
TBASCEM - Tight Bounds with Arrival and Service Curve
Estimation by Measurements

Christoph Funda
ZF Mobility Solutions GmbH
Test System Development

Ingolstadt, Germany
christoph.funda@zf.com

Thomas Herpel
ZF Mobility Solutions GmbH

System Qualification & Product Test Strategy
Ingolstadt, Germany

thomas.herpel@zf.com

Reinhard German
Friedrich-Alexander-Universität Erlangen-Nürnberg
Computer Networks and Communication Systems

Erlangen, Germany
german@informatik.uni-erlangen.de

Kai-Steffen Jens Hielscher
Friedrich-Alexander-Universität Erlangen-Nürnberg
Computer Networks and Communication Systems

Erlangen, Germany
Kai-Steffen.Hielscher@informatik.uni-erlangen.de

ABSTRACT
This paper aims to solve the challenge of quantifying the perfor-
mance of Hardware-in-the-Loop (HIL) computer systems used for
data re-injection. The system can be represented as a multiple queue
and server system that operates on a First-In, First-Out (FIFO) basis.
The task at hand involves establishing tight bounds on end-to-end
delay and system backlog. This is necessary to optimise buffer and
pre-buffer time configurations. Network Calculus (NC) is chosen
as the basic analytical framework to achieve this. In the literature,
there are different techniques for estimating arrival and service
curves from measurement data, which can be used for NC calcu-
lations. We have selected four of these methods to be applied to
datasets of industrial Timestamp Logging (TL). The problem arises
because these conventional methods often produce bounds that
are much larger (by a factor of 1000 or more) than the measured
maximum values, resulting in inefficient design of HIL system pa-
rameters and inefficient resource usage. The proposed approach,
called TBASCEM, introduces a reverse engineering approach based
on linear NC equations for estimating the parameters of arrival and
service curves. By imposing constraints on the equation variables
and employing non-linear optimization, TBASCEM searches for a
burst parameter estimation which derives tight global delay bounds.
In addition, TBASCEM simplifies the run-time measurement pro-
cess, supporting real-time data acquisition to evaluate and optimise
HIL system performance, and enhancing observability to adapt the
HIL configuration to new sensor data. The benefits of TBASCEM
are clearly that it enables an efficient performance logging of arrival
and service curve parameters and with deriving tighter bounds in
HIL systems, compared to evaluated state-of-the-art methods, mak-
ing TBASCEM an invaluable tool for optimising and monitoring
streaming applications in non-hard-real-time environments.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0444-4/24/05. . . $15.00
https://doi.org/10.1145/3629526.3645031

CCS CONCEPTS
• General and reference→ General conference proceedings;
• Computer systems organization → Embedded and cyber-
physical systems; • Software and its engineering → Empirical
software validation; Operational analysis; • Hardware→ Sensors
and actuators; • Information systems → Computing platforms.

KEYWORDS
Performance Evaluation and Monitoring, Hardware-in-the-loop
Test System, Streaming System, Network Calculus, Arrival and
Service Curve Estimation

ACM Reference Format:
Christoph Funda, Thomas Herpel, Reinhard German, and Kai-Steffen Jens
Hielscher. 2024. TBASCEM - Tight Bounds with Arrival and Service Curve
Estimation by Measurements. In Proceedings of the 15th ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE ’24), May 7–11,
2024, London, United Kingdom. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3629526.3645031

1 INTRODUCTION
Autonomous vehicle technology requires millions of kilometres
of recorded sensor data to be replayed with HIL systems to ver-
ify the perception technology on the Device Under Test (DUT).
This process absorbs a significant amount of time and energy for
the computing resources, as the recordings must be replayed in
real-time from the HIL to the DUT. In addition, the replay must
accurately reproduce a real-world scenario to ensure high quality
HIL performance. It is essential that there is no data loss within
the HIL system and that the timing to the DUT is accurate and
precise, as needed by the DUT. We dive deeper into that topic in
the Section 2. However, many HIL systems, beyond their hardware
interfaces to the DUT, do not fall under the category of hard real-
time systems. Instead, they fall into the realm of soft and non-hard
real-time systems.

How can non-hard real-time computing machines meet the hard
real-time requirements of the DUT?One approach involves utilizing
a playback-buffer on the hard real-time capable interface-card. By
filling the buffer with sufficient data before streaming to the DUT,
uninterrupted streaming can be achieved.

224

https://orcid.org/0009-0004-9242-6857
https://orcid.org/0000-0002-9727-1995
https://orcid.org/0000-0002-9071-4802
https://orcid.org/0000-0002-2051-0660
https://doi.org/10.1145/3629526.3645031
https://doi.org/10.1145/3629526.3645031
https://doi.org/10.1145/3629526.3645031

ICPE ’24, May 7–11, 2024, London, United Kingdom Christoph Funda, Thomas Herpel, Reinhard German, & Kai-Steffen Jens Hielscher

The challenge lies now in designing the buffer size and pre-buffer
time appropriately. To do so, it is crucial to determine the worst-case
end-to-end delay and backlog bounds for buffer size dimensions
and the pre-buffer time parameter.

Filling the playback buffer creates idle time before streaming
to the DUT, leading to wasted time and energy of HIL computing
resources. Hence, minimising pre-buffering time is crucial.

On the contrary, it is crucial to avoid an empty playback buffer
during re-injection, as it disturbs the precise timing needed by
mostly hard real-time DUTs. This hence leads to failed tests and
again a loss of time and energy at the HIL computing resources.
To achieve an efficient HIL performance, it is essential to adjust
the pre-buffer time to be at least equal to or greater than the worst
case end-to-end delay. The aim is to fill the playback buffer with a
minimum of the burst parameter of the arrival curve of the sensor
stream.

The methodology involves measuring the HIL system before op-
eration, designing it accordingly, and monitoring its performance
during operation to optimise its parameters if necessary. Using the
measured maximum end-to-end delay directly would overestimate
the required time, as waiting time in a queue could be included.
Hence, it is necessary to consider queuing theory, which is accom-
plished by employing NC: a deterministic queuing system theory.
Using NC, bounds for the backlog and end-to-end delay of a queu-
ing system can be computed from its arrival and service curves.
However, NC bounds should be tight, for our use-case and our
system, at least the end-to-end delay bound needs to be as tight as
possible, this is the major challenge.

There are basic concepts in the NC framework and mathemati-
cally defined in all basic literature about NC [13, 14]. In short, an
arrival curve is the upper constraint of an input flow, and a service
curve is the lower constraint of a flow provided by a service. The
basic linear arrival curves and service curves, made used off in
this work, are burst-rate curves and rate-latency curves. In hard
real-time systems, their parameters can be found easily, they are
often directly defined. However, in our non-real-time HIL system
under study, they are not. So, they need to be measured, what is
challenging. The analytical solutions for streaming devices with
NC has been derived by Le Boudec et al. in [14]. We adapted and
applied the NC solutions by linear equations on measurement data
from a HIL test system in [11]. However, the results in [11] showed
us, that there are improvements of the derived bounds needed for
the estimation methods of the system service curves, to make them
usable in practice.

One of the approaches mentioned in the survey study by Fidler
et al. [8] to generate a strict service curve based on TL of the input
and output of queuing server systems by Alcuri et al. [1] are used
here in this paper. However, the results show, that the bounds are
not tight at all with these methods. They often exceed by a factor
of 1000.

Additionally, all the measurement methods, which are discussed
in the survey, are based upon TL from the ingress and egress of the
system. We are specifically interested to reduce the TL, to be able
to do run-time measurements at the HIL system during operation,
without generating massive data and performance overhead for the
network or processor. On one hand, TL are occupying the memory.

On the other hand, the TL need to be sent via network, what would
occupy the processor and the network during operation.

To close the gap of estimating a service curve by measurements,
with the aim to provide tight delay and backlog bounds of a stream-
ing process within a computer system, without producing lots
of TL, a new approach has been developed called TBASCEM —
Tight Bounds with Arrival and Service Curve Estimation by Mea-
surements. TBASCEM aims to provide a performant and efficient
estimation method from TL as well as a technique for reducing the
needed measurement data for arrival and service curve estimation,
to be able to calculate tight bounds with NC.

In summary, our novel TBASCEM approach fills the gap for
an effective and efficient method to measure and estimate service
curves by measurements with the aim to calculate tight bounds,
while maintaining low impact on CPU performance and memory
allocation during operation.

The remainder of this paper is structured as follows: In Section 2
we start with basic technical backgrounds of HIL systems. In Sect. 3
we introduce our TBASCEMapproach.We start with the description
of the concept idea and the needed reduced measurements, followed
by the reverse engineering approach for the estimation arrival and
service curve parameters. In the following Section 4, we define our
research questions, with a short explanation of the methodology on
how to evaluate them and our hypothesis, followed by a description
of the experimental setting, and finishingwith discussing the results.
In the following Section 5 we describe former work in literature
and how it relates to our work. Finally, we end up with Section 6,
where we conclude with a short summary and the contribution of
our work. Our contributions include:

• Evaluating the tightness of delay and backlog bounds derived
from four state-of-the-art service curve estimation methods
by TL from the HIL test system with industrial workload,
which highlights the need for TBASCEM, to analyse the
performance of non-hard real-time streaming systems.

• Derivation of the TBASCEMapproach by reverse-engineering
of NC solution by linear arrival and service curves.

• Setting up of the optimization equation as well as the con-
straints for the TBASCEM algorithm.

• Implementing the TBASCEMRun-TimeMeasurement (RTM)
in LabVIEW and the TBASCEM service curve generation in
MATLAB for a proof-of-concept and performance evalua-
tion.

• Quantitatively comparing the CPU performance of state-of-
the-art TL with our TBASCEM RTM.

• Quantitatively comparing the bound tightness of four state-
of-the-art approaches for estimating service curves from
measurement with our TBASCEM estimation approach.

2 FUNDAMENTALS
HIL test systems have emerged as invaluable tools in computer sci-
ence research and engineering. Their ability to seamlessly integrate
virtual simulations with physical hardware empowers researchers
and engineers to evaluate and optimize complex systems efficiently.
With applications ranging from software testing to fault diagno-
sis, HIL test systems continue to shape the future of innovative
technologies.

225

TBASCEM - Tight Bounds with Arrival and Service Curve Estimation by Measurements ICPE ’24, May 7–11, 2024, London, United Kingdom

The following subsections of this section will confidently explore
important aspects of HIL test systems, with a specific focus on real-
time constraints and designing HIL test systems based on NC.

2.1 Real-Time Constraints of HIL Systems
In HIL systems, the processing time of software or network pro-
cesses is heavily influenced by the computing machine on which
the processes run. For hard real-time systems, the worst-case pro-
cessing time serves as a critical performance indicator, imposing
stringent requirements on the computing machine. Hard real-time
systems are costly but offer formal evaluation and guarantees of
their Worst-Case Execution Time (WCET) through measurements
of processing cycles and CPU frequency.

However, many HIL systems, beyond their hardware interfaces
to the DUT, do not fall under the category of hard real-time systems.
Instead, they fall into the realm of soft and non-real-time systems.
For such systems, formal evaluation cannot be done and guarantees
for a WCET cannot be given due to various factors. Processing
times are influenced by caching mechanisms, memory system hi-
erarchies, CPU frequency fluctuations during run-time, hardware
travel times, interrupt requests, context switches, and other features
of modern computer and operating systems. Additional delays and
processing times may arise when software systems use middleware,
making accurate measurement difficult with high variation. For
instance, interprocess communication using a localhost network
connection in the robot operating system (ROS) [18] exemplifies
this complexity, like applied in the HIL test system [10].

In these non-real-time systems, relying solely on an observed
WCET can also be overly pessimistic, leading to bottleneck assump-
tions and infinite bounds in theory, while practical results suggest
more leniency, as demonstrated by us in [11]. Despite their limi-
tations, non-real-time systems are more cost-effective, and their
software development is simpler and less expensive. For many cases,
a service based onmean-rate or even stochastic bounds suffices. The
occasional timing overshot does not result in catastrophic events if
overshoots are monitored and documented in the test results.

In practice, closed-loop simulations running on HIL systems
often employ monitoring mechanisms to detect simulation service
performance during run-time. Any task overruns are logged as
warnings or errors, prompting re-evaluation of tests in case of
excessive, unwanted overruns [7].

In the case of open-loop re-injection, the HIL system functions as
a streaming device. It streams measured input data like previously
captured sensor data to the DUT. The DUT processes the data, and
the output is streamed back to the HIL system for evaluation as test
results. This setup allows for comprehensive testing and evaluation
of complex cyber-physical systems, providing insights into their
behaviour and performance in real-world scenarios.

2.2 Design of HIL Test Systems with NC
To provide bounds for end-to-end delay and buffer size design of
queuing systems, NC is a possible analytical framework to work
with. NC was introduced by Cruz et al. in 1991 [6]. The analytical
solutions for streaming devices have been derived by Le Boudec et
al. in [14]. It facilitates the establishment of strict yet secure buffer
and delay bounds in these kinds of streaming systems.

We adapted and applied the NC solutions by linear equations
on measurement data from a HIL test system in [11]. But as the
findings in [11] demonstrated, there is a need to refine the derived
boundaries in order to make the system service curve estimate
techniques practical The derived bounds with the WCET method
are often growing to infinity.

To fill this gap, we started a review study on practical measure-
ment methods for arrival and service curves and applied them to
the HIL system, published in [9]. The methods for estimating ser-
vice curves by measurement data proposed by Helm et al. [12] and
Wandeler et al. [20] were applied by us in [9] on TL from a HIL test
system. We used realistic industrial workload for streaming data
to CAN and Automotive Ethernet interfaces for re-injection to the
DUT. The study showed that the delay and backlog bounds, gener-
ated by these estimated service curves are not tight enough in all
cases, to be used in practice. Compared to the maximum measured
backlog or end-to-end delay, the calculated bounds were a factor of
over 10k higher.

The subsequent chapter of this paper introduces our new ap-
proach TBASCEM, which enables monitoring of the streaming
performance like latency, rate, and backlog of the HIL systems
during operation. It estimates arrival and service curves by using
measurements which provide tight bounds for delay and backlog.

3 TBASCEM APPROACH
Our proposed concept aims to measure and estimate arrival and
service curves for non-hard real-time software services in a stream-
ing chain of a HIL system. This methodology can be applied to
other streaming systems, including video streaming services, to
accurately measure worst-case latency, backlog, and estimate burst
parameters. Furthermore, it can estimate arrival and service curves
from this data for tight NC bound calculations.

The approach relies on an iterative online algorithm derived by
reverse engineering of linear NC bound equations. It replaces the
conventional TL used for evaluating the processing performance of
software modules. By doing so, the amount of logging data is sig-
nificantly reduced. Instead of saving two timestamps per message,
our method only requires saving three variables in total for one
software process, based on timestamps and the number of messages
in the queue. The iterative calculation process is computationally
efficient, making it suitable for real-time operation of a HIL test
bench in streaming mode.

The estimated service curves provide an overview of the HIL
system’s performance during operation, offering insights into any
system influences and changes. By logging system data and storing
these curves in a database, it is possible to calculate the likelihood
of these service curves and analyse system affects more easily. This
information may then be utilized with the stochastic NC framework.

Basically, the service curves play a crucial role in determining
delay and backlog bounds with NC. If the HIL system needs to
process new input data with a different arrival curve behaviour, the
buffer size and pre-buffer time parameter will require adjustments.
Our concept helps suggest an appropriate pre-buffer time to prevent
buffer underflow at the playback buffer, and can also save time if
the recommended pre-buffer time is significantly lower than the
initially designed value. Furthermore, it allows for predicting the

226

ICPE ’24, May 7–11, 2024, London, United Kingdom Christoph Funda, Thomas Herpel, Reinhard German, & Kai-Steffen Jens Hielscher

required buffer size between each software service, with a defined
safety factor, represented by the desired tightness factor.

3.1 Concept Idea of TBASCEM
The following Figure shows the queue and server system that can be
abstracted by our streaming SW in the HIL system and the available
measurement points.

T1 T3T2

Inf

Figure 1: Queue and software service

During operation, our algorithm generates fundamental mea-
surements by monitoring two key metrics: the maximum delay
and maximum backlog between the input to a queue of a server
(represented by 𝑇1 in Figure 1) and the output of the server (repre-
sented by 𝑇3 in Figure 1). To compute the burst parameter of the
arrival curve, we utilize the given mean-rate from the original data
and determine the vertical deviation from the mean-rate curve in
each iteration, like illustrated in Figure 2a. We then store only the
maximum positive and minimum negative values of this deviation.

The objective of the reverse engineering algorithm is to derive
the rate-latency service curve parameters using themeasured worst-
case delay, backlog and burst parameter. The final reverse calcula-
tion from these three parameters to the service curve parameters
are illustrated in Figure 2b. Furthermore, Figure 2c illustrates the
reverse calculation in the negative burst domain.

The algorithm takes the following data as input for its calcula-
tions: for each packet i, the timestamp of the packet, 𝑡𝑖 , and the
number of bytes at each packet, 𝑏𝑖 . During operation, we measure
the maximum queue length, 𝑞𝑚𝑎𝑥 , and the maximum delay, 𝑙𝑚𝑎𝑥 .
The algorithm utilizes the inter-arrival time Δ𝑡𝑖 , which represents
the time difference between two successive incoming packets at
time 𝑇𝑖 and time 𝑇𝑖−1.

Δ𝑡𝑖 = 𝑇𝑖 −𝑇𝑖−1 (1)

The algorithm used for the arrival curve run-time measurement
initially calculates the cumulative sum of inter-arrival time for each
step i:

𝑖∑︁
𝑖=0

Δ𝑡𝑖 = 𝑇𝑖 (2)

Let 𝑇𝑖 represent the time passed until packet i, measured in
seconds, and �̃�𝑖 denote the total number of bits sent until packet i:

𝑖∑︁
𝑖=0

𝑏𝑖 = �̃�𝑖 (3)

The mean input rate, 𝑟𝑖𝑛 , is calculated from the timestamp 𝑇0 of
the measurement data, which will be re-injected to the DUT.

Next, we iteratively compute the deviation from the ideal curve
(see Figure 2a):

𝑟𝑖𝑛 ·𝑇𝑖 − �̃�𝑖 = Δ𝑏𝑖 (4)
Where Δ𝑏 quantifies the deviation in terms of bits or messages.

time[s]

m
es

sa
ge

s[
By

te
s]

(a)

time [s]

da
ta

 [B
yt

es
]

(b)

time [s]

da
ta

 [B
yt

es
]

(c)

Figure 2: (a) Visualisation of burst parameter Δ𝑏 estimation
for the arrival curve; (b) 𝑙𝛽 and 𝑟𝛽 parameter estimation of
the service curve ; (c) NC solution with negative burst

The algorithm determines the burst parameter in the arrival
curve during operation as follows:

• Measure𝑚𝑖𝑛(Δ𝑏𝑖) and store it as 𝑏𝑚𝑖𝑛 if the value is smaller
than the previous saved value.

• Measure𝑚𝑎𝑥 (Δ𝑏𝑖) and store it as 𝑏𝑚𝑎𝑥 if the value is higher
than the previous value.

• Calculate 𝑏𝑖𝑛𝑝𝑜𝑠 as (Δ𝑏𝑖) − 𝑏𝑚𝑖𝑛 and update the maximum
value of 𝑏𝑖𝑛𝑝𝑜𝑠 if the calculated value is higher than the old
value.

• Calculate 𝑏𝑖𝑛𝑛𝑒𝑔 as 𝑏𝑚𝑎𝑥 − (Δ𝑏𝑖) and update the maximum
value of 𝑏𝑖𝑛𝑛𝑒𝑔 if the calculated value is higher than the old
value.

The TBASCEM approach for estimating the service curve rate
and latency parameters is based on the following measurement
values:

• burst parameter 𝑏𝑖𝑛 of the arrival curve at the service input,
divided into a positive 𝑏𝑖𝑛𝑝𝑜𝑠 and a negative 𝑏𝑖𝑛𝑛𝑒𝑔 deviation
from the mean rate

227

TBASCEM - Tight Bounds with Arrival and Service Curve Estimation by Measurements ICPE ’24, May 7–11, 2024, London, United Kingdom

• burst parameter 𝑏𝑜𝑢𝑡 of the arrival curve at the service out-
put, divided into a positive 𝑏𝑜𝑢𝑡𝑝𝑜𝑠 and a negative 𝑏𝑜𝑢𝑡𝑛𝑒𝑔
deviation from the mean rate

• maximum latency 𝑙𝑚𝑎𝑥 between service input and output
• maximum queue length 𝑞𝑚𝑎𝑥 between service input and
output, however, we determine the final maximum queue
length as the maximum of 𝑞𝑚𝑎𝑥 and 𝑏𝑜𝑢𝑡𝑝𝑜𝑠 . This approach
is based on the NC theory, as the output bound is equal to
the backlog bound.

3.2 Reverse Engineering Algorithm
The reverse engineering approach to calculate the service curve
parameter rate 𝑟𝛽 and latency 𝑙𝛽 , involves the following equations,
based on the basic geometric connections shown in Figure 2b.

For the calculation of the latency parameter 𝑙𝛽 , the following
equation can be used:

𝑙𝛽 =
𝑞𝑚𝑎𝑥 − 𝑏𝑖𝑛

𝑟𝑖𝑛
(5)

The parameter 𝑙𝛽 is expressed in seconds.
Next, we obtain the rate parameter 𝑟𝛽 using the following equa-

tion:

𝑟𝛽 =
𝑏𝑖𝑛

𝑙𝑚𝑎𝑥 − 𝑙𝛽
(6)

where the parameter 𝑟𝛽 is given in units of
[
𝐵𝑦𝑡𝑒𝑠

𝑠

]
or

[
𝑏𝑖𝑡
𝑠

]
or[𝑚𝑠𝑔

𝑠

]
.

However, this reverse engineering approach has two risks of
incorrect parameter estimation: The first risk occurs when the nu-
merator of Equation (5) becomes ≤ 0, resulting in 𝑙𝛽 ≤ 0. This
can happen if the approximation of Δ𝑏 from the input flow is over-
estimated. The second incorrect estimation can occur when the
denominator of Equation (6) becomes smaller than 0, leading to 𝑟𝛽
becoming negative. This can happen if 𝑙𝛽 is higher than 𝑙𝑚𝑎𝑥 , what
can be caused by an underestimated 𝑏𝑖𝑛 .

To handle these risks, we introduce the estimation parameter
𝑏𝑖𝑛 and use it instead of the measured parameter 𝑏𝑖𝑛 , to distinguish
it from the measurements.

To determine a good value for 𝑏𝑖𝑛 , we furthermore analyse the
tightness calculation of the two bounds, with 𝑑𝑏𝑜𝑢𝑛𝑑 as the delay
bound and 𝑡𝐷 as the delay bound tightness. Respectively, we anal-
yse the backlog bound with 𝑞𝑏𝑜𝑢𝑛𝑑 and 𝑡𝐵 as the backlog bound
tightness. We establish the equations for calculating the tightness
of the bounds, starting with the backlog bound:

𝑞𝑏𝑜𝑢𝑛𝑑 = 𝑟𝑖𝑛 · �̃�𝛽 + 𝑏𝑖𝑛 (7)

𝑡𝐵 =
𝑞𝑏𝑜𝑢𝑛𝑑

𝑞𝑚𝑎𝑥
=
𝑟𝑖𝑛 · 𝑞𝑚𝑎𝑥−𝑏𝑖𝑛

𝑟𝑖𝑛
+ 𝑏𝑖𝑛

𝑞𝑚𝑎𝑥
=
𝑞𝑚𝑎𝑥 + 𝑏𝑖𝑛 − 𝑏𝑖𝑛

𝑞𝑚𝑎𝑥

(8)

The tightness needs to be ≥ 1 to ensure that the bounds are
not undershot. Therefore, an additional constraint is derived from
Equation (8):

𝐶3 : 𝑏𝑖𝑛 ≤ 𝑏𝑖𝑛 (9)

The tightness formula for the delay bound is set up as follows:

𝑑𝑏𝑜𝑢𝑛𝑑 =
𝑏𝑖𝑛

�̃�𝛽
+ �̃�𝛽 (10)

We calculate the tightness of the delay bound using the following
equation:

𝑡𝐷 =
𝑑𝑏𝑜𝑢𝑛𝑑

𝑙𝑚𝑎𝑥
=

𝑏𝑖𝑛
𝑏𝑖𝑛

𝑙𝑚𝑎𝑥 −�̃�𝛽

+̃𝑙𝛽

𝑙𝑚𝑎𝑥
=

𝑏𝑖𝑛

𝑏𝑖𝑛
· 𝑙𝑚𝑎𝑥 + 𝑞𝑚𝑎𝑥−𝑏𝑖𝑛

𝑟𝑖𝑛
· (1 − 𝑏𝑖𝑛

𝑏𝑖𝑛
)

𝑙𝑚𝑎𝑥
(11)

To ensure that the delay bound is not undershot, the tightness
needs to be ≥ 1, and from equation 11, we get the additional con-
straint:

𝑡𝐷 ≥ 1 =⇒ 𝑏𝑖𝑛

𝑏𝑖𝑛
+ 𝑞𝑚𝑎𝑥 − 𝑏𝑖𝑛

𝑟𝑖𝑛 · 𝑙𝑚𝑎𝑥
· (1 − 𝑏𝑖𝑛

𝑏𝑖𝑛
) ≥ 1 (12)

Tightness is important because loose bounds lead to inefficient
HIL system design. Specifically, in the case of a backlog bound, it
leads to a waste of memory resources, and in the case of a delay, it
leads to a loss of time.

We derive the following two conditions from Equation (5) and
(6) that must be handled separately to derive a service curve with
valid bounds by the measurements.

3.2.1 Basic Conditions for Valid Bounds. The basic assumption
is that there are no bottlenecks in the service. So, we set up the
following inequality at first and derive the basic condition from it.

𝐴1 : 𝑟𝛽 ≥ 𝑟𝑖𝑛

=⇒ 𝑏𝑖𝑛

𝑙𝑚𝑎𝑥 − 𝑙𝛽
≥ 𝑟𝑖𝑛 ⇐⇒ 𝑏𝑖𝑛

𝑙𝑚𝑎𝑥 − 𝑞𝑚𝑎𝑥−𝑏𝑖𝑛
𝑟𝑖𝑛

≥ 𝑟𝑖𝑛

⇐⇒ 𝑏𝑖𝑛 ≥ 𝑟𝑖𝑛 · 𝑙𝑚𝑎𝑥 + 𝑏𝑖𝑛 − 𝑞𝑚𝑎𝑥

=⇒ 𝐶𝐷1 :
𝑞𝑚𝑎𝑥

𝑙𝑚𝑎𝑥
≥ 𝑟𝑖𝑛

(13)

The assumption 𝐴1 and setting in Equation (6) leads to the con-
dition 𝐶𝐷1, what we prove at first. If the condition is not fulfilled,
we assume another possible theoretical solution. If 𝑙𝛽 > 𝑙𝑚𝑎𝑥 the
inequality changes to the following term:

𝐴1 : 𝑟𝛽 ≥ 𝑟𝑖𝑛 =⇒ 𝑏𝑖𝑛

𝑙𝑚𝑎𝑥 − 𝑙𝛽
≥ 𝑟𝑖𝑛

𝐼 𝑓 : 𝑙𝑚𝑎𝑥 − 𝑙𝛽 ≤ 0 =⇒ 𝑏𝑖𝑛 ≤ 𝑟𝑖𝑛 (𝑙𝑚𝑎𝑥 − 𝑙𝛽)

𝑏𝑖𝑛 ≤ 𝑟𝑖𝑛 (𝑙𝑚𝑎𝑥 − 𝑞𝑚𝑎𝑥 − 𝑏𝑖𝑛

𝑟𝑖𝑛
) ⇔ 𝑏𝑖𝑛 ≤ 𝑟𝑖𝑛 · 𝑙𝑚𝑎𝑥 + 𝑏𝑖𝑛 − 𝑞𝑚𝑎𝑥

=⇒ 𝐶𝐷2 :
𝑞𝑚𝑎𝑥

𝑙𝑚𝑎𝑥
≤ 𝑟𝑖𝑛

(14)

The visualisation of the theoretical concept for 𝐶𝐷2 and the
negative solution space of 𝑏𝑖𝑛 is shown in Figure 2c.

We know that the arrival curve shown in Figure 2c is not a valid
arrival curve according to the NC definition in the min-plus algebra,
because it does not fulfil the subadditivity property. However, in the

228

ICPE ’24, May 7–11, 2024, London, United Kingdom Christoph Funda, Thomas Herpel, Reinhard German, & Kai-Steffen Jens Hielscher

max-plus algebra and in the Real-Time Calculus (RTC) framework,
it is used. So, we also use it as an arithmetic solution to estimate
the service curve parameters if the condition 𝐶𝐷1 is not fulfilled
and a possible solution can be found in the negative solution space.
We later use the arrival curve with the positive burst parameter for
the calculation of the bounds.

Also, the equation (14) for the service rate is not geometrically
tractable, and cannot directly be applied to the solution. We can
assume that there is no bottleneck and that the service rate corre-
sponds to the input rate, and the input rate can be estimated by this
formula. So, the inequality in Equation (14) is still valid.

However, estimating the 𝑏𝑖𝑛 parameter may lead to overestima-
tion, as the maximal and minimal deviation from the average rate,
like 𝑏𝑖𝑛𝑝𝑜𝑠 and 𝑏𝑖𝑛𝑛𝑒𝑔 are measured, may not necessarily occur at
subsequent arrivals, as shown in Figure 2a. The deviation could
happen at entirely different epochs in the trace.

To find a suitable value for 𝑏𝑖𝑛 that ensures a valid calculation
of the service rate and latency parameter, it must be located within
certain limits, not necessarily matching the measured value 𝑏𝑖𝑛𝑝𝑜𝑠 .
We derive the constraints for these limits in the following sections.

3.2.2 Basic Constraints for Valid Bounds under Condition 1. To
ensure a valid value for the latency 𝑙𝛽 parameter, the following
constraint needs to be met, based on Equation (5):

𝑞𝑚𝑎𝑥 − 𝑏𝑖𝑛 ≥ 0 =⇒ 𝐶1 : 𝑏𝑖𝑛 ≤ 𝑞𝑚𝑎𝑥 (15)

To ensure a valid value for the rate parameter, the following
constraint needs to be fulfilled, based on Equation (6):

𝑙𝑚𝑎𝑥 − 𝑙𝛽 > 0𝑤𝑖𝑡ℎ(5) =⇒ 𝐶2 : 𝑏𝑖𝑛 > 𝑞𝑚𝑎𝑥 − 𝑙𝑚𝑎𝑥 · 𝑟𝑖𝑛 (16)

Since the burst parameter under Condition 1 should not be
smaller than 0, a final constraint is added:

𝐶4 : 𝑏𝑖𝑛 ≥ 0 (17)

3.2.3 Basic Constraints for Valid Bounds under Condition 2. Since
the burst parameter under Condition 2 should be smaller than 0, a
first constraint 𝐶5 is added:

𝐶5 : 𝑏𝑖𝑛 ≤ 0 (18)

To ensure a valid value for the latency 𝑙𝛽 parameter, the constraint
needs to be met, based on Equation (5):

𝐶6 : 𝑞𝑚𝑎𝑥 − 𝑏𝑖𝑛 ≥ 0 =⇒ 𝑏𝑖𝑛 ≤ 𝑞𝑚𝑎𝑥 (19)

To ensure a valid value for the rate parameter, the following con-
straint needs to be fulfilled, based on 𝐶𝐷2 described in Equation
(14):

𝑙𝑚𝑎𝑥 − 𝑙𝛽 < 0𝑤𝑖𝑡ℎ (5) =⇒ 𝐶7 : 𝑏𝑖𝑛 < 𝑞𝑚𝑎𝑥 − 𝑙𝑚𝑎𝑥 · 𝑟𝑖𝑛 (20)

The final constraint is the same as constraint 3 derived by Equation
(8):

𝐶8 : 𝑏𝑖𝑛 ≤ 𝑏𝑖𝑛 (21)

3.2.4 The Optimization Function — Finding a Solution for the Arrival
and Service Curve Parameter Estimation Problem. As a basis, we set
up an optimization function which shall be minimized. It can be
derived by finding the minimum of both summed tightness factors
𝑡𝐷 and 𝑡𝐵 :

𝑡𝐵 + 𝑡𝐷

=
𝑞𝑚𝑎𝑥 + 𝑏𝑖𝑛 − 𝑏𝑖𝑛

𝑞𝑚𝑎𝑥
+ 𝑏𝑖𝑛

𝑏𝑖𝑛
+ 𝑞𝑚𝑎𝑥 − 𝑏𝑖𝑛

𝑟𝑖𝑛 · 𝑙𝑚𝑎𝑥
· (1 − 𝑏𝑖𝑛

𝑏𝑖𝑛
)

= −(𝑞𝑚𝑎𝑥 + 𝑙𝑚𝑎𝑥𝑟𝑖𝑛

𝑞𝑚𝑎𝑥 𝑙𝑚𝑎𝑥𝑟𝑖𝑛
)𝑏𝑖𝑛︸ ︷︷ ︸

𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑎𝑟𝑡

+...

(𝑏𝑖𝑛 − 𝑏𝑖𝑛𝑞𝑚𝑎𝑥

𝑟𝑖𝑛𝑙𝑚𝑎𝑥
) 1
𝑏𝑖𝑛︸ ︷︷ ︸

ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 𝑝𝑎𝑟𝑡

+...

(1 + 𝑏𝑖𝑛

𝑞𝑚𝑎𝑥
+ 𝑏𝑖𝑛 + 𝑞𝑚𝑎𝑥

𝑟𝑖𝑛𝑙𝑚𝑎𝑥
)︸ ︷︷ ︸

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑝𝑎𝑟𝑡

(22)

The optimization function (22) consists of a linear, a hyperbolic,
and a constant part, using 𝑏𝑖𝑛 as the variable. We use the built-in
MATLAB function 𝑠𝑜𝑙𝑣𝑒 , to solve it as an optimization problem
fulfilling either constraint 1-4 and inserting 𝑏𝑖𝑛𝑝𝑜𝑠 as 𝑏𝑖𝑛 for condi-
tion 1, or constraint 5-8 and inserting 𝑏𝑖𝑛𝑛𝑒𝑔 as 𝑏𝑖𝑛 for condition 2.
However, the minimum could also be derived by graphical analysis
of the optimization function (22) within the constraints.

In the first step of our algorithm, we verify, if condition 𝐶𝐷1
holds true. Using the constraints 𝐶1 to 𝐶4 and 𝑏𝑖𝑛𝑝𝑜𝑠 as the param-
eter 𝑏𝑖𝑛 in the optimization function, we can determine a suitable
parameter for 𝑏𝑖𝑛 to find proper service curve parameters.

If 𝐶𝐷1 it is not satisfied, 𝐶𝐷2 must hold true. So, we derive the
service curve based on our measurements for the negative burst
parameter 𝑏𝑖𝑛𝑛𝑒𝑔 . We insert 𝑏𝑖𝑛𝑛𝑒𝑔 as the measured parameter 𝑏𝑖𝑛
into the formula of the optimization function (22) and solve it. We
always use the 𝑏𝑖𝑛𝑝𝑜𝑠 for the burst parameter of the arrival curve,
to derive a valid arrival curve fulfilling the subadditivity property.

4 EVALUATION AND RESULTS
In this chapter, we state three research questions (RQ1-RQ3), explain
why the question is important to us, we explain the methodology
we use to answer the research question, we state a hypothesis,
explain our experimental setup, and discuss the results.

RQ1: How tight are the end-to-end delay and backlog bounds by the
estimated arrival and service-curves derived by different estimation
methods based on TL from real industrial workload?

There are various methods which can be found in literature for
estimating service curves fromTL. Our aim is to decrease the TL and
to enable a RTM technique during operation. To this end, we have
developed the TBASCEM method. However, prior to implementing
the RTM in software, it is worth evaluating the tightness of the
bounds we can generate with the TL already collected from the HIL
system.

229

TBASCEM - Tight Bounds with Arrival and Service Curve Estimation by Measurements ICPE ’24, May 7–11, 2024, London, United Kingdom

Methodology: To evaluate the tightness, we implement themethod
inMATLAB and apply it offline onHIL TL.We furthermore compare
it to other methods from literature, applied on the same dataset.

Hypotheses: Our Hypothesis is that TBASCEM derives the tight-
est bounds compared to all other applied methods.

Experimental Setup: To assess the performance of various arrival
and service curve algorithms, we employ a dataset comprising 81
instances of TL with each, 61116 data points divided into 9 meaning-
ful subserver configurations. This leads to a set of 44 million data
points in total, collected from our prototype HIL system. We used
realistic industrial workload; emulating radar data send as Ethernet
packets over a 100 Mbps channel to the DUTwith an average rate of
7.222 Mbps and a maximum rate of 100 Mbps while using Ethernet
packets of 1538 byte length. TBASCEM is implemented in MATLAB
and is subsequently applied to the recorded timestamps originating
from the software processes. We extract both, latency and backlog
bound from the arrival curve yielded by a single RTM algorithm, as
well as from the service curve generated by four other state-of-the
art algorithms, namely Best-Case Execution Time (BCET), Mean-
Case Execution Time (MCET), WCET and the approach by Alcuri et
al.. Additionally, we conduct a comparison of the bounds’ tightness
by dividing the NC bound by the maximum measured values of
queue length and end-to-end delay. We used software timestamps
as a baseline for our performance evaluation of the HIL streaming
system. Having in mind that these Software (SW) timestamps are
not as precise at Hardware (HW) timestamps. However, as the sys-
tem processing time works in the ms range and their precision lays
in the 𝜇𝑠 range, they can be presumed as precise enough.

Results:
We evaluate the tightness of the TBASCEM and the other algo-

rithms offline using TL. Subsequently, we compare the computed
bounds of all methods as tightness factors by dividing them with
the maximum measured delay or backlog. These comparisons are
presented in Figure 4 as box plots, which displays the following
information: the median, the lower and upper quartiles, any outliers
(computed using the interquartile range), and the minimum and
maximum values that are not outliers. The box plot or box chart is
described by MathWorks™according to [16] as follows. The sample
median is the line inside each box. The top and bottom edges of
each box are the upper and lower quartiles, respectively, where the
upper quartile corresponds to the 0.75 quantile and the lower quar-
tile corresponds to the 0.25 quantile. The distance between the top
and bottom edges is the Interquartile Range (IQR). Outliers are val-
ues that are more than 1.5 IQR away from the top or bottom of the
box. The whiskers are lines that extend above and below each box.
A whisker connects the upper quartile to the non outlier maximum
and to the non outlier minimum respectively. A tightness factor of
smaller than 1 is an undershot and hence rated as a violation of the
bound by the maximum measured value. We refer the interested
reader to the full description of MathWorks™defined box charts
to this source [16]. A tightness factor between 1 and 10 is rated as
high tightness. A tightness factor between 10 and 103 is rated as
medium tightness. And a tightness factor over 103 we rate as low
tightness. However, it depends on the absolute value at the end if
the tightness factor can be used as a safety factor for the playback-
buffer size or pre-buffer time. If the measured service delay is in
the 𝜇𝑠 range and the maximum measured backlog is in the byte

range, a safety factor of 10k or even 1000k would be still in practice
feasible. However, it would lead to inefficient use of computing
resources. It is a trade-off between system robustness and resource
capabilities. Remarkably, the delay tightness of the TBASCEM algo-
rithm is mostly 1 in our datasets with outliers at 1.1 what was our
aim, to have a very tigtht delay bound. Compared to the boxplots
of the other algorithms, the TBASCEM bounds are significantly
tighter. It is followed by the Alcuri and MCET method. They can’t
be significantly distinguished, as their boxes overlap. However, the
median is significantly different, with 25 for Alcuri and around 60
for the MCET method. The BCET follows on the third place and the
WCETmethod derives the untightest results with 60k in median but
seems to have almost no variation, however this mainly depends
on the logarithmic scale of Figure 4. While diving into the numbers
in Table 1, we see that its whiskers and its outliers range between
53k and 70k and its IQR is around 562. For the backlog tightness,
the results look a bit different. The Medium tightness of TBASCEM
is with 2 the lowest of all algorithms. However, as the boxes over-
lay with the Alcuri and MCET method, they are not significantly
distinguishable. The median value of the Alcuri algorithm is 10.
The Median of the MCET method lays significantly higher at 90.
The BCET method lays with its median of 300 significantly higher
as the three before mentioned methods, its boxes lay between 100
and 11k also significantly higher and its whiskers range between
11 and 30k what is also significantly higher. Its outliers are near to
the upper whisker also at around 28k. The WCET reaches again the
significantly untightest median bound with 25k, while its box lays
between 14k and 31k and its whiskers range between 500 and 58k
without any outliers. However, it highly depends on the system pa-
rameters and the absolute value if the bounds derived by the arrival
and service curve values can be used in practice. If they cannot be
used, the maximum measured end-to-end delay and backlog can be
used instead. However, as the TBASCEM algorithm produces tight
bounds in our datasets for the delay, we can use the results to design
the pre-buffer delay of our system. Even with a backlog tightness
up to 10k we also can use the approach to design our buffers, as
the Random Access Memory (RAM) resources are in the Gigabyte
range while the calculated absolute bounds would be still in the
Megabyte range. However, the design in total would be still just
medium efficient, but is comparable to the other state-of-the-art
methods.

RQ2: How high is the impact on the CPU performance of the eased
runtime measurement method for TBASCEM compared to TL?

Explanation: To monitor our HIL streaming system’s perfor-
mance while it is in use, the RTM must reduce the saved variables
while utilizing a relatively small amount of additional computa-
tional power. Producing less logging data would mean to reduce the
measurements and implement an online algorithm for the measure-
ments based on the TBASCEM approach. The logging data would
be highly reduced, however, what would that mean for the CPU
performance, if that algorithm runs in parallel on the computing
machine?

Methodology: Implementation of the runtime measurement al-
gorithm for TBASCEM and run it without logging, with TL and
with TBASCEM logging and log the CPU load, compare the mea-
sured CPU load in a box plot. If the boxes cover each other and

230

ICPE ’24, May 7–11, 2024, London, United Kingdom Christoph Funda, Thomas Herpel, Reinhard German, & Kai-Steffen Jens Hielscher

HIL RT PC (LabVIEW)HOST-PC (ROS)

ROS
replayer

QueueQueue Queue Playback
Buffer

TROSfirst (TsendHW)(TROS0)

ramdisk
(Rosbags)

(TTCPsend) (TTCPrec) TLVlastTROSlast TLVfirst

linux
kernel
 TCP

Queue

linux
kernel
TCP

Queue

Tapping RT PC (LabVIEW)
or DUT

TTapping_rec

Queue

ethernet

timesync
(optional)

Automotive
Interface

timesync
Queue

LV
chain

linux
kernel
ETH

ROS
replayer

ROS
chain

linux
kernel
 TCP

linux
kernel
TCP

+ fixed Offset as pre-buffer delay (>= end-to-end delay)

Figure 3: HIL streaming and queuing system with SW instrumentation to collect timestamps

Alcuri BCET MCET TBASCEM WCET

Methods

10
0

10
2

10
4

T
ig

h
tn

e
s
s
 F

a
c
to

r

Maximum Delay Tightness

(a)

Alcuri BCET MCET TBASCEM WCET

Methods

10
0

10
2

10
4

T
ig

h
tn

e
s
s
 F

a
c
to

r

Maximum Backlog Tightness

(b)

Figure 4: Performance evaluation: Maximum tightness of end-to-end delay bound (a) and backlog bound (b) over different
servers and derived with different methods

Table 1: Summary Statistics for Delay Tightness

Method Alcuri BCET MCET TBASCEM WCET
Upper Outlier 1802.2 28731.1 547.6 1.1 70817.8

Upper Whisker 188.3 4033.3 192.4 1.0 61265.0
0.75 Quantile 84.3 2139.2 100.3 1.0 60812.2

Median 24.5 844.0 62.5 1.0 60574.6
IQR 69.9 1665.7 63.5 0.0 562.2

0.25 Quantile 14.4 473.5 36.8 1.0 60250.0
Lower Whisker 5.3 43.4 3.1 1.0 59452.5
Lower Outlier NaN NaN NaN NaN 53263.4

Table 2: Summary Statistics for Backlog Tightness

Method Alcuri BCET MCET TBASCEM WCET
Upper Outlier 1464.5 28706.2 6271.6 4112.0 NaN

Upper Whisker 55.4 27984.2 139.8 122.1 58111.9
0.75 Quantile 26.4 11524.5 117.1 79.8 31762.1

Median 10.0 314.3 92.9 1.7 24543.5
IQR 19.6 11408.6 103.4 78.7 17879.9

0.25 Quantile 6.8 115.9 13.8 1.1 13882.2
Lower Whisker 3.6 13.3 2.0 1.0 492.5
Lower Outlier NaN NaN NaN NaN NaN

there is no gap between them, they are assumed as not significantly
distinguishable.

Hypotheses: We postulated that the CPU performance demand
for the run-time algorithm would be significantly lower than that
of TL, given our observation that file writing places a substantial
burden on CPU resources.

Experimental Setup: In order to validate this hypothesis, we ex-
ecuted a proof-of-concept implementation of the TBASCEM run-
time measurement algorithm using LabVIEW. Subsequently, we
carried out a comparative analysis, evaluating the LabVIEW-based
TBASCEM implementation against TL, as well as a scenario with-
out any logging. The assessment focused on parameters such as

CPU utilization. CPU utilization measurements were taken every
second using the Linux top command. This was chosen to provide
granularity while avoiding overloading the system with monitoring
measurements. We captured a snapshot of the CPU utilization of
all cores as a percentage. We stream Ethernet data via 1,4,8,10,16
streams in parallel while logging via TBASCEM, TL and no logging
while logging the CPU load every second via top command.

Results: The results of the measurements with different logging
configurations, while scaling up the number of streams is shown in
Figure 5.We see in the results, that the CPU utilization of TBASCEM,
TL, and without logging differ not much per stream. They lay all
in a comparable range, and the boxes overlap, so they are not

231

TBASCEM - Tight Bounds with Arrival and Service Curve Estimation by Measurements ICPE ’24, May 7–11, 2024, London, United Kingdom

1 Stream 4 Streams 8 Streams 10 Streams 16 Streams

no of parall streams

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 i
n

 %
CPU utilization

With TBASCEM Logging

With Timestamp Logging

Without Logging

Figure 5: Measurement of CPU utilization of different logging methods

distinguishable. The measurements of 1, 4, 8, and 10 streams show
consistent results for the higher peaks in CPU utilization of TL
compared to TBASCEM logs. For 16 streams, the TBASCEM logging
peak is higher. So, the TL and writing to a file, could indeed need
more often high CPU resources. We don’t see this always, like in
the example of 16 streams, as the granularity of the CPU logs are
too low. We could increase that with a higher frequency of top
logs, but this would also increase the CPU load itself. However,
the difference of the CPU load for 1 and 16 streams between the
methods with TL and TBASCEM logging are just about 5%. So, the
TBASCEM RTM approach may not need less performance, however
it is comparable to the TL method and does not need much more
CPU performance. Furthermore, the data size would be reduced,
since the algorithm merely stores four values instead of the two
TL per sample, a difference that becomes pronounced with a high
number of samples and testing time. Table 3 displays the file sizes
for both a TL at a single point and the TBASCEM log written to a
CSV file.

Table 3: File sizes of streams with different duration with
different logging methods.

timestamp log in [kB] TBASCEM log in [kB]
90s stream 1970 1
180s stream 3940 1
360s stream 7880 1
5000h stream 394.000.000 1

Considering the parallel streaming of up to 40 streams and the
requirement for at least two points with timestamps to calculate

delay and backlog, the overall file size can quickly increase up to
several TB for a stream duration of approximately 5000h just for
TL. Transferring the data from the HIL system to a different server
for post-processing may be necessary, even though memory may
not be an issue. This needs additional time, what could be used for
the normal operation of the HIL system instead.

RQ3: How performant are the arrival- and service-curve estimation
methods implemented as online algorithms compared to state-of-the-
art TL?

Explanation: We want to compare the performance needs of the
different methods for the memory and CPU, to rate their scalability
and their tightness. These are the most relevant requirements for a
run-time monitoring method.

Methodology:We assess the computational effort, memory usage,
and scalability qualitatively by considering how the method oper-
ates and must be implemented as a runtime RTM. We describe the
effort and provide a qualitative rating. The tightness of the bounds
can be evaluated quantitatively by examining the results of the ini-
tial evaluation and comparison. The results have been categorised
into qualitative values, with values under 10 considered high, those
between 10 and 1000 considered medium, and values above 1000
considered low. This approach ensures consistency with other qual-
itatively rated factors. Additionally, we outline our requirements
for the run-time monitoring approach.

Results: Various algorithms for estimating arrival and service
curves using NC have been extensively discussed in the literature
in recent years. The subsection offers valuable insights into the
different approaches proposed by researchers for estimating arrival

232

ICPE ’24, May 7–11, 2024, London, United Kingdom Christoph Funda, Thomas Herpel, Reinhard German, & Kai-Steffen Jens Hielscher

curves and service curves, helping readers understand the diversity
and nuances of the existing methods.

Service Curve Performance Estimation: When evaluating the suit-
ability of the measurement method for normal run-time operation
of a computer system, our primary focus is on achieving high
performance, characterized by low computational effort and min-
imal memory usage, to ensure excellent scalability. A high level
of tightness for the delay and a medium level of tightness for the
backlog bound is considered sufficient for our specific objectives.
Emphasizing efficiency and the ability to handle larger workloads is
essential in practical applications, guiding our approach to ensure
the method’s practicality and effectiveness in real-world applica-
tions. The approach proposed by Alcuri et al. [1] follows an iterative
method that analyses backlogged periods first for mean-rate estima-
tion and then for maximum latency estimation. However, due to its
high computational effort and memory usage, its scalability is rated
as low, making it unsuitable as a run-time measurement algorithm.
The WCET algorithm, proposed by Helm et al. [12] and applied
to a HIL test system in Funda et al. [9] exhibits good performance
but suffers from low tightness, particularly in non-hard real-time
streaming systems where the mean service rate is close to the mean
input rate. Any short-termWCET that results in a service rate lower
than the input rate will create infinite bounds, limiting its practical
application. The WCET method displayed in Figure 4 often yields
no results due to an infinite bound, which is not illustrated.

The MCET algorithm, also proposed by Helm et al. [12] and
detailed in Funda et al. [9] shows medium suitability from a per-
formance perspective, with medium to low tightness. However, it
requires saving a significant amount of data as all processing times
are accumulated to derive rate and latency parameters.

The BCET algorithm, inspired byWandeler et al. [20] and applied
to a HIL test system by Funda et al. in [9] is unsuitable in terms
of performance since it requires storing and sorting all measured
processing latencies. Moreover, its tightness is insufficient, as it
achieves medium to low tightness of the measured values as dis-
played in Figure 4. In contrast, the TBASCEM algorithm proposed
in this paper has been evaluated to have medium computational re-
quirements and low memory usage and high tightness for the delay
and high to medium tightness for the backlog. The performance
evaluation and tightness assessment of the TBASCEM algorithm
are the primary focus of this paper and have been presented in the
preceding chapters.

Arrival Curve Performance Estimation: The algorithm developed
by Bouillard [5] is structured in multiple layers to detect more
refined periodical behaviours. Initial data points that fall outside
the specified bounds are identified as a sub-flow and are used as
input for subsequent stages. From its description, we assess its
computational effort to be of medium magnitude and its memory
usage to be high, resulting in a medium level of scalability. However,
this algorithm is not applicable in our context since we do not
employ a traffic shaper like a token-bucket, which is a prerequisite
for this algorithm. As a result, we cannot provide the required
maximum burst parameter in advance; instead, we need to measure
it during run-time.

On a different note, the iterative algorithm introduced in [9] lays
a strong foundation for run-time implementation. With a founda-
tional understanding of NC and basic measurements, this algorithm
can be extended to estimate the minimum service curve.

The direct iterative approach discussed by Funda et al. in [9]
estimates both the burst and mean-rate parameters with reduced
computational effort. However, it necessitates the continuous stor-
age of data over time, leading to a gradual increase inmemory usage,
which we rate as excessive. Nevertheless, it attains the highest level
of tightness since it aligns with the definition of arrival curves. This
algorithm serves as a valuable benchmark for comparison purposes.

In this paper, we operate under the assumption of low-performance
requirements and an at least medium level of tightness for the run-
time measurement demands. To validate these assumptions, we
conducted a comprehensive experimental performance evaluation
of the RTM for the reverse engineering TBASCEM algorithm. The
TBASCEM algorithm proposed in this paper has been evaluated to
have medium computational requirements and low memory usage
and medium to high tightness.

5 RELATEDWORK
Algorithms for estimating service curves using NC have been a
common topic in the literature for the past years [1, 3–5, 8, 9, 12,
15, 20]. In this section, we present some examples of them, which
we have chosen due to their applicability for our use-case of a FIFO
queuing server system.

The work by Alcuri et al. [1] introduces a method to estimate
service curves for various types of systems, including non-First-In-
First-Out ones. The algorithm segments input and output traffic
measurements into backlogged periods (periods when the buffer is
not empty) and iteratively determines the start time, end time, and
the amount of output traffic for each backlogged period. Through-
put 𝑟 of each period is computed as the bits leaving the system
divided by the duration of the period. A maximum estimation tech-
nique finds the maximum throughput 𝑟𝑚𝑎𝑥 among all backlogged
periods. By tracing a line with a slope of 𝑟𝑚𝑎𝑥 at all points of the
departure process and projecting it onto the horizontal axis, the
delay 𝑇 is computed. Maximum delay 𝑇𝑚𝑎𝑥 of each backlogged
period is then obtained. The service curve is represented as a rate-
latency curve with rate 𝑟𝑚𝑎𝑥 and latency 𝑇𝑚𝑎𝑥 [1]. This approach
aligns with the definition of strict service curves as mentioned by
Le Boudec et al. in [14].

The first method, proposed by Helm et al. [12], utilizes WCET
to estimate the service curve. It takes the maximum measured
processing latency and the minimum measured rate as the latency
and rate for the service curve, respectively. While this approach
performs well for hard real-time requirements, it requires that the
minimum system service rate to be higher than the mean input
rate. For systems involving streams of limited length and playback
buffers, uninterrupted streaming is possible even if the mean system
rate is not higher than the mean input rate.

To address this, the second method is based on the MCET and
estimates the service using the measured mean rate. It computes
the system latency by considering the maximum and minimum
deviation between the input flow and the mean flow, effectively

233

TBASCEM - Tight Bounds with Arrival and Service Curve Estimation by Measurements ICPE ’24, May 7–11, 2024, London, United Kingdom

accounting for latency outliers. This approach is inspired by Helm
et al. [12].

The third method, based on BCET, orders the measured data
with cumulative latencies in descending order to derive a service
curve. A tangent at the rate-point of interest is traced, and the
intersection point with the time-axis determines the system latency.
However, this method may lead to highly overestimated bounds,
particularly when patterns in the service flow exist. Additionally, it
can be employed to estimate the arrival curve by sorting measured
data in ascending order by the inter-arrival time. The intersection
between the tangent and the y-axis (bytes) determines the burst
parameter. This approach is inspired by the sliding window ap-
proach mentioned in the real-time calculus (RTC) framework by
Wandeler et al. [20]. This method is particularly useful for assessing
the feasibility of streaming a time-limited stream.

There are other measurement-based estimation methods for ser-
vice curves mentioned in a literature review and survey study, that
was conducted by Fidler et al. on various service curve models in the
NC framework [8]. Especially in the section about “measurement-
based service curve estimation” [8], are different methods men-
tioned, like the one from Alcuri et al. [1]. We have not re-implement
all the methods and compared to our method. Especially the method
by Undheim et al. [19] seek to estimate the latency and rate pa-
rameter during a burst and backlogged period like Alcuri et al. [1].
The main difference is that Undheim et al. use the max-plus alge-
bra instead of the min-plus algebra. It could be, that the max-plus
algebra-based estimation derives tighter bounds than the min-plus
algebra-based solution used in [1]. This was already observed ones
by Xie et al. in [21], while applying NC with min-plus algebra and
max-plus algebra on priority scheduling for deriving delay bounds.

6 CONCLUSIONS
This paper introduces the TBASCEM methodology. The method de-
livers arrival and service curves which produce tight delay bounds
and involves an efficient measurement process. It combines a RTM
technique and a reverse engineering algorithm to estimate linear
arrival and service curve parameters from measured data. However,
it can also be applied to state-of-the-art TL from the input flow
and output flow of any FIFO server queuing system. We applied
the alternative methods on realistic data from the HIL system and
received bounds with a tightness factor from several hundred up to
several thousands. So, we found a gap for service curve estimation
from measurement data, which produces tight bounds.

According to our empirical investigation, the reverse engineer-
ing algorithm TBASCEM provides tighter bounds compared to
other methods in the literature. It can be applied on either TL of
input and output flows of a server queuing system, or on reduced
measurements we proposed here in this paper. Furthermore, we
found out that the TBASCEM RTM adequately uses similar CPU
performance like state-of-the-art TL, while it reduces limitations by
data explosion associated with conventional TL, as confirmed by
empirical evaluation of CPU utilisation and exemplary calculation
of logging data sizes.

The TBASCEM RTM can be used in any streaming system to
generate arrival and service curves without significantly impacting
performance. It can be employed to evaluate performance, design

buffer sizes and pre-buffer time, and continuously monitor perfor-
mance during operation, to make service outliers visible.

Future work could involve comparing other measurement-based
estimation methods for service curves mentioned in [8], that we
did not implement and compare to our method. Additionally, our
concept estimates the burst parameter. One could argue that it
would be better to measure this parameter in a more appropriate
manner. It is also critical to note that we assume all maximum
parameters occur simultaneously, which is highly probable, but
cannot be guaranteed. It may be more beneficial to measure the
arrival curve burst parameter and the service curve rate and latency
parameter directly online during operation from current values,
saving only the maximum latency and minimum rate parameter
for future reference. The TBASCEM optimization algorithm could
also be adapted to find a solution for a given tightness factor for
either the latency or the backlog within the solution space of the
functional share of arrival and service curves. Future research could
also include to extend the approach to the stochastic NC framework
for formal validation of soft real-time streaming systems.

ACKNOWLEDGMENT
We gratefully acknowledge the invaluable contributions of: Lisa
Maile (Friedrich-Alexander Universität Erlangen-Nürnberg), Dušan
Okanović and Dhruv Jagga for insightful proofreading and feed-
back. Prof. Christian Berger (University of Gothenburg) for thought-
provoking questions. Hampel Software Engineering GmbH for im-
plementing the TBASCEM RTM in LabVIEW. Frank Keck (ZF Mo-
bility Solutions GmbH) for unwavering support. This research was
supported by ZF AG.

REFERENCES
[1] Luigi Alcuri, Giuseppe Barbera, and Giuseppe D’Acquisto. 2005. Service Curve

Estimation by Measurement: An Input Output Analysis of a Softswitch Model. In
Quality of Service in Multiservice IP Networks, Marco Ajmone Marsan, Giuseppe
Bianchi, Marco Listanti, and Michela Meo (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 49–60.

[2] Bulgaria Aleksandrov, Chavdar Acad, Bulgaria Rumenin, Christian Magele,
Stoyanov, Bulgaria Sotirova, Ritchie, Toepfer, Hartmut Brauer, Marin Hristov,
Repetto, Bulgaria Antchev, Bulgaria Mihailov, Bulgaria Romansky, Bulgaria
Vasilev, Japan Tanaka, Ventsislav Valchev, Vladimir Shelyagin, Ukraine Acad,
and Anna Stoynova. 2019. Review of hardware-in-the-loop -a hundred years
progress in the pseudo-real testing. 54 (12 2019), 70–84.

[3] A.A. Baybulatov and V.G. Promyslov. 2019. Control System Availability As-
sessment Via Maximum Delay Calculation. In 2019 International Conference on
Industrial Engineering, Applications and Manufacturing (ICIEAM). 1–6. https:
//doi.org/10.1109/ICIEAM.2019.8743012

[4] A.A. Baybulatov and V. G. Promyslov. 2017. A Technique for Envelope Regression
in Network Calculus. In 2017 IEEE 11th International Conference on Application
of Information and Communication Technologies (AICT). 1–4. https://doi.org/10.
1109/ICAICT.2017.8687034

[5] Anne Bouillard, Laurent Jouhet, and Eric Thierry. 2009. Service curves in Network
Calculus: dos and don’ts.

[6] R.L. Cruz. 1991. A calculus for network delay. I. Network elements in isolation.
IEEE Transactions on Information Theory 37, 1 (1991), 114–131. https://doi.org/
10.1109/18.61109

[7] dSPACE GmbH. 2017. FAQ 242 - Handling Overrun Situations. https://www.
dspace.com/shared/support/faqpdf/faq242.pdf

[8] Markus Fidler. 2010. Survey of deterministic and stochastic service curve models
in the network calculus. IEEE Communications Surveys & Tutorials 12, 1 (2010),
59–86. https://doi.org/10.1109/SURV.2010.020110.00019

[9] Christoph Funda, Pablo Marín García, Reinhard German, and Kai-Steffen
Hielscher. 2023. Arrival and Service Curve Measurement-Based Estimation
Methods to Analyze and Design Soft Real-Time Streaming Systems with Network
Calculus. In 2023 3rd International Conference on Electrical, Computer, Communi-
cations and Mechatronics Engineering (ICECCME). 1–8. https://doi.org/10.1109/
ICECCME57830.2023.10253001

234

https://doi.org/10.1109/ICIEAM.2019.8743012
https://doi.org/10.1109/ICIEAM.2019.8743012
https://doi.org/10.1109/ICAICT.2017.8687034
https://doi.org/10.1109/ICAICT.2017.8687034
https://doi.org/10.1109/18.61109
https://doi.org/10.1109/18.61109
https://www.dspace.com/shared/support/faqpdf/faq242.pdf
https://www.dspace.com/shared/support/faqpdf/faq242.pdf
https://doi.org/10.1109/SURV.2010.020110.00019
https://doi.org/10.1109/ICECCME57830.2023.10253001
https://doi.org/10.1109/ICECCME57830.2023.10253001

ICPE ’24, May 7–11, 2024, London, United Kingdom Christoph Funda, Thomas Herpel, Reinhard German, & Kai-Steffen Jens Hielscher

[10] Christoph Funda, Kai-Steffen Jens Hielscher, and Reinhard German. 2021. Dis-
crete event simulation for the purpose of real-time performance evaluation of
distributed hardware-in-the-loop simulators for autonomous driving vehicle
validation. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 80 (2021).

[11] Christoph Funda, Tobias Konheiser, Thomas Herpel, Reinhard German, and Kai-
Steffen Hielscher. 2022. An industrial case study for performance evaluation
of hardware-in-the-loop simulators with a combination of network calculus
and discrete-event simulation. In 2022 International Conference on Electrical,
Computer, Communications and Mechatronics Engineering (ICECCME). 1–7. https:
//doi.org/10.1109/ICECCME55909.2022.9988051

[12] Max Helm, Henning Stubbe, Dominik Scholz, Benedikt Jaeger, Sebas-
tian Gallenmüller, Nemanja Deric, Endri Goshi, Hasanin Harkous, Zikai
Zhou, Wolfgang Kellerer, and Georg Carle. 2021. Application of Net-
work Calculus Models on Programmable Device Behavior. In 2021
33rd International Teletraffic Congress (ITC-33). Avignon, France, 1–9.
https://gitlab2.informatik.uni-wuerzburg.de/itc-conference/itc-conference-
public/-/raw/master/itc33/hel21ITC33.pdf?inline=true

[13] Wolfgang Kellerer and Amaury Van Bemten. 2016. Network Calculus: A Com-
prehensive Guide. Technical Report 201603. Technische Universität München
Lehrstuhl für Kommunikationsnetze, Arcisstr. 21, 80333 München, German.

[14] Jean-Yves Le Boudec and Patrick Thiran (Eds.). 2001. Network Calculus. Springer
Berlin Heidelberg, Berlin, Heidelberg, 3–81. https://doi.org/10.1007/3-540-45318-
0_1

[15] Ralf Lübben and Markus Fidler. 2017. Service Curve Estimation-Based Charac-
terization and Evaluation of Closed-Loop Flow Control. IEEE Transactions on
Network and Service Management 14, 1 (2017), 161–175. https://doi.org/10.1109/
TNSM.2016.2638471

[16] MATHWORKS. [n. d.]. Box chart (box plot) - MATLAB boxchart - MathWorks
Deutschland — de.mathworks.com. https://de.mathworks.com/help/matlab/ref/
boxchart.html. [Accessed 22-02-2024].

[17] Franc Mihalič, Mitja Truntič, and Alenka Hren. 2022. Hardware-in-the-loop
simulations: A historical overview of engineering challenges. Electronics 11, 15
(2022), 2462.

[18] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. 2009. ROS: an open-source Robot Oper-
ating System. In ICRA Workshop on Open Source Software.

[19] Astrid Undheim, Yuming Jiang, and Peder J. Emstad. 2007. Network Calculus
Approach to Router Modeling with External Measurements. 2007 Second Interna-
tional Conference on Communications and Networking in China (2007), 276–280.
https://api.semanticscholar.org/CorpusID:6662110

[20] ErnestoWandeler. 2006. Modular Performance Analysis and Interface-Based Design
for Embedded Real-Time Systems. Ph. D. Dissertation. ETH Zurich.

[21] Jing Xie and Min Xie. 2013. Delay bound analysis in real-time networks with
priority scheduling using network calculus. In 2013 IEEE International Conference
on Communications (ICC). IEEE, 2469–2474.

A APPENDIX
A.1 Technical Information about the HIL

Systems Under Study
The HIL cluster consists of a HOST PC and a HIL RT-PXI.

A.1.1 HOST PC. The HOST PC is equipped with a 2012 Intel Xeon
E3-1230 V2 3.3 GHz processor (four physical CPU cores) and 16
GB system memory. All worker nodes are connected via 40 Gbit
Ethernet in a single-switch star topology. Each node runs Gentoo
Linux (kernel version 3.6.11) and Java 1.7.0.13.

A.1.2 HIL PC. The HIL RT-PXIe-8880 is equipped with an Intel(R)
Xeon(R) CPU E5-2618L v3 @ 2.30GHz (8 physical CPU cores) and
24 GB system memory. All worker nodes are connected via 40 Gbps
Ethernet in a single-switch star topology. Each node runs NI Linux
Real-Time x64 4.14.146-rt67 and other NI LabVIEW Runtime and
NI Drivers.

GLOSSARY
BCET Best-Case Execution Time (BCET) is the lowest observed

execution time of a software process running on a dedicated
computing machine.. 7, 10, 11

DUT Device Under Test (DUT) is the technical device, what is
integrated into the hardware-in-the-loop simulator and stim-
ulated by measurement data from the real-world device or
by simulation.. 1–4, 7

FIFO First-In, First-Out (FIFO) refers to a principle where the first
item to enter a system or queue is the first to be processed
or served.. 1, 10, 11

HIL Hardware-in-the-Loop (HIL) test system or simulator or test
bench is a methodology and a technical system for testing
and validation of a technical product. See [2, 17] for details..
1–12

HW Hardware (HW) are machines, wiring, and other physical
components of a computer or other electronic system.. 7

IQR interquartile range (IQR) refers to the distance between the
top and bottom edges of a boxplot, corresponding to the
upper quartile or 0.75 quantile and the lower quartile or 0.25
quantile, respectively. 7

MCET The Mean-Case Execution Time (MCET) is the mean or av-
erage observed execution time of a software process running
on a dedicated computing machine.. 7, 10

NC Network Calculus (NC) is a system theoretical approach for
calculating delay and backlog bounds by min-plus algebra..
1–5, 7, 9–11

RAM Random Access Memory (RAM) is a type of computer mem-
ory that stores data that can be searched by programs.. 7

RTM Run-Time Measurement (RTM) approach are measurement
methods for performance evaluation of software during sys-
tem operation. In this paper mainly used to measure the
maximum end-to-end delay and backlog between the input
and output flow of a message stream in a software service
process with queues in between. Additionally, the maximum
burst parameter of the input and output flow is estimated..
2, 6, 7, 9–11

SW Software (SW) are programs and other operating information
used by a computer.. 7

TL Timestamp Logging (TL) is a state-of-the-art method for per-
formance evaluation of software timing. Timestamp Logs
(TL) are the respective data-files generated by the logging.
In this paper mainly used to measure the input and output
flow of a message stream in a software service process with
queuing.. 1–3, 6–9, 11

WCET Worst-Case Execution Time (WCET) is the highest ob-
served execution time of a software process running on a
dedicated computing machine.. 3, 7, 10

Received 17 November 2023; Accepted 29 December 2023; Revised 11 March
2024

235

https://doi.org/10.1109/ICECCME55909.2022.9988051
https://doi.org/10.1109/ICECCME55909.2022.9988051
https://gitlab2.informatik.uni-wuerzburg.de/itc-conference/itc-conference-public/-/raw/master/itc33/hel21ITC33.pdf?inline=true
https://gitlab2.informatik.uni-wuerzburg.de/itc-conference/itc-conference-public/-/raw/master/itc33/hel21ITC33.pdf?inline=true
https://doi.org/10.1007/3-540-45318-0_1
https://doi.org/10.1007/3-540-45318-0_1
https://doi.org/10.1109/TNSM.2016.2638471
https://doi.org/10.1109/TNSM.2016.2638471
https://de.mathworks.com/help/matlab/ref/boxchart.html
https://de.mathworks.com/help/matlab/ref/boxchart.html
https://api.semanticscholar.org/CorpusID:6662110

	Abstract
	1 Introduction
	2 Fundamentals
	2.1 Real-Time Constraints of HIL Systems
	2.2 Design of HIL Test Systems with NC

	3 TBASCEM Approach
	3.1 Concept Idea of TBASCEM
	3.2 Reverse Engineering Algorithm

	4 Evaluation and Results
	5 Related Work
	6 Conclusions
	References
	A Appendix
	A.1 Technical Information about the HIL Systems Under Study

