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ABSTRACT
Serverless computing and, in particular, Function-as-a-Service (FaaS)
have emerged as valuable paradigms to deploy applications with-
out the burden of managing the computing infrastructure. While
initially limited to the execution of stateless functions in the cloud,
serverless computing is steadily evolving. The paradigm has been
increasingly adopted at the edge of the network to support latency-
sensitive services. Moreover, it is not limited to stateless appli-
cations, with functions often recurring to external data stores to
exchange partial computation outcomes or to persist their internal
state. To the best of our knowledge, several policies to schedule
function instances to distributed hosts have been proposed, but
they do not explicitly model the data dependency of functions and
its impact on performance.

In this paper, we study the allocation of functions and associated
key-value state in geographically distributed environments. Our
contribution is twofold. First, we design a heuristic for function
offloading that satisfies performance requirements. Then, we formu-
late the state migration problem via Integer Linear Programming,
taking into account the heterogeneity of data, its access patterns
by functions, and the network resources. Extensive simulations
demonstrate that our policies allow FaaS providers to effectively
support stateful functions and also lead to improved response times.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • General and reference→ General conference proceed-
ings; •Computingmethodologies→Distributed computingmethod-
ologies.
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1 INTRODUCTION
Serverless computing enables the deployment of applications with-
out the burden of managing the computing infrastructure (e.g., [5]).
In the last few years, we are witnessing the increasing adoption
of serverless for organizations using cloud services; for example,
in 2023, Datadog declared that up to 70% of its customers use at
least one serverless function1. The diffusion of serverless has been
also boosted by the Function-as-a-Service (FaaS) offering by cloud
providers, where customers can execute code (or functions) in re-
sponse to events, thus drastically simplifying the infrastructure
operations typically associated with microservices applications.

Recently, two major trends have involved serverless computing.
First, besides traditional cloud environments, serverless has been in-
creasingly adopted at the edge of the network as well (e.g., [20, 22]).
Second, its adoption is not limited to stateless functions any more,
with functions often recurring to external data stores to exchange
partial computation outcomes or to persist their internal state
(e.g., [5, 19, 31]). Function state usually consists of key-value pairs
(e.g., [13, 26, 30, 31]). While in cloud environments it is reasonable
to rely on centralized storage services to save state information
(e.g., object storage, in-memory stores), in edge-cloud environments
state can be distributed across edge and cloud nodes to increase
data locality. Therefore, traditional cloud serverless platforms, such
as OpenWhisk and OpenFaaS, do not well fit the features of the
emerging environment (e.g., [8]). First, they do not consider la-
tency and bandwidth between edge-cloud resources, which can be
particularly relevant for functions with stringent latency require-
ments. Second, by not explicitly considering data dependencies
of functions, they do not often optimize for data locality or data
movement. Most of recent research efforts on stateful serverless
focus on running functions in logically centralized clouds, thus
neglecting the impact of heterogeneous resources on performance
(e.g., [9, 26, 27]). As functions usually recur to external data stores
to persist their state, other research efforts propose to make explicit
data intents of functions (e.g., [20, 27]), to co-locate functions with
their data (e.g., [26, 28]), or to optimize over an explicit data de-
pendency model (e.g., [2, 19]). While the first approach moves the
complexity of managing data dependencies to users and developers,
the others leverage rather simple data models, which do not con-
sider the heterogeneity of data and access patterns, as well as its
geographic distribution. To the best of our knowledge, the efficient
execution of stateful serverless edge functions is still an open issue.

1https://www.datadoghq.com/state-of-serverless/
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In this paper, we study the allocation of functions and associ-
ated state in geo-distributed environments. Since the performance
uncertainty affecting FaaS platforms is a frequent concern for de-
velopers, we envision a setting where developers and serverless
providers stipulate a Service Level Agreement (SLA), enabling the
autonomous execution and management of stateful serverless func-
tions with possibly stringent performance requirements. The SLA
helps define the target function performance, through Service Level
Objectives (SLOs), to be met at run-time as well as the penalties
paid by the platform provider whether these expectations are disre-
garded. We focus on policies for such a serverless edge computing
environment. Differently from existing works (e.g., [2, 19, 20]), we
explicitly model the heterogeneity of computing, storage, and net-
working devices as well as data dependencies of functions. The
core contributions of this paper are as follows. First, we present a
conceptual Decentralized Stateful Serverless Platform (DS2P) that in-
cludes the mechanisms where the proposed policy can be installed.
Second, we present a SLO-aware offloading strategy for allocating
functions to edge and cloud nodes that explicitly considers the
time to access their data and aims to meet the SLOs stipulated in
SLAs. Then, we also propose a state-aware data migration policy
that relocates data at run-time, aiming to further improve applica-
tion performance while limiting penalty costs paid by the platform
provider. Ultimately, we extensively evaluate the proposed policies
by investigating the impact of different configuration parameters
as well as their scalability.

The remainder of the paper is organized as follows. We present
the system model, the problem under investigation, and the main
assumptions in Sect. 2. In Sect. 3, we overview the proposed solution
by presenting DS2P, which offers mechanisms for running the
policy we focus on in this paper. The function offloading and data
migration policies are then presented in Sect. 4 and evaluated in
Sect. 5. In Sect. 6, we discuss related works and conclude in Sect. 7.

2 SYSTEM MODEL AND PROBLEM
STATEMENT

We consider serverless applications, where user-defined code can
be executed without allocating and managing virtualized servers
and resources, or being concerned about other operational aspects.
The responsibility for operational aspects is offloaded to the ser-
vice provider. Serverless applications consist of multiple functions,
whose trigger is usually an HTTP request, a cloud event, or a
scheduler. Functions are commonly used to implement APIs, asyn-
chronous processing, batch tasks, or operations tasks [5]. Most
functions are very short-lived, running for less than 1 minute (also
due to execution time constraints imposed by service providers).
Functions can be stateful or stateless, whether they need persistent
data to answer requests. Hereafter, we focus on stateful functions.

A serverless platform manages serverless applications to make
them available to users. Users from different network locations
can request function execution to obtain a service (e.g., [3, 18]) or
to manipulate data (e.g., [4, 11, 29]). To preserve the state across
invocations, serverless functions usually rely on external store to
persist data (e.g., [5, 11, 19]). According to [5], data volumes handled
by serverless applications follow a bimodal distribution: although

53% of applications handle less than 1 MB, 16% between 1 MB and
10 MB, a second peak of 16% of them handle more than 1 GB.

To run function instances, the serverless platform could lever-
age geographically distributed edge-cloud computing environment,
where edge and cloud nodes provide computing and storage re-
sources. Let 𝐹 be the set of all functions. Each function 𝑓 ∈ 𝐹 is
characterized by a memory demand𝑚𝑓 ∈ R and an execution time
on a reference architecture, 𝑟 𝑓 ∈ R. We model application state as
key-value pairs, where different keys can be allocated to different
storage nodes (e.g., [1, 14, 26, 31]). Let 𝐾 be the set of key-value
pairs, where each key 𝑘 ∈ 𝐾 is associated with a value, whose size
is 𝑙𝑘 . We assume that each function 𝑓 ∈ 𝐹 can access a subset of
key-value pairs in 𝐾 (with some keys possibly accessed by multiple
functions). As computing environment, we consider a system com-
prising 𝑁 distributed cloud and edge nodes. Each node in 𝑖 ∈ 𝑁 has
limited computing 𝐶𝑖 , memory𝑀𝑖 , and storage 𝑆𝑖 capacity. Nodes
𝑖, 𝑗 ∈ 𝑁 are interconnected with non-negligible network latency
𝑑𝑖, 𝑗 , i.e., the logical network link (𝑖, 𝑗) has 𝑑𝑖, 𝑗 ≥ 0. We denote
by 𝑏𝑖, 𝑗 the bandwidth of the logical network link (𝑖, 𝑗). Different
disjoint subsets of keys 𝐾 ′ ⊆ 𝐾 can be hosted on different nodes,
whereas a single key is hosted on a single node. We consider a
per-key placement, e.g., through client-side partitioning2, enabling
keys to be possibly distributed independently from one another. Al-
though sophisticated replication strategies can be designed, during
our first iteration of this study, we assume no data replication. Each
node handling a portion of the state can be used for both reading
and writing operations.

Problem Statement. Determining the allocation of functions and
data is critical to run latency-sensitive serverless functions. In the
computing environment under investigation, users request func-
tion execution from different locations. These functions can access
different portions of the data store, i.e., subsets of the keys in 𝐾 ,
which can be possibly located on far away nodes. Moving data
across different network locations introduces latency, which, in
turn, increases the overall function completion time. Moving large
data volumes might also introduce prohibitively long delays, calling
for adaptive relocation of function code and its execution on a node
close to the data store. Each function can exhibit its data access
pattern, which may also vary depending on the geographical zone
where the function is executed. The key issue relates to the hard-
ness of statically (i) distributing keys to data store instances and
(ii) deciding where function execution requests should be scheduled
(i.e., locally or to a remote computing node via offloading).

We assume that function developers stipulates a Service Level
Agreement (SLA) with the serverless platform provider, including
Service Level Indicators (SLIs), i.e., metrics, and Service Level Objec-
tives (SLOs), i.e., predicate over SLIs. Data location impacts on the
function running time. Therefore, we consider that each function
𝑓 ∈ 𝐹 exposes a SLO on the maximum data access latency, i.e.,
𝑇max
𝑓

, that should be met at run-time.3 Otherwise, the serverless
platform provider incurs in a penalty cost 𝜌 𝑓 ∈ R+ per unit of extra
time to access data that exceeds 𝑇max

𝑓
.

2https://redis-doc-test.readthedocs.io/en/latest/topics/partitioning/
3As it will be evident in the following, our approach can be readily adapted to cope
with different requirements (e.g., maximum response time).
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Figure 1: Overview of the architecture of a DS2P node.

Two key problems are considered. First, we need to identify
a function execution and offloading policy that determines where
to run a function instance among all the available (possibly geo-
distributed) computing resources. Second, we need to define a data
migration policy that possibly relocates data at run-time, so as to
satisfy the SLA between the function developer and the serverless
platform provider, in face of the current workload.

Assumptions. Any client can request the execution of any func-
tion in 𝐹 . To run a function, a client sends an execution request to
the closest node 𝑛 ∈ 𝑁 in the computing environment (likely, an
edge node in their proximity). Therefore, assuming that invocation
requests are always directed to the closest available node, we do
not explicitly model client locations in this work. Instead, we only
account for the locations of nodes in 𝑁 , in terms of network latency
among them.

The node 𝑛 ∈ 𝑁 receiving the client request is responsible for
scheduling the execution of the requested function: the node can
possibly decide to offload the execution to another node and, hence,
determine how data should be retrieved. To this end, we assume
that each node can instantiate any function as it caches a copy of
the code for all functions. To support offloading, nodes periodically
exchange state information, e.g., using a gossiping protocol (e.g., a
similar approach is implemented in [22]).

3 SOLUTION OVERVIEW
We propose Decentralized Stateful Serverless Platform (for short,
DS2P), an abstract decentralized FaaS platform designed for edge-
cloud computing environments. DS2P manages resources for func-
tion execution upon invocation and data storage. As most of FaaS
platforms, including OpenWhisk and OpenFaaS, functions run
within software containers, which are spawned as needed and
initialized with the required code and libraries. A DS2P node can
run on edge and on cloud resources; it implements the functional-
ity to receive execution requests, run functions, and interact with
other DS2P nodes. In DS2P, there are not privileged entry points for
function invocation: every node is able to schedule the execution
of incoming requests. Since edge nodes can have limited resource
capacity, DS2P allows nodes to offload execution requests to other
nodes, when needed.

The architecture of a DS2P node is depicted in Fig. 1. Its main
components include a Scheduler, a Local Data Store, a Data Proxy,
a Data Migrator, and a Container Pool. The Scheduler oversees re-
source allocation for function execution, as it decides whether to
execute requests locally, to offload them to other nodes, or to drop
them (e.g., during heavy-load periods). To this end, the Scheduler

Table 1: Main notation adopted in the paper

Symbol Description
𝐹 Set of functions
𝑚𝑓 Memory demand of 𝑓 ∈ 𝐹
𝑟 𝑓 Execution time on a reference architecture of 𝑓 ∈ 𝐹
𝑇max
𝑓

Maximum data access latency expressed by 𝑓 ∈ 𝐹
𝜌 𝑓 Unit penalty cost paid when 𝑇max

𝑓
is exceeded

𝐾 Set of keys
𝑙𝑘 Size of value associated to key 𝑘 ∈ 𝐾
𝑝 𝑓 ,𝑘 Estimated key access probability 𝑘 ∈ 𝐾 by 𝑓 ∈ 𝐹
𝑁 Set of edge nodes
𝐶𝑖 Computing capacity of node 𝑖 ∈ 𝑁
𝑀𝑖 Memory capacity of node 𝑖 ∈ 𝑁
𝑆𝑖 Storage capacity of node 𝑖 ∈ 𝑁
𝑠𝑖 Computation speed-up of node 𝑖 ∈ 𝑁
𝑑𝑖, 𝑗 Network latency between 𝑖, 𝑗 ∈ 𝑁
𝑏𝑖, 𝑗 Network bandwidth between 𝑖, 𝑗 ∈ 𝑁

can be equipped with custom policies, such as the one we present
in Sect. 4.1. The Local Data Store is a key-value store aimed to store
function data. It can be implemented using, e.g., Redis, Hazelcast,
or Anna. The Data Proxy has the responsibility of (i) proxying data
access operations, and (ii) characterizing the workload of each func-
tion (i.e., which keys they use, type of operation, frequency). The
Data Proxy internally exposes a data distance table, which reports
the estimated latency due to data read/write operations, to the
Scheduler and Data Migrator. The Data Migrator can periodically
relocate key-value pairs by interacting with other DS2P nodes. In
the decentralized architecture of DS2P, each Data Migrator handles
a subset of keys, i.e., those physically co-located on the DS2P node.
Nonetheless, in the following, we assume a logically centralized
Migrator that manages all keys stored in the system. Sect. 4.2 pro-
poses a policy to determine when and which key should be more
conveniently relocated.

4 FUNCTION AND DATA ALLOCATION
POLICIES

In this section, we propose the policies for solving the function
execution and offloading problem, as well as the data migration
problem. Main notation is reported in Table 1.

4.1 Function Scheduling and Offloading
We propose a SLO-aware offloading policy that aims to allocate
functions by minimizing their completion time and by fulfilling
the SLO on the data access time. Basically, SLO-aware offloading
estimates the function completion time both on local node and
on other nodes. Since we consider stateful functions, this time is
influenced by the access latency of keys used by the function. Then,
the policy selects the configuration leading to minimum function
completion time, among those satisfying the SLO.

For each function 𝑓 ∈ 𝐹 , wemaintain an estimate of its key access
probability, i.e., 𝑝 𝑓 ,𝑘 ∈ [0, 1] with 𝑘 ∈ 𝐾 . Such information can be
estimated by tracing function data accesses (either in historical
traces or at run-time) or, if possible, through static code analysis.
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Local Execution. When a node 𝑖 ∈ 𝑁 receives an execution re-
quest for function 𝑓 ∈ 𝐹 , it checks the execution configuration
(i.e., local or offloading) leading to lower response time. First, it
estimates the completion time𝑇 𝑓

𝑖
assuming that the function 𝑓 will

be executed locally on 𝑖:

𝑇
𝑓

𝑖
= 𝑇 exec

𝑓 ,𝑖
+𝑇 data

𝑓 ,𝑖
(1)

this term consists of two contributions, respectively the code ex-
ecution time of 𝑓 , 𝑇 exec

𝑓 ,𝑖
,4 and the average data access time 𝑇 data

𝑓 ,𝑖
,

which can be defined as follows:

𝑇 exec
𝑓 ,𝑖

=
𝑟 𝑓

𝑠𝑖
(2)

𝑇 data
𝑓 ,𝑖

=
∑︁
𝑘∈𝐾

𝑝 𝑓 ,𝑘𝑇
data(𝑘 )
𝑓 ,𝑖,loc(𝑘 ) (3)

where 𝑟 𝑓 is the function execution time on a reference architecture,
𝑠𝑖 is the computation speed-up of node 𝑖 , 𝑝 𝑓 ,𝑘 is the access proba-
bility of 𝑘 by the instance of 𝑓 , and loc(𝑘) returns the node hosting
key 𝑘 . 𝑇 data(𝑘 )

𝑓 ,𝑖, 𝑗
is the access time of state 𝑘 by 𝑓 , when 𝑓 runs on

𝑖 and 𝑘 is stored on 𝑗 ∈ 𝑁 , with 𝑗 = loc(𝑘); it models the delay to
copy the value corresponding to the key from its location 𝑗 to 𝑖:

𝑇
data(𝑘 )
𝑓 ,𝑖, 𝑗

= 𝑑𝑖, 𝑗 +
𝑙𝑘

𝑏𝑖, 𝑗
+ 𝑑 𝑗,𝑖 (4)

where 𝑑𝑖, 𝑗 is the network delay between 𝑖 and 𝑗 , 𝑙𝑘 is the size of
data associated to 𝑘 , and 𝑏𝑖, 𝑗 is the bandwidth between nodes 𝑖 and
𝑗 .5

Local execution of 𝑓 is admissible, if 𝑇 data
𝑓 ,𝑖

≤ 𝑇max
𝑓

and its re-
quired memory fits the spare capacity of 𝑖 , i.e.,𝑚𝑓 ≤ �̄�𝑖 .

Offloading. Afterwards, the node 𝑖 estimates the time to run
𝑓 ∈ 𝐹 when the computation is offloaded to another node. Due to
data dependencies, we only consider as candidate the nodes hosting
at least a key accessed by 𝑓 . Having to transfer function inputs and
later collect its output, the completion time of 𝑓 , when offloaded
from 𝑖 to 𝑗 , with 𝑖, 𝑗 ∈ 𝑁 , is defined as follows:

𝑇
𝑓

𝑖, 𝑗
= 𝑇 𝑖𝑛𝑖, 𝑗 +𝑇

𝑜𝑢𝑡
𝑗,𝑖 +𝑇 exec

𝑓 , 𝑗
+𝑇 data

𝑓 , 𝑗
(5)

where𝑇 𝑖𝑛
𝑖, 𝑗

is the time to move the function input from 𝑖 to 𝑗 ,𝑇𝑜𝑢𝑡
𝑖, 𝑗

is
the time to collect the computation results from 𝑗 back to 𝑖 ,𝑇 exec

𝑓 , 𝑗
is

the time to execute 𝑓 on 𝑗 (as in (2)), and 𝑇 data
𝑓 , 𝑗

is the average data
access time of 𝑓 in 𝑗 (as in (3)). The first two terms can be formally
defined as follows:

𝑇 𝑖𝑛𝑖, 𝑗 =
𝑙 in
𝑓

𝑏𝑖, 𝑗
+ 𝑑𝑖, 𝑗 (6)

𝑇𝑜𝑢𝑡𝑗,𝑖 =

𝑙out
𝑓

𝑏 𝑗,𝑖
+ 𝑑 𝑗,𝑖 (7)

4In this work, we assume that invocation requests do not experience any queueing
delay, similarly to what happens in commercial FaaS platforms (e.g., AWS Lambda).
Moreover, we assume that performance interference among functions is negligible
in the considered computing environment. Note that—with no loss of validity of the
proposed approach—more complex models of the execution time can be considered
instead.
5We consider a simple model of data transfer times. More accurate models accounting,
e.g., for possible packet re-transmissions and pipelining issues, can be plugged into
our approach with no loss of validity.

where 𝑙 in
𝑓
and 𝑙out

𝑓
represent respectively the size of input and output

data.
Offloading 𝑓 ∈ 𝐹 to 𝑗 ∈ 𝑁 is admissible, if 𝑇 data

𝑓 , 𝑗
≤ 𝑇max

𝑓
and

𝑚𝑓 ≤ �̄�𝑗 , where �̄�𝑗 is the spare memory capacity of 𝑗 .

Scheduling. At this point, the node 𝑖 has all the ingredients to
determine where to schedule the function. Among admissible con-
figurations, the policy chooses the one leading to lower expected
completion time: the best candidate for offloading is the node 𝑗∗

with minimum completion time 𝑇 𝑓
𝑖, 𝑗∗ , i.e., 𝑗

∗ = arg min𝑗∈𝑁 ′
(
𝑇
𝑓

𝑖, 𝑗

)
,

among admissible nodes 𝑁 ′. If local execution is eligible and 𝑇 𝑓
𝑖

≤
𝑇
𝑓

𝑖, 𝑗∗, then 𝑓 is executed on 𝑖; otherwise, 𝑓 is offloaded to 𝑗∗. If no
configuration is admissible, the node 𝑖 returns an error as 𝑓 cannot
be executed while meeting the agreed SLA.

4.2 Data Migration
The Data Migrator can periodically relocate keys among nodes so
to reduce the completion time of functions by lowering their data
access time. We formulate state-aware data migration as an Integer
Linear Programming (ILP) problem.

Let 𝑥 (𝑘 )
𝑖

∈ {0, 1} be a binary variable such that 𝑥 (𝑘 )
𝑖

= 1 if 𝑘 ∈ 𝐾
is allocated on 𝑖 ∈ 𝑁 ; 0 otherwise. The data migration policy can
relocate keys across resources aiming to fulfill the SLA of functions.
We consider SLAs with a SLO on the average data access time.

Data Access Time. We define as 𝑇 data(𝑘 )
𝑓

the average data access
time of state 𝑘 ∈ 𝐾 experienced by function 𝑓 ∈ 𝐹 :

𝑇
data(𝑘 )
𝑓

=
∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁

𝑝 𝑓 ,𝑘𝑇
data(𝑘 )
𝑓 ,𝑖, 𝑗

𝑥
(𝑘 )
𝑗

(8)

where 𝑇 data(𝑘 )
𝑓 ,𝑖, 𝑗

is the average access time of state 𝑘 ∈ 𝐾 stored in
𝑗 ∈ 𝑁 , when 𝑓 runs on 𝑖 ∈ 𝑁 ; it is defined in (4).

Migration Time. Data relocation does not come for free, as we
need to transfer one or more key-value pairs across the network.
In some cases, this activity may be too expensive and we may
prefer to completely avoid it. In the data migration policy we model
migration time as follows:

𝑇
mig(𝑘 )
𝑖, 𝑗

=

(
𝑑𝑖, 𝑗 +

𝑙𝑘

𝑏𝑖, 𝑗
+ 𝑑 𝑗,𝑖

)
𝑦
(𝑘 )
𝑖, 𝑗

(9)

where 𝑦 (𝑘 )
𝑖, 𝑗

is a binary variable indicating whether 𝑘 ∈ 𝐾 has to
migrated from 𝑖 ∈ 𝑁 to 𝑗 ∈ 𝑁 .

We can define 𝑦 (𝑘 )
𝑖, 𝑗

through auxiliary constant terms, 𝑥 (𝑘 )
𝑖

, indi-
cating where 𝑘 was hosted on 𝑖 before solving the ILP. Conceptually,
𝑦
(𝑘 )
𝑖, 𝑗

represents the logical AND between 𝑥 (𝑘 )
𝑖

and 𝑥 (𝑘 )
𝑗

; formally,

we define 𝑦 (𝑘 )
𝑖, 𝑗

as:

𝑦
(𝑘 )
𝑖, 𝑗

≤ 𝑥 (𝑘 )
𝑗

∀𝑖, 𝑗 ∈ 𝑁 (10)

𝑦
(𝑘 )
𝑖, 𝑗

≤ 𝑥 (𝑘 )
𝑖

∀𝑖, 𝑗 ∈ 𝑁 (11)

𝑦
(𝑘 )
𝑖, 𝑗

≥ 𝑥 (𝑘 )
𝑖

+ 𝑥 (𝑘 )
𝑗

− 1 ∀𝑖, 𝑗 ∈ 𝑁 (12)

250



Function Offloading and Data Migration for Stateful Serverless Edge Computing ICPE ’24, May 7–11, 2024, London, United Kingdom

SLA Violations. To identify the SLA violations for function 𝑓 ,
we resort to excess variables 𝛿𝑓 ∈ R+ and 𝛿𝑓 ,𝑘 ∈ R+, and slack
variables 𝑧𝑓 ,𝑘 ∈ R+; they indicate how much the data access time
is, respectively, above or below the SLO. Formally, we have:

𝑇
data(𝑘 )
𝑓

+ 𝑧𝑓 ,𝑘 = 𝑇max
𝑓

+ 𝛿𝑓 ,𝑘 ∀𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (13)

𝛿𝑓 ≥ 𝛿𝑓 ,𝑘 ∀𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (14)

We assume that, when the SLA is violated, the serverless platform
provider pays, to the owner of 𝑓 , a penalty 𝑃𝑓 proportional to 𝛿𝑓 :

𝑃𝑓 = 𝜌 𝑓 𝛿𝑓 ∀𝑓 ∈ 𝐹 (15)

where 𝜌 𝑓 is the unit of penalty cost. Other formulations of 𝑃𝑓 could
be easily considered.

Objective Function. To compute the migration strategy, we need
to express the goal function, which formally defines the idea of “best”
data placement among all possible solutions. We resort to a simple
function F that minimizes the violations of the functions’ SLA and
the time tomigrate key-value pairs (9). The latter controls how often
data should be relocated: ideally, we want to avoid moving heavy
data too often. We formulate the objective function of state-aware
data migration as:

min F + 𝑍 (16)

with:

F =
∑︁
𝑓 ∈𝐹

𝑤𝑝𝑃𝑓 +
∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁

𝑤𝑚

𝑇
mig(𝑘 )
𝑖, 𝑗

𝑇
mig(𝑘 )
max

(17)

𝑍 =
∑︁
𝑓 ∈𝐹

∑︁
𝑘∈𝐾

𝑧𝑓 ,𝑘 (18)

where F is the objective function and 𝑍 is a technical term to
correctly define the slack and excess variables. Moreover,𝑤𝑝 ,𝑤𝑚 ≥
0,𝑤𝑝 +𝑤𝑚 = 1, are weights for the different contributions of the
objective function, and 𝑇mig(𝑘 )

max is a normalization term defined as
𝑇
mig(𝑘 )
max = max𝑖, 𝑗∈𝑁×𝑁

(
𝑇
mig(𝑘 )
𝑖, 𝑗

)
.

Constraints and Domain. Storing a key-value pair on a node
requires modeling capacity constraints, namely:∑︁

𝑘∈𝐾
𝑙𝑘𝑥

(𝑘 )
𝑗

≤ 𝑆 𝑗 ∀𝑗 ∈ 𝑁 (19)∑︁
𝑗∈𝑁

𝑥
(𝑘 )
𝑗

= 1 ∀𝑘 ∈ 𝐾 (20)

where 𝑆 𝑗 is the spare storage capacity of node 𝑗 before solving
the optimization problem, and (20) ensures that a specific key is
allocated on a single node at a time. 𝑆 𝑗 can be readily defined as
𝑆 𝑗 = 𝑆 𝑗 −

∑
𝑘∈𝐾 𝑙𝑘𝑥

(𝑘 )
𝑗

.

Table 2: Average execution time,memory demand and default
arrival rate of the functions used in the experiments.

Function 𝑓 𝑟 𝑓 𝑚𝑓 _𝑓
𝑓1 0.40 s 512 MB 8 req/s
𝑓2 0.20 s 512 MB 16 req/s
𝑓3 0.30 s 128 MB 42 req/s
𝑓4 0.25 s 1024 MB 6 req/s
𝑓5 0.45 s 256 MB 14 req/s

The ILP formulation also includes domain constraints for each
variable used in all the previous equations:

𝛿𝑓 ∈ R+ ∀𝑓 ∈ 𝐹 (21)

𝛿𝑓 ,𝑘 ∈ R+ ∀𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (22)

𝑧𝑓 ,𝑘 ∈ R+ ∀𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (23)

𝑦
(𝑘 )
𝑖, 𝑗

∈ {0, 1} ∀𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝑁 (24)

𝑥
(𝑘 )
𝑖

∈ {0, 1} ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁 (25)

Equations (8)–(25) formulate the state-aware data migration prob-
lem.

5 EVALUATION
We evaluate the proposed policies by simulation. We implement
the simulator in Python.6 In this section, we first describe the ex-
perimental setup and then present the results.

5.1 Experimental Setup
Infrastructure.We consider a FaaS system comprising a total of
10 nodes, divided as 5 cloud nodes and 5 edge nodes, which can
both execute functions and store key-valued state. The infrastruc-
ture comprises an additional cloud node, indicated as data store,
which only stores state information. Memory capacity is set to
64 GB for cloud nodes and 4 GB for edge nodes. For simplicity,
we consider an identical CPU speedup value for all the nodes. We
randomly generate network latency values for all the pairs of nodes
in the infrastructure. Specifically, edge-to-edge latency is uniformly
sampled from [1, 20] ms; latency between edge and cloud nodes
(including the data store) is uniformly sampled from [5, 100] ms;
cloud-to-cloud latency is uniformly sampled from [1, 10] ms for
FaaS nodes, and from [1, 20] ms for cloud-to-data store communi-
cation. As regards network bandwidth, we set it to 100 Mbps for
edge-to-edge and edge-to-cloud communication, and 1 Gbps for
cloud-to-cloud communication.

Functions and invocations. We consider 5 functions, with dif-
ferent resource demands, as indicated in Table 2, and exponentially
distributed execution times. Invocation requests to the functions
are modeled as independent Poisson arrival processes, where the in-
vocation rate (reported in Table 2) is chosen to have equal expected
memory utilization for all functions.

We consider twoworkload settings, where (i) invocation requests
for all the functions are uniformly distributed across edge nodes
(W1); and, (ii) invocations request for each function are directed

6The software is publicly available: https://zenodo.org/doi/10.5281/zenodo.10590302
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Table 3: Experimental results in the workload scenario W1.

Policies Avg. Penalty Resp. Time (s)
𝑇𝑚𝑎𝑥
𝑓

(s) Data Placement Offloading ($/req) ×10−1 SLO Viol. (%) Migr. Data (MB) 𝑃50 𝑃95

0.1 No Migration Greedy-local 1.7522 61.3518 0.0 0.5833 1.6209
0.1 No Migration Greedy-data 0.0093 5.3667 0.0 0.3112 1.0684
0.1 No Migration SLO-aware 0.0087 5.9523 0.0 0.3154 1.0630
0.1 Random Greedy-local 1.2317 69.8047 384.0 0.5783 1.4500
0.1 Random Greedy-data 0.7868 56.0006 388.4 0.4748 1.2800
0.1 Random SLO-aware 0.0835 15.0189 345.9 0.3461 1.1689
0.1 Greedy Greedy-local 1.7504 65.7991 254.6 0.6242 1.5632
0.1 Greedy Greedy-data 0.0006 0.2587 204.2 0.3194 1.0763
0.1 Greedy SLO-aware 0.0005 0.3752 232.6 0.2834 1.0426
0.1 State-aware Greedy-local 1.4318 53.2727 7.4 0.5386 1.5652
0.1 State-aware Greedy-data 0.0015 0.7404 7.4 0.3187 1.0765
0.1 State-aware SLO-aware 0.0004 0.5055 8.3 0.2900 1.0482

0.2 No Migration Greedy-local 1.5213 47.2753 0.0 0.6083 1.6715
0.2 No Migration Greedy-data 0.0000 0.0000 0.0 0.3337 1.0918
0.2 No Migration SLO-aware 0.0000 0.0000 0.0 0.3188 1.0754
0.2 Random Greedy-local 0.7323 46.5192 339.1 0.5797 1.4774
0.2 Random Greedy-data 0.5394 38.8161 390.4 0.5113 1.3215
0.2 Random SLO-aware 0.0620 11.8700 307.5 0.4011 1.2429
0.2 Greedy Greedy-local 1.1246 48.9581 206.2 0.6159 1.5650
0.2 Greedy Greedy-data 0.0000 0.0000 256.3 0.3147 1.0715
0.2 Greedy SLO-aware 0.0122 1.4703 225.9 0.2928 1.0497
0.2 State-aware Greedy-local 1.0295 40.3417 7.4 0.5415 1.5803
0.2 State-aware Greedy-data 0.0000 0.0000 7.9 0.3131 1.0699
0.2 State-aware SLO-aware 0.0000 0.0000 7.5 0.2888 1.0473

to a single edge node, with functions assigned to edge nodes in a
round-robin fashion (W2).

Policies. For comparison against our proposed policies, we con-
sider the following baseline approaches for function offloading:

• Greedy-local (GrL for short): local execution is always
preferred; if the local node runs out of memory, requests are
offloaded to the closest cloud node;

• Greedy-data (GrD): a simplified variant of our state-aware
approach, where we always schedule function execution
so as to minimize the amount of state data that must be
retrieved through the network.

For data migration, we consider the following baselines:
• No Migration: keys are never migrated;
• Random: randomly assign keys to nodes;
• Greedy: move each key to the node that ranks first in remote
accesses to that key; to compute the ranking, we use a custom
metric defined as the product of the data requests rate coming
from the node and the estimated network latency between
the node and the current key location.

State.We consider a total of 100 state keys in the system, and
assume that each function accesses (i.e., reads or updates) up to 5
keys during execution. The set of keys accessed by each function is
randomly sampled, and we consider two different scenarios where
the probability of accessing a key follows, respectively, (i) the Zipf
and (ii) the uniform distribution. In the latter scenario, the same

key is rarely accessed by more than a single function, whereas
few popular keys exist in the former. Each state access for every
function occurs with a probability value uniformly sampled from
{0.1, 0.25, 0.5, 0.75, 0.9, 1.0}. As regards the size of the data associ-
ated with each key, inspired by the observations reported in [21],
we consider a bimodal distribution defined as a mixture of two
Gamma random variables with shape 𝑘 = `10−4 and scale \ = 104,
with ` ∈ {104, 107} bytes. At the beginning of each experiment, we
assume all the key-value pairs to be stored in the data store node
in the cloud.

Other parameters.We simulate system execution for one hour,
replicating every experiment 10 times. Data migration policy is
activated every 120 seconds. We consider different values for the
maximum data access time requirement 𝑇𝑚𝑎𝑥

𝑓
∈ {0.1, 0.2}s, assum-

ing it to be identical for all the functions. The penalty cost unit
associated with SLO violations is set as 𝜌 𝑓 = 1 $/s.

5.2 Offloading and Data Migration Policies
Table 3 reports the simulation results for the first considered work-
load scenario (W1) and the Zipf distribution for key popularity.
In this workload scenario, invocation requests are uniformly dis-
tributed to edge nodes, meaning that the keys needed by each
function will be necessarily accessed from multiple locations. Con-
sidering the stricter SLO requirement of having data accessedwithin
100 ms (also depicted in Fig. 2), we observe that guaranteeing the
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Figure 2: Results in the workload scenario W1, with 𝑇𝑚𝑎𝑥
𝑓

= 0.1s.
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Figure 3: Results in the workload scenario W2, with 𝑇𝑚𝑎𝑥
𝑓

= 0.1s.
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desired service level cannot be simply achieved using any set of
policies. Specifically, the experiments demonstrate the importance
of devising and adopting state-aware policies.

With no data migration policy enabled, it is particularly evident
the impact of state-aware offloading. Indeed, the Greedy-local policy
fails to meet the SLO for more than 50% of the served requests in
this setting, demonstrating that simply ignoring data locality is not
a successful approach in presence of stateful functions. State-aware
policies (i.e., Greedy-data and SLO-aware) manage to significantly
reduce the number of SLO violations, keeping them below 10% of
the served requests.

To further improve the results, we need the ability to relocate
data out of the centralized data store. For this purpose, we consider
the baseline case of a random migration approach. However, ran-
dom migrations—as expected—only worsen the situation for all the
offloading policies. They also cause a significant amount of data to
be migrated throughout the experiment (up to 400 MB in 75% of
the cases).

Interestingly, the Greedy migration policy fails to improve the
situation compared to the no-migration scenario when coupledwith
Greedy-local offloading. Conversely, when paired with state-aware
offloading policies, SLO violations are less than 1% and the paid
violation penalty significantly decreases as well, both for Greedy-
data and SLO-aware. Compared to the Greedy migration approach,
our State-aware approach achieves even better results. While it also
keeps violations below 1%, it reduces the amount of migrated data
from about 200 MB to less than 10 MB, avoiding the oscillations of
the Greedy data migration policy.

Looking at the overall request response times, we can further
observe that the SLO-aware offloading policy performs slightly
better than Greedy-data, avoiding unnecessary execution offloading
based on expected SLO satisfaction. Therefore, the combination of
State-aware data migration and SLO-aware offloading (i.e., the two
policies we propose in this paper) leads to the best results in this
scenario.

When considering a less strict SLO requirement, i.e., 𝑇𝑚𝑎𝑥
𝑓

=

200 ms, all the policies experience fewer SLO violations and the
impact of data migration decreases. Nevertheless, adopting a proper
offloading policy is still fundamental to achieve acceptable perfor-
mance, with Greedy-local largely failing to meet SLO requirements
even in this scenario. State-aware offloading policies completely
avoid paying SLO violation penalties in this scenario. The impact of
data migration is still visible looking at overall response times. Com-
pared to the baseline scenario with no migrations, the state-aware
key placement reduces median response times by about 10%.

Similar results are observed in the alternative workload scenario
W2, where invocation requests for each function are directed to
a single edge node. As illustrated in Fig. 3, the different workload
dynamics do not alter the relative performance of the policies we
compare. It is only worth observing that the Greedy-local policy
performs slightly better, especially in terms of overall response
times. This is explained by the fact that having a limited number of
functions to handle at each edge node favors container reuse and,
hence, reduces memory contention for local execution. However,
this policy still fails to meet SLO expectations in terms of data
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Figure 4: Execution time of the State-aware migration policy.

access time and causes the provider to pay a significant amount of
penalties.

Due to space limitations, we do not show the results obtained
with reduced key contention among functions (i.e., using uniform
key popularity rather than Zipf), as they lead to the same consider-
ations reported above.

Overall, our experiments demonstrate that the proposed State-
aware data migration and SLO-aware offloading represent the best
policies, allowing the provider to minimize the monetary penalties
associated with SLO violations, while also leading to the lowest
response times.

5.3 Scalability
Throughout the experimental campaign, we kept track of the com-
putational overhead imposed by policy execution. As expected, the
State-aware data placement policy, based on ILP resolution, is the
most demanding one. Figure 4 shows the execution time of the pol-
icy varying the number of functions and computing nodes in the
system, with the ILP resolved using IBM CPLEX® (version 12.6.2.0).

It can be observed that the computational overhead is lower than
2 s with 10 computing nodes and grows to less than 10 s with 35
nodes. The observed overhead looks acceptable, especially as the
computation of data migrations can be performed asynchronously
with respect to function execution. Nonetheless, we plan to explore
heuristic resolution strategies in the future to further reduce the
execution time of the policy.

6 RELATEDWORK
The serverless paradigm requires platform providers to transpar-
ently manage infrastructure operations, possibly in face of (strin-
gent) SLAs. We classify the existing research efforts into two cate-
gories, according to their main focus. A large set of papers considers
functions and their scheduling on computing resources, whereby
data strictly depends on functions; data dependencies are modeled
at different degrees of granularity, including also implicit modeling.
Stressing the importance of data, other works treat data as first-class
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citizens, whereby it is assumed to be more convenient to execute or
relocate functions whenever needed. In this case, the key topics are
caching, replication, and consistency of data. In the following, we
analyze the key results, aiming to highlight the core contribution
of our work. To the best of our knowledge, the execution of stateful
serverless functions in edge-cloud environments is still an open
issue.

Function scheduling. Different solutions have been proposed so
far to allocate stateful functions. Basically, four main approaches
are pursued to model the dependency between functions and their
data: make explicit the data intent of functions through APIs or an-
notations; co-locate functions with their data; optimize data passing
among functions; and model data dependencies. Hence, different
function scheduling policies are designed.

To make explicit the data dependencies of functions, developers
enrich the metadata of functions with references to data (or bucket
of data) required during execution (e.g., [20, 25, 27]). Lambdata [27]
is the first approach that makes the intent of a function’s input
and output explicit for improved locality. Although the framework
works in a cloud environment, such information is exploited to
optimize functions execution, e.g., by running functions that read
same data on the same worker. Similarly, to ensure that functions
are scheduled close to their data, FaDO [25] provides a unified
interface to the various storage services, and defines a special HTTP
header to specify the required bucket on the function invocation
requests. In this case, functions are allocated on the requested
bucket, if possible. Data intent information is especially useful in
geographically distributed environments. To determine a trade-off
between data and computation movement in edge systems, Rausch
et al. [20] propose a greedy multi-criteria policy that selects the
best node for function scheduling by leveraging a scoring function
with four contributions: (1) proximity to data storage nodes at
edge locations; (2) proximity to the cloud-based container registry;
(3) availability of specialized hardware; and (4) matching of user-
annotated scheduling preferences between edge and cloud locality.

The second class of approaches resorts to co-location, thus con-
sidering data dependencies only implicitly. Co-location can be im-
plemented either through replication or caching (e.g., [26]), or by
running the function code on the storage node (e.g., [28, 32]). For
example, Cloudburst [26] is a popular stateful serverless platform
that co-locates compute and data. It employs an architecture with
distributed storage and caching on machines hosting functions. In a
preliminary work, Tiwary et al. [28] propose usingWebAssembly to
run serverless functions: exploiting lightweight virtualization, such
functions can be more efficiently executed directly on data sources.
The idea of pushing WebAssembly functions into storage has been
also exploited by Shredder [32], which realizes a single-node multi-
tenant cloud store that allows small units of computation to be
performed directly within storage nodes. Hetzel et al. [9] suggest
using an actor-based model, where each actor has its own locally
stored state. Actors only interact by exchanging messages.

Serverless applications are usually composed of multiple func-
tions that exchange intermediate (ephemeral) data. To this end,
three general approaches emerged: leverage a shared (remote) stor-
age (e.g., [6, 11, 15, 18]), exploit data locality to improve perfor-
mance (e.g., [10, 12, 14, 24, 26–28]), and perform direct transfer

(e.g., [14]). For example, SyncMesh [7] stores and processes data lo-
cally, so as to provide it to other nodes only on-demand. Conversely,
Sonic [14] optimizes application performance and cost by select-
ing among different data-passing methods for each (namely, local
storage, direct passing, remote storage). To this end, they model
cost and time needed to exchange data and use a Viterbi algorithm,
which guarantees to find the true maximum a-posteriori solution.
Wukong [3] enhances the locality of DAG-based parallel workloads,
by explicitly considering data that a function passes to downstream
functions directly connected in the graph. Xu et al. [30] propose
a more general approach, where functions can access data gen-
erated by upstream function (even if not directly connected). To
rule the complexity of model and uncertainty of data volumes and
delays, the authors resort to an online learning heuristic that aims
to co-locate functions and their data on groups of edge resources.
A slightly different perspective is presented in Zion [23], which
considers data flowing from storage gateways to storage nodes and
enables triggering functions on a data-driven basis (instead of an
event-driven basis).

To conclude, a few works explicitly model the relationship be-
tween functions and data (e.g., [2, 19]). For example, Puliafito et
al. [19] distinguish between stateless functions executed on server-
less, which can access a remote cloud storage, and stateful con-
tainers, with a locally attached persistence volume. The scheduling
problem, formulated as a mixed ILP (MILP), aims to find a trade-off
between the cost of transferring input and output data using the
network and a data access cost. First, stateful containers are allo-
cated; then, stateless functions are placed so to balance load among
nodes. The data model is rather simple, as it assumes that functions
exchange a fixed amount of data with a centralized cloud storage
system at each invocation. NEPTUNE [2] is a K3s-based platform for
running latency-sensitive serverless applications on geo-distributed
edge topologies. The authors formulate the application placement
as a MILP, considering CPU and GPU requirements and minimizing
the overall network delay. Currently, NEPTUNE only models net-
work traffic exchanged between functions, whereas their access to
external data stores is only partially modeled: the time to read from
and write on a database is modeled as non-controllable stationary
disturbance of the response time.

Data placement. The advent of serverless fostered the develop-
ment of novel approaches to store data. A fewworks build persistent
storage leveraging serverless, being cheaper than cloud computing
resources (e.g., [4, 11, 29]). These works do not explicitly consider
the presence of functions for computation, but provide convenient
storage abstractions.

Other works focus on data and consider serverless functions as
volatile, lightweight, and easily relocatable (e.g., [18, 31]). These
works usually do not optimize the allocation of resources for func-
tions, but mainly focus on data placement (e.g., [1]), replication
(e.g., [16, 17]), and caching (e.g., [26]). Building on Cloudburst [26],
Pheromone [31] proposes a data bucket abstraction that can be con-
figured with triggers specifying when the target functions should
be invoked and how their output should be passed to the next func-
tions in a workflow. To improve data locality, Pheromone uses a
two-layered scheduler, with a global coordinator that balances load
across nodes and drives the execution of function across multiple
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buckets, and a local scheduler that triggers functions execution on
each node. Pfandzelter et al. [17] propose a data replication middle-
ware that operates in a geographically distributed environments
and with heterogeneous resources. Although the middleware can be
used to optimistically replicate data on cloud and edge devices run-
ning serverless functions [16], currently it only blindly replicates
key-groups on every replica node (thus introducing inefficiencies
for writing operations). Conversely, the policy we propose helps to
identity the locations where it is more convenient to move data.

Contribution. To the best of our knowledge, policies for SLA-
aware execution of stateful functions in geo-distributed environ-
ments are missing. We consider serverless functions accessing ex-
ternal data stores, dealing with heterogeneous data access patterns
and non-uniform data size for different keys. This model agrees
with the evidences in [21].

The closest works to ours are [2, 19, 20]. As in [20], we con-
sider an edge-to-cloud computing environment, where computing
and storage nodes are interconnected with non-negligible network
delay. Nevertheless, we do not require the user to manually in-
dicate the data intent of functions. These access patterns can be
estimated (or learned) at run-time. Moreover, we propose a state-
aware data migration policy. Differently from [2, 19], we propose a
more detailed formulation of the data dependency model, by explic-
itly considering the data access patterns of functions. We leverage
this information to solve two main tasks, namely function offload-
ing and data migration. Both tasks consider that functions expose
requirements through a SLO on data access latency: hence, func-
tions and data cannot be located on distant nodes, otherwise the
serverless platform provider will pay penalties for SLA violation.
To the best of our knowledge, this is the first contribution that con-
siders a SLA-aware allocation of functions and data in edge-cloud
environment.

Finally, we acknowledge that our approach is far from being
fully-fledged. Indeed, we postpone to future work the integration
of more sophisticated techniques for improving replication, fault-
tolerance, and caching of data.

7 CONCLUSION
We investigated the problem of executing stateful serverless func-
tions in edge-cloud environments, providing guarantees about the
time required to access key-valued state. We proposed a set of
policies to control both function offloading (i.e., when and where
function execution should be offloaded to a remote node), and data
placement (i.e., how to relocate state data to better accommodate
the current workload). Simulated experiments demonstrate that
our approach provides the desired SLO guarantees, while avoiding
frequent data migrations and improving overall response times.

For future work, we plan to integrate our approach in an ex-
isting FaaS framework, and investigate efficient heuristics for the
resolution of the data migration problem.
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