of the cache, producing an optimal

capacity of 49% of the original capacity and a commendable hit rate

of 71%. Obviously, other trade-offs need to be analyzed, including
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the corresponding impact on the latency and server load caused by

the removal of tenants. In any case, the impact on resource usage

could be important, as indicated by this analysis.

Figure 12: Optimal hit ratio based on optimal capacity for
each one of workloads. Each line is one type of workload
(i.e. the line IRR >= 20 means that only tenants with IRR
above or equal to 20% are on the workload). This suggests
that some tenants with low IRR can be removed to reduce the
capacity while maintaining the same level of performance
or increasing it.

Cache partition. As mentioned in our characterization, a few

big tenants concentrate the most on cache usage. We also show that

the load of the tenants varies over time. It is not clear the impact a

spike in the load of a big tenant can cause on the QoS of the other

tenants (in particular, if the capacity of the cache is not too large).

One possible to avoid the interference caused by tenants sharing

the same cache is to create and enforce partitions on the shared

cache to host the tenants [3, 6, 13, 15, 16].

6 CONCLUSIONS
This paper has provided an analysis of the workload characteristics

in a multi-tenant cache environment using data from a prominent

web cache service in a large-scale ecommerce platform. The findings

revealed a significant imbalance in request distribution among

tenants, with approximately 80% of requests directed towards 10%

of them. Moreover, we observed distinct access behavior patterns,

ranging from steady loads to periodic spikes in request volumes.

Furthermore, the study highlighted that many requests concen-

trated on a small number of items (hot items). On the other hand,

a majority part of the items experienced sporadic access. Addi-

tionally, it was evident that some tenants demonstrated low cache-

friendliness, resulting in a cache hit ratio decrease due to infrequent

item retrievals.

The cache-friendliness is mainly related to tenants’ request pat-

terns and product inventory. Significant request patterns were iden-

tified in tenants’ workloads: Some tenants are more searched than

others, and this implies a more significant number of requests to

the system; can present seasonal request patterns, others sporadic

patterns; can present peaks and/or valleys in request patterns, or

can present stable patterns over time. In addition, there are tenants

with an extensive number of products, which can mean that they

need more storage space than others. In addition, we found that

access patterns vary over time, emphasizing the dynamic nature of

cache requests. This underlines the importance of dynamic cache

management to adapt to changing access patterns and optimize the

use of resources.

As the next steps in this industry collaboration, we plan to investi-

gate how can we take into consideration tenants’ profiles into cache

management policies (admission control, eviction, and partition).

Also, it is necessary to consider the mechanisms to adapt to changes

in the behavior of the tenants. Although some of these issues are

discussed in the literature, in particular for hyperscalers [21], there

are still open questions on how to support regular web caches.
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