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ABSTRACT
In recent years, large language models (LLMs) have become perva-
sive in our day-to-day lives, with enterprises utilizing their services
for a wide range of NLP-based applications. The exponential growth
in the size of LLMs poses a significant challenge for efficiently uti-
lizing these models for inference tasks, which require a substantial
amount of memory and compute. Enterprises often possess multiple
resources (workers, nodes, servers) with unused (leftover) capacity,
providing an opportunity to address this challenge by distributing
large models across these resources.

Recent work such as Petals, provides a platform for distribut-
ing LLM models in a cluster of resources. Petals require that users
use their discretion to distribute blocks on a given cluster, con-
sequently leading to a non-optimal placement of blocks. In this
paper, we propose LLaMPS - a large language model placement
system that aims to optimize the placement of transformer blocks
on the available enterprise resources, by utilizing the leftover capac-
ity of the worker nodes. Our approach considers leftover memory
capacity along with available CPU cores, when distributing trans-
former blocks optimally across worker nodes. Furthermore, we
enhance the scalability of the system by maximizing the number
of clients that can be served concurrently. We validate the efficacy
of our approach by conducting extensive experiments using open-
source large language models - BLOOM (1b, 3b, and 7b parameters),
Falcon, and LLaMA. Our experiments demonstrate that LLaMPS
facilitates optimal placement of transformer blocks by utilizing
leftover resources, thus enabling enterprise-level deployment of
large language models.

CCS CONCEPTS
• Computing methodologies→ Distributed artificial intelli-
gence.

KEYWORDS
LLMs, Leftover capacity, Distributed inference, Optimal block place-
ment
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1 INTRODUCTION
Large Language Models (LLMs) have become pervasive, finding
widespread applications in businesses, such as natural language pro-
cessing [11] and recommender systems [9] [15] for inference tasks.
LLMs [14] [10] have been instrumental in enabling decision-making
and facilitating various aspects of day-to-day business operations
in enterprises. With the continuous evolution of LLMs, a notable
challenge that has emerged is their increasing size. As LLMs grow in
scale [5], they require a substantial amount of memory and compute
resources for effective deployment. These requirements may pose
a constraint in enterprises having limited infrastructure, impeding
their ability to fully leverage the potential of LLMs for inference
tasks.

Many businesses deploy LLM-powered chatbots [16] [4] for cus-
tomer support. These chatbots require substantial memory and
computational resources for handling natural language queries effi-
ciently. Recommender systems [13] powered by LLMs, like those
used by streaming services, need to process vast amounts of user
data and perform complex language-based recommendations, de-
manding considerable computational resources. Besides LLMs have
been steadily increasing in size over time to improve their perfor-
mance, and this growth has led to greater resource requirements.
Larger models generally require more memory and computational
power for efficient inference. As businesses grow and their work-
loads increase, theymay find it challenging to scale their inferencing
infrastructure to meet the demand. This can lead to performance
bottlenecks and delays.

To address these challenges enterprises do have multiple options
such as leveraging cloud-based LLM services to help mitigate some
of the infrastructure and resource constraints. Cloud providers offer
pre-configured LLM models and scalable infrastructure, which may
not necessarily be a cost-effective solution.

Enterprises however have a latent opportunity comprising of
multiple worker (server) nodes having leftover capacity in terms of
memory and processing cores. We believe this capacity can be ef-
fectively utilized to deploy LLMs in a distributed manner. There are
some efforts in the literature such as Deepspeed [18], Petals [6] etc
that enable the distribution of transformer blocks across multiple
workers. DeepSpeed enables distributed fine-tuning and inference
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of transformer blocks by on the underlying GPU cluster, by utiliz-
ing maximum possible resources. Petals [5] is one such effort that
enables the distribution of the transformer blocks across multiple
workers for fine-tuning or inference. Petals utilize leftover capacity
from the workers in a cluster to seamlessly enable the distribu-
tion of transformer blocks across worker nodes. However, Petals
requires that users use their discretion to distribute blocks on a
given cluster, consequently leading to a non-optimal placement of
blocks. This may also lead to sub-optimal system performance in
terms of inference latency.

In this paper, we address the above-mentioned challenges by
proposing a system that enables optimal placement of transformer
blocks in a given cluster. Our contributions are as follows:
• We propose an Optimal block Placement Algorithm (OPA),
used in LLaMPS s.t., multiple models may be served on a
single server, while optimally utilizing the leftover capacity
of workers in the cluster.
• We evaluate the efficacy of LLaMPS on an enterprise CPU-
cluster on multiple variants of open source transformer-
based large languagemodels, namely BLOOM [23], LLaMA [21]
and Falcon [20].

The rest of the paper is structured as follows. Section 2 provides a
background for our proposed work. We present the LLaMPS system
in Section 3. Our experiment setup is discussed in Section 4. We
present results, ablation studies, and related work in Sections 5, 6
and 7. We conclude with directions for future work in Section 8.

2 BACKGROUND

Figure 1: Inference

The resource constraints imposed by the massive scale of trans-
former models render them unsuitable for deployment on a single
server. Consequently, this has been an active area of research for
exploring solutions to harness the potential of these models in a
distributed manner. One approach to address the resource challenge
is to leverage distributed frameworks that enable the allocation of
transformer blocks across multiple servers. These frameworks aim
to maximize the computational resources available for distribution,
thus achieving low-latency inference. However, this strategy, while
effective in reducing response times, can lead to sub-optimal uti-
lization of resources. An alternative school of thought advocates

for making efficient use of the leftover capacity of servers, ensuring
that no computational power goes to waste. One such framework
is Petals, which capitalizes on the untapped resources of servers.

As shown in Figure 1 a typical enterprise may have servers s1,
s2, and s3, each with different degrees of leftover capacity. Trans-
former model blocks are distributed across these servers. Server
1 hosts Blocks 0-9, Server 2 handles Blocks 10-15, and Server 3
manages Blocks 16-23. During an inference cycle, the input is ini-
tially tokenized at the client node (Steps 1 and 2), and the tokenized
input is then relayed to server 1. The input traverses the allocated
transformer blocks on server 1, and the intermediate output is se-
quentially passed to server 2, and so on, until it has traversed all the
blocks of the transformer (Steps 3a, 3b, 3c). Finally, the output from
the last server in the sequence is transmitted back to the client,
where the required output is generated.

Petals, although making effective use of available block capaci-
ties, do not inherently guarantee an optimal distribution of these
blocks across servers. In response to this limitation, we introduce
an Optimal Placement Algorithm (OPA) within the LLaMPS frame-
work, offering an enhanced method for strategically allocating
blocks across servers. OPA’s primary objective is to accommodate
multiple models efficiently on a single server while exploiting any
residual server capacity. The LLaMPS system can be seamlessly inte-
grated with various open-source distributed frameworks, providing
flexibility and compatibility. In this paper, we assess the perfor-
mance of the Optimal Placement Algorithm within the LLaMPS
framework when applied to the open-source Petals framework. To
conduct our evaluation, we established a controlled lab environ-
ment within an enterprise setting, featuring a cluster composed
of four CPU servers with heterogeneous capacities. Since Petals
supports three different Large Language Models (LLMs), namely
LLaMa, BLOOM, and Falcon; our analysis encompasses all three
LLMs, offering a comprehensive assessment of the algorithm’s effi-
cacy across a range of scenarios.

3 LLAMPS
In this section, we present our system LLaMPS. As shown in Fig-
ure 2, the LLaMPS system takes the size of the transformer model
as input. This input is crucial for accurately calculating the total
memory requirement for accommodating the model on the avail-
able resources. LLaMPS leverages the residual resource capacity
available within an enterprise cluster pool. We quantify this leftover
capacity in terms of memory and number of cores (i.e., compute ca-
pacity). LLaMPS then runs the Optimal Placement Algorithm (OPA)
to determine the optimal distribution of transformer blocks across
nodes in the enterprise resource cluster. The optimal placement
algorithm is designed to maximize the overall leftover capacity
within the resource cluster to enable multiple clients to be served
concurrently. Once the plan is ready, the transformer model is au-
tomatically chunked into blocks and the blocks are distributed to
the identified servers. The application is then ready to start the
process of inference. In contrast, Petals [5] distributed framework
requires the user to decide the exact distribution of blocks across
the available servers. This distribution may lead to a sub-optimal
utilization of the enterprise resources. The Optimal Placement Algo-
rithm of LLaMPS ensures that the leftover capacity of the enterprise
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Figure 2: Architecture of LLaMPS

cluster is optimally utilized, subsequently serving multiple clients
and enabling multiple models to be supported on individual worker
resources in the enterprise cluster.

The Optimal Placement Algorithm is outlined in algorithm 1.
As depicted in the Optimal Placement Algorithm 1, LLaMPS de-

Algorithm 1 OPA - Optimal Placement Algorithm
Require: • 𝑇𝐵𝑠 - Size of transformer model block
• 𝑃𝑜 - Petals Framework Overhead
• 𝑆 - Cluster of enterprise workers
• 𝐴𝑀𝑆 - Available memory for each worker
• 𝐴𝐶𝑆 - Available cores for each worker
• 𝑁𝑏 (𝑆) - Number of blocks on a worker

Ensure: Optimal block placement on servers
1: for each worker in the cluster 𝑆𝑖 ⊆ 𝑆 do
2: 𝐿𝑀 (𝑆𝑖 ) ← (𝐴𝑀𝑆𝑖 − 𝑃𝑜 ) ⊲ Left over memory capacity
3: 𝐴𝐶 (𝑆𝑖 ) ← Available cores of worker
4: end for
5: for each worker in the cluster 𝑆𝑖 ⊆ 𝑆 do
6: Assign preference scores for memory and cores
7: 𝑀 [𝑆𝑐𝑜𝑟𝑒𝑠𝑖 ] ← Normalized matrix of scores
8: 𝑊𝑚𝑖

←Weighted memory score using𝑀 [𝑆𝑐𝑜𝑟𝑒𝑠𝑖 ]
9: 𝑊𝑐𝑖 ←Weighted core score using𝑀 [𝑆𝑐𝑜𝑟𝑒𝑠𝑖 ]
10: [𝑊𝑆𝑐𝑜𝑟𝑒𝑖 ] ← (𝑊𝑚 × 𝐿𝑀 (𝑆𝑖 )) + (𝑊𝑐𝑖 ×𝐴𝐶 (𝑆𝑖 ))
11: end for
12: 𝑆 [𝑊𝑆𝑐𝑜𝑟𝑒𝑖 ]𝑠𝑜𝑟𝑡𝑒𝑑 ← List of sorted servers based on scores
13: Assign blocks to each server from 𝑆 [𝑊𝑆𝑐𝑜𝑟𝑒𝑖 ]𝑠𝑜𝑟𝑡𝑒𝑑 list s.t.

𝑁𝑏 (𝑆𝑖 ) ← 𝐿𝑀 (𝑆𝑖 )/𝑇𝐵𝑠
14: Distribute blocks on each server for inference

termines the available memory and cores on each worker in the
enterprise cluster. Next, OPA calculates the leftover memory capac-
ity of each worker (Step 2). Since we use the open-source Petals
framework for the distribution of the transformer block, OPA needs
to deduct the memory overhead imposed by Petals on the worker
node. OPA is a generic approach that enables optimal distribution
of transformer blocks on an enterprise cluster, hence the underlying
distributed framework can be replaced by any other framework. It is

expected that the memory overhead imposed by the framework will
be deducted from the available memory at a worker node. Once the
available memory and cores at each worker are determined, OPA
then follows the Analytical Hierarchy Process (AHP) technique [12]
- a popular approach for systematically determining weights based
on the preferences of decision-makers. AHP helps in structuring the
decision-making process and deriving relative weights through pair-
wise comparisons. Weights are based on preference scores. Since
we compare OPA with GMA which is a memory-based approach,
we have assigned higher preference to memory. In LLaMPS we have
two objectives - memory and cores. Decision-makers assign a pref-
erence score to indicate how much one objective (memory) is more
important than another (cores) (Step 6). After collecting preference
scores, we normalize them to form a consistent comparison matrix
(Step 7). Then, the weighted average of each objective is calculated
based on the normalized comparison matrix (Step 8,9). The final
weighted scores for each worker node are determined as shown
in Step 10. Once the scores for all worker nodes are determined,
the list of worker nodes is sorted in descending order based on
the scores (Step 12). OPA then determines the number of blocks
to be loaded on each server, by dividing the leftover memory at
each worker by the size of each transformer block (Step 13). The
blocks are then loaded on each server and the Petals framework is
leveraged to perform downstream tasks.

Algorithm 2 GMA - Greedy Memory Algorithm
Require: • 𝑇𝐵𝑠 - Size of transformer model block
• 𝑃𝑜 - Petals Framework Overhead
• 𝑆 - Cluster of enterprise workers
• 𝐴𝑀𝑆 - Available memory for each worker
• 𝑁𝑏 (𝑆) - Number of blocks on a worker

Ensure: Optimal block placement on servers
1: for each worker in the cluster 𝑆𝑖 ⊆ 𝑆 do
2: 𝐿𝑀 (𝑆𝑖 ) ← (𝐴𝑀𝑆𝑖 − 𝑃𝑜 ) ⊲ Left over memory capacity
3: end for
4: [𝐿𝑀 (𝑆𝑖 )]𝑠𝑜𝑟𝑡𝑒𝑑 ← List of sorted servers by leftover memory
5: Assign blocks to each server from [𝐿𝑀 (𝑆𝑖 )]𝑠𝑜𝑟𝑡𝑒𝑑 list s.t.

𝑁𝑏 (𝑆𝑖 ) ← 𝐿𝑀 (𝑆𝑖 )/𝑇𝐵𝑠
6: Distribute blocks on each server for inference
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Table 1: Regression Model Comparison: Predicting Petals’ Memory Overhead

Model MSE R-Squared Petals’ Memory Overhead Equation
Linear Regression 263.7 0.773 1.88 · Number of Blocks + 0.60 ·Model parameters − 15.05
LGBM Regression 722.25 0.394 73443.43 · Number of Blocks + 148798.14 ·Model parameters

Polynomial Regression 6.74 0.994 0.03 · Number of Blocks ·Model parameters + 0.65 · (Model parameters)2 + 0.14
Decision Tree Regression 19.75 0.998 Decision Tree

Algorithm 2 depicts GMA - Greedy Memory Algorithm. The
GMA determines the leftover memory capacity (Step 2). A user is
more likely to use a greedy memory approach to select resources
for block placement. Hence we have used GMA as the baseline
algorithm in our experiments. However, GMA does not guarantee
optimal block placement while OPA does. Then it sorts the list of
servers in the descending order of memory capacity (Step 5). The
blocks are then assigned to the servers in the sorted order of the
list based on the leftover memory capacity of each worker (Step 5).
GMA does not take into consideration the cores when assigning
blocks which may lead to a sub-optimal placement of blocks on the
servers, subsequently affecting system performance adversely. We
present detailed experiments and ablation studies to compare the
OPA algorithm of LLaMPS with GMA.

4 EXPERIMENT SETUP
We designed multiple experiments to validate the efficacy of the
optimal placement algorithm of LLaMPS. We aimed to place trans-
former blocks in an enterprise cluster while optimally utilizing
the leftover capacity of the workers in the cluster. We believe that
the optimal placement of blocks enables serving a maximum num-
ber of possible clients simultaneously within an enterprise. We
now present some details of our experiment setup. Our experiment
setup comprises multiple large language models, and worker nodes
having heterogeneous configurations within an enterprise cluster.

4.1 Large Language Models
Our experiments are conducted on 3 different open-source models,
namely BLOOM [23], LLaMA [21] and Falcon [20]. BLOOM is a
multi-lingual large language model that has the ability to gener-
ate text in 46 natural languages and 13 programming languages.
The BLOOM model comes in multiple variants. In this paper, we
have conducted our experiments on 3 variants - namely 560 mil-
lion, 3 billion, and 7 billion parameter versions of BLOOM. The
multiple variants enable us to deeply evaluate the efficacy of our
proposed system. Another model we have used to evaluate LLaMPS
is LLaMA (Large Language Model Meta AI), which is a family of
LLMs released by Meta AI [8]. LLaMA has multiple variants and
we conduct our experiments on the 70 billion version of the LLaMA
model. Additionally, we also conduct experiments on Falcon [20]
which is a generative large language model. Falcon comes in multi-
ple variants and we evaluate LLaMPS on the 40 billion version of
Falcon. Through our experiments on multiple variants of multiple
open-source models in the literature, we reinforce the efficacy of
our proposed system LLaMPS.

4.2 Heterogeneous Enterprise Cluster
We create a set-up in our enterprise lab, utilizing leftover capacities
of servers utilized by members of the labs. We pick 5 CPU-based
servers and the configuration of these servers is depicted in Table 2.
All servers have heterogeneous configurations in terms of operation
system, OS version, cores, and memory, which is a typical real-
world setup in any enterprise. We leverage this leftover capacity to
optimally distribute blocks of large language models such that the
number of users can be maximized. Table 2 provides details of the
different servers and also distinguishes between the "Client" and
four different servers ("Server 1," "Server 2,","Server 3" and "Server
4") and their respective configurations.

4.3 Distributed Framework Overhead
The LLaMPS system functions on the Petals distributed framework,
utilizing its services for various tasks, including the creation and
initialization of the Distributed Hash Table (DHT) and the loading
of transformer blocks. The overhead and impact of these factors on
OPA’s performance within LLaMPS led us to conduct a series of
experiments for a systematic analysis. In this investigation, Petals
serves as the open-source foundation for LLaMPS, supporting block
distribution and other DHT-related operations. It is important to
note that although LLaMPS currently leverages Petals, it is not lim-
ited to using this particular framework and can seamlessly integrate
with any alternative distributed framework for execution.

To predict the memory overhead linked to Petals (Petals’ Mem-
ory Overhead), we formulated an equation with two variables: the
number of blocks and number of model parameters. This predictive
model proves to be valuable in the Block Placement algorithm.

Table 1 displays the outcomes of four regression models—Linear
Regression, LGBM Regression, Polynomial Regression, and Deci-
sion Tree Regression—applied to 150 data points. Our experiments
reveal that the Decision Tree Regression model outperforms the
other three, demonstrating an R-squared value of 0.998 and an MSE
of 19.75. Consequently, we employed the Decision Tree Regression
model for predicting Petals’ Memory Overhead. Choosing simpler
machine learning models other than DDN and LLMs is a more
cost-effective and resource-efficient approach.

Three factors within the distributed framework contribute to the
overall overhead: the overhead determined by the Decision Tree
Regressor model, and the Attention cache’s size. The size of the
attention cache is calculated as twice the model’s hidden size multi-
plied by 4096 times the tensor size (4 bytes for CPU). Together, these
factors collectively constitute the Petals Framework Overhead,
quantified as:

Petals Memory Overhead + Attention Cache size (1)
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Table 2: Server Configuration Information

Server OS Version Kernel Total Memory(GB) Cores
Client Ubuntu 18.04.6 5.4.0 62.8 48
Server 1 Ubuntu 18.04.6 5.4.0 252 56
Server 2 Ubuntu 22.04.3 5.19.0 992 88
Server 3 CentOS 7 3.10.0 504 56
Server 4 CentOS 7.8 3.10.0 256 56

LLaMPS system uses this formula to calculate Petals Framework
Overhead for block placement.

5 EXPERIMENTS
We performed various experiments on GMA and OPA by varying
the model parameters, servers, clients, cores, batch size, and token
length.

Given below are the details of various parameters used in exper-
iments.

• Model): The experiments were conducted using the "bloom-
560m," "bloom-3b," "bloom-7b1," "falcon-40b," and "llama-70b"
models.
• Block Distribution: The "Block_distribution" varied be-
tween "[24]" for "bloom-560m" and "[30]" for "bloom-3b" and
"bloom-7b1." In the "falcon-40b" and "llama-70b" models, the
block distribution was specified as "(32,28)" and "(35,25,20)"
respectively.
• Memory: The "Memory" column indicates the memory con-
figurations used for each experiment. For example, "[12, 14,
14, 14]" in "bloom-560m" refers to the memory allocated on
a single server.
• Cores: The "Cores" column specifies the number of cores
allocated to each server. It varied for different models and
experiments.
• Selected Servers: This column lists the selected servers for
each experiment. It may include server configurations and
the number of servers, like "[14,2]" or "(35,25,20)".
• Clients: C1, C2, and C4 represent a number of clients being
1, 2, and 4.
• Block Execution Time C1, C2, C4: The "Block Execution
Time" columns represent the execution time for different
clients (C1, C2, C4) under both the "GMA " and "OPA" ap-
proaches.
• Batch Size: Batch size refers to the quantity of input data
grouped together. In the context of text generation with a
transformer model, a batch size of 1 corresponds to generat-
ing text based on a single input sentence. Conversely, a batch
size of ’n’ involves generating text for ’n’ input sentences
concurrently, sending all ’n’ sentences to the transformer
simultaneously.
• Token: The "number of tokens" refers to the quantity of
output tokens produced by a transformermodel. For instance,
in text generation using a transformer model, having 100
tokens means generating a sequence of 100 words.

5.1 Varying the cores -> pick best the core
Assigning servers based on a combination of memory and cores
is a basic premise of OPA in LLaMPS. In our experiments across
various versions of the Bloom model (Figure 3), a notable observa-
tion emerged: the optimal performance was achieved at 8 cores, i.e.,
additional cores beyond 8 did not give any significant performance
improvement. To validate our observations, we systematically con-
ducted experiments with varying configurations, namely 2, 4, 8, 16,
32, and 56 cores. As shown in Figure 3, beyond the 8-core thresh-
old, the block execution stabilized, revealing a clear knee point in
the performance curve. Our results are consistent across multiple
flavors of the BLOOM model and also support multiple concurrent
clients.

5.2 Model fits on a single server
Table 3 depicts experiments conducted for varying flavors of BLOOM,
LLaMA, and the Falcon models. We compare our approach with
the GMA for the choice of servers selected for block distribution.
We measure the block execution time in each case for single and
concurrent clients. We experimented with OPA block placement
algorithms on a single server, adjusting client loads across 1, 2, and
4 concurrent clients. These trials were conducted on three distinct
models. Notably, when we refer to ’1 server,’ it implies that all
transformer blocks are positioned on a single server, while ’1 client’
signifies a lone user sending input queries to the server. Conversely,
’2 concurrent clients’ and ’4 concurrent clients’ denote two and four
concurrent users sending input queries to the server. The servers
are named as S1, S2, S3 and S4. There server tuple is represented as
S(available memory in GBs, Available cores). Our aim is to ensure
the optimal distribution of transformer blocks such that the number
of clients served is maximized.

(1) For the Bloom-560m model, we utilized four servers—S1,
S2, S3,and S4—with heterogeneous memory and core specifi-
cations. GMA opted for S2 to distribute all 24 blocks, whereas
OPA selected server S4. Comparing block execution times
using a batch size of 16 and token size of 10, inference us-
ing GMA took 3.09 seconds for 1 client, 4.87 seconds for 2
concurrent clients, and 9.73 seconds for 4 concurrent clients.
Conversely, inference using OPA resulted in execution times
of 2.02 seconds for 1 client, 3.01 seconds for 2 concurrent
clients, and 4.56 seconds for 4 concurrent clients. Notably,
the block execution times for OPAwith 1, 2, and 4 concurrent
clients were lower than GMA with a single client. Therefore,
OPA exhibited better performance for 1 and 2 concurrent
clients compared to GMA for 1 client, while OPA across

205



ICPE ’24, May 7–11, 2024, London, United Kingdom Ravi Kumar Singh, Likhith Bandamudi, Shruti Kunde, Mayank Mishra, and Rekha Singhal

Figure 3: Knee Point on varying Cores

1, 2, and 4 concurrent clients outperformed GMA with 2
concurrent clients.

(2) For the Bloom-3bmodel, similar to the Bloom-560mmodel,
four servers (S1, S2, S3, and S4) were utilized, each with
distinct memory and core configurations. GMA selected S2
to distribute all 30 blocks, whereas OPA utilized the S4 server.
The block execution times using GMA were 17.01 seconds
for 1 client, 28.43 seconds for 2 concurrent clients, and 59.46
seconds for 4 concurrent clients. However, with OPA, the
execution times were notably lower: 7.12 seconds for 1 client,
10.12 seconds for 2 concurrent clients, and 20.15 seconds
for 4 concurrent clients. Once again, OPA exhibited better
performance for 1 and 2 concurrent clients compared to
GMA for 1 client, while outperforming the GMA across 1, 2,
and 4 concurrent clients.

(3) Lastly, for theBloom-7bmodel, with the same set of servers
(S1, S2, S3, and S4) and their corresponding memory and core
specifications, GMA opted for S2 to distribute all 30 blocks,
whereas OPA selected the use of the S4 server. The block
execution times using the GMA were 45.02 seconds for 1
client, 83.21 seconds for 2 concurrent clients, and 179.01
seconds for 4 concurrent clients. However, employing OPA
resulted in significantly lower execution times: 20.1 seconds
for 1 client, 34.5 seconds for 2 concurrent clients, and 67.44
seconds for 4 concurrent clients. Similar to the previous
models, OPA demonstrated superior performance for 1 and
2 concurrent clients compared to GMA for 1 client, and
across 1, 2, and 4 concurrent clients compared to GMA with
2 concurrent clients.

We were unable to conduct experiments with Falcon and LLaMA
models as the leftover capacity of any single server was insufficient
to load all the blocks of Falcon and LLaMA. In the next set of
experiments, we focus on scenarios where the leftover capacity
of servers is insufficient even to load the smallest version of the
BLOOM model.

5.3 Models fits on 2 servers
As shown in Table3 we experimented with OPA block placement
algorithms across two servers, varying client loads with 1, 2, and 4
concurrent clients. These trials encompassed two different models,
including three versions of the Bloom model, and the Falcon model.
The leftover capacity was insufficient to fit LLaMA on any two
given servers and hence LLaMA was not a part of this experiment.
When a single server couldn’t accommodate all transformer blocks,
we utilized two servers. Additionally, with a batch size of 16 and a
fixed token length of 10, the OPA algorithm indicated an increase in
block execution time as the number of concurrent clients increased,
specifically with 2 concurrent clients.

In Table 3

(1) We allocated blocks of the Bloom 560m model using both
GMA and OPA methods across servers S1, S2, S3, and S4. S1
has 13.5 GB memory with 8 cores, S2 has 12 GB memory
with 2 cores, while S3 and S4 possess 12 GB memory with
4 and 8 cores, respectively. The GMA picked S1 (14 blocks)
and S2 (10 blocks), while OPA selected S1 and S4. Block
execution times with the GMAwere 3.73 seconds for 1 client,
4.49 seconds for 2 concurrent clients, and 8.82 seconds for
4 concurrent clients. In contrast, OPA resulted in notably
lower execution times: 2.75 seconds for 1 client, 2.88 seconds
for 2 concurrent clients, and 3.11 seconds for 4 concurrent
clients. Similar to prior models, OPA demonstrated superior
performance for 1 and 2 concurrent clients compared to the
GMA for 1 client, and across 1, 2, and 4 concurrent clients
compared to the GMA with 1 client.

(2) For the Bloom 3b model, we distributed its blocks using both
GMA and OPA methods across servers S1, S2, S3, and S4. S1
offers 17.5 GB memory with 8 cores, S2 has 16 GB memory
with 2 cores, while S3 and S4 possess 16 GB memory with 4
and 8 cores, respectively. The GMA selected S1 (16 blocks)
and S2 (14 blocks), while OPA chose S1 and S4. Block exe-
cution times with the GMA were 18.11 seconds for 1 client,
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Table 3: OPA vs GMA on 1,2,3 servers

Bloom 560m - (batch size=16, tokens=10)
Servers: (GB,cores) [S1(12,2), S2(14,2), S3(14,4), S4(14,8)]

Approach batch size token length Selected Servers Block Distrbn 1 client 2 clients 4 clients
GMA 16 10 (S2) [24] 3.89 4.87 9.73
OPA 16 10 (S4) [24] 2.02 3.01 4.56

Servers: (GB,cores) [S1(13.5,8), S2(12,2), S3(12,4), S4(12,8)]
GMA 16 10 (S1,S2) [14,10] 3.73 4.49 8.82
OPA 16 10 (S1,S4) [14,10] 2.43 2.59 3.65

Servers: (GB,cores) [S1(12.15,8), S2(11.65,8), S3(11.15,2), S4(11.15,4), S5(11.15,8)]
GMA 16 10 (S1,S2,S3) [12,8,4] 2.75 3.01 3.65
OPA 16 10 (S1,S2,S5) [12,8,4] 2.68 2.88 3.11

Bloom 3b - (batch size=16, tokens=10)
Servers: (GB,cores) [S1(23,8), S2(23.5,2), S3(23.5,4), S4(23.5,8)]

Approach batch size token length Selected Servers Block Distrbn 1 client 2 clients 4 clients
GMA 16 10 (S2) [30] 17.01 28.43 59.46
OPA 16 10 (S4) [30] 7.12 10.12 20.15

Servers: (GB,cores) [S1(17.5,8), S2(16.7,2), S3(16.7,4), S4(16.7,8)]
GMA 16 10 (S1,S2) [16,14] 18.11 28.62 54.44
OPA 16 10 (S1,S4) [16,14] 8.6 9.97 19.13

Servers: (GB,cores) [S1(16.7,8), S2(15,2), S3(13.3,2), S4(13.3,4), S5(13.3,8)]
GMA 16 10 (S1,S2,S3) [14,10,6] 10.93 12.09 14.11
OPA 16 10 (S1,S2,S5) [14,10,6] 10.28 11.23 13.91

Bloom 7b1 - (batch size=16, tokens=10)
Servers: (GB,cores) [S1(42,8), S2(44,2), S3(44,4), S4(44,8)]

Approach batch size token length Selected Servers Block Distrbn 1 client 2 clients 4 clients
GMA 16 10 (S2) [30] 45.02 83.21 179.01
OPA 16 10 (S4) [30] 20.1 34.5 67.44

Servers: (GB,cores) [S1(31,8), S2(30,2), S3(30,4), S4(30,8)
GMA 16 10 (S1,S2) [16,14] 46.78 70.12 160.12
OPA 16 10 (S1,S4) [16,14] 23.08 24.98 42.01

Servers:( GB,cores) [S1(30,8), S2(26,8), S3(22,2), S4(22,4),S5(22,8)]
GMA 16 10 (S1,S2,S3) [14,10,6] 27.79 29.12 38.35
OPA 16 10 (S1,S2,S5) [14,10,6] 22.12 23.59 36.12

Falcon-40b - (batch size=16, tokens=10)
Servers:( GB,cores) [S1(98.3,8), S2(88,2), S3(88,4), S4(88,8)]

Approach batch size token length Selected Servers Block Distrbn 1 client 2 clients 4 clients
GMA 16 10 (S1,S2) [32,28] 491.2 536.12 840.02
OPA 16 10 (S1,S4) [32,28] 211.37 305.12 682.01

Servers: (GB,cores) [S1(93.2,2), S2(67.5,8), S3(42,2), S4(42,4), S5(42,8)]
GMA 16 10 (S1,S2,S3) [30,20,10] 260.12 266.72 352.12
OPA 16 10 (S1,S2,S5) [30,20,10] 258.19 263.89 345.26

Llama2-70b - (batch size=16, tokens=10)
Servers: (GB,cores) [S1(155,8), S2(113.5,2), S3(83.5,2), S4(83.5,4),S5(83.5,8)]

Approach batch size token length Selected Servers Block Distrbn 1 client 2 clients 4 clients
GMA 16 10 (S1,S2,S3) [35,25,20] 396.11 408.12 798.12
OPA 16 10 (S1,S2,S5) [35,25,20] 279.13 304.11 588.76

28.63 seconds for 2 concurrent clients, and 54.44 seconds for
4 concurrent clients. However, OPA resulted in significantly
lower execution times: 8.6 seconds for 1 client, 9.97 seconds
for 2 concurrent clients, and 19.13 seconds for 4 concurrent
clients. Similar to previous models, OPA exhibited superior

performance for 1 and 2 concurrent clients compared to the
GMA for 1 client, and across 1, 2, and 4 concurrent clients
compared to the GMA with 2 concurrent clients.

(3) In the case of the Bloom 7b1 model, we utilized both GMA
and OPA methods to distribute its blocks across servers S1,
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S2, S3, and S4. S1 has 31 GB memory with 8 cores, S2 has
30 GB memory with 2 cores, while S3 and S4 have 30 GB
memory with 4 and 8 cores, respectively. The GMA opted
for S1 (16 blocks) and S2 (14 blocks), whereas OPA chose
S1 and S4. Block execution times with the GMA Approach
were 46.78 seconds for 1 client, 70.12 seconds for 2 concurrent
clients, and 160.12 seconds for 4 concurrent clients. However,
OPA resulted in notably lower execution times: 23.1 seconds
for 1 client, 24.98 seconds for 2 concurrent clients, and 42.01
seconds for 4 concurrent clients. As with previous models,
OPA showcased better performance for 1 and 2 concurrent
clients compared to the GMA for 1 client, and across 1, 2,
and 4 concurrent clients compared to the GMA with 1 client.

(4) For the Falcon model, we employed both GMA and OPA
methods to distribute all 60 blocks across servers S1, S2, S3,
and S4. S1 offers 98.3 GB memory with 8 cores, S2 has 88.2
GB memory with 2 cores, while S3 and S4 possess 88.2 GB
memory with 4 and 8 cores, respectively. The GMA selected
S1 (14 blocks) and S2 (10 blocks), whereas OPA chose S1 and
S4. Notably, for Client 1, GMA exhibited a block execution
time of 491.2 seconds, while OPA showed 211.37 seconds
for Client 1 and 305.5 seconds for Client 2, signifying an
improvement over Client 1 using GMA. This observed trend
remained consistent across other models as well.

5.4 Model fits on 3 servers
Next, we experimented with OPA block placement algorithms
across three servers, varying the client loads between 1, 2, and
4 concurrent clients. These trials encompassed three different mod-
els, including three versions of the Bloom model, the Falcon model,
and the LLama 2 model. When a leftover capacity of a single or two
servers was insufficient to accommodate all transformer blocks we
designed this experiment using 3 servers. Notably, when employing
the OPA algorithm with 2 concurrent clients, the block execution
time increased with a higher number of concurrent clients, all the
while maintaining a batch size of 16 and a fixed token length of 10.

In the context of the Falcon model presented in Table 3, we
distributed blocks using both GMA and OPAmethods across servers
S1, S2, S3, S4, and S5. These servers possess varying memory and
core configurations, with GMA selecting S1, S2, and S3, while OPA
opted for S1, S2, and S5. Specifically, for Client 1 in GMA, the block
execution time recorded was 260.12 seconds. However, utilizing
OPA, the block execution time was 258.19 seconds for Client 1 and
263.89 seconds for Client 2, demonstrating comparable performance
to that of Client 1 in GMA.

(1) bloom 560m: Utilizing both GMA and OPA techniques, we
allocated all 24 blocks among servers S1, S2, S3, S4, and S5.
S1 has 12.15 GB memory and 8 cores, S2 holds 11.65 GB
memory with 8 cores, while S3, S4, and S5 share 11.15 GB
memory but differ in core count—2, 4, and 8 cores respec-
tively. GMA selected S1, S2, and S3, whereas OPA favored
S1 (12 blocks), S2 (8 blocks), and S5 (4 blocks). Under the
GMA, block execution times for 1 client were 2.75 seconds,
2 concurrent clients took 3.01 seconds, and 4 concurrent
clients demanded 3.65 seconds. Meanwhile, employing OPA
resulted in execution times of 2.68 seconds for 1 client, 2.88

seconds for 2 concurrent clients, and 3.11 seconds for 4 con-
current clients. OPA showcased superior performance across
1, 2, and 4 concurrent clients in contrast to the GMA.

(2) bloom 3b: All 30 blocks were allocated across servers S1, S2,
S3, S4, and S5 using both GMA and OPA methodologies. S1
possesses 16.7 GB memory and 8 cores, S2 holds 15 GB mem-
ory with 8 cores, while S3, S4, and S5 share 13.3 GB memory,
differing in core count—2, 4, and 8 cores respectively. GMA
favored S1, S2, and S3, while OPA distributed 14 blocks to
S1, 10 blocks to S2, and 6 blocks to S5. Block execution times
under GMA for 1 client were 10.93 seconds, 12.09 seconds
for 2 concurrent clients, and 14.11 seconds for 4 concurrent
clients. With OPA, execution times were 10.28 seconds for 1
client, 11.23 seconds for 2 concurrent clients, and 13.91 sec-
onds for 4 concurrent clients. OPA demonstrated superior
performance across 1, 2, and 4 concurrent clients compared
to the Greedy Approach.

(3) bloom 7b1: Distributing all 30 blocks across servers S1, S2, S3,
S4, and S5 was achieved using GMA and OPA methods. S1
boasts 30 GB memory and 8 cores, S2 holds 26 GB memory
with 8 cores, while S3, S4, and S5 share 22 GB memory but
differ in core count—2, 4, and 8 cores respectively. GMA
selected S1, S2, and S3, whereas OPA allocated 14 blocks to
S1, 10 blocks to S2, and 6 blocks to S5. Using GMA, block
execution times were 27.79 seconds for 1 client, 29.12 seconds
for 2 concurrent clients, and 38.35 seconds for 4 concurrent
clients. Meanwhile, OPA showed execution times of 22.12
seconds for 1 client, 23.59 seconds for 2 concurrent clients,
and 36.12 seconds for 4 concurrent clients. OPA showcased
superior performance across 1, 2, and 4 concurrent clients
compared to the GMA.

(4) Falcon model: All 60 blocks were distributed across servers
S1, S2, S3, S4, and S5 using GMA and OPA methodologies. S1
possesses 92.2 GB memory and 8 cores, S2 has 67.7 GB mem-
ory with 8 cores, while S3, S4, and S5 share 42 GB memory,
differing in core count—2, 4, and 8 cores respectively. GMA
selected S1, S2, and S3, whereas OPA opted for S1, S2, and S5.
Under GMA, block execution times were 260.12 seconds for
1 client, 266.72 seconds for 2 concurrent clients, and 352.12
seconds for 4 concurrent clients. OPA demonstrated execu-
tion times of 258.19 seconds for 1 client, 263.89 seconds for
2 concurrent clients, and 345.26 seconds for 4 concurrent
clients. OPA showcased superior performance across 1, 2,
and 4 concurrent clients compared to the GMA Approach.

(5) LLama 2 model: Employing both GMA and OPA methods,
we distributed all 80 blocks among servers S1, S2, S3, S4, and
S5. S1 boasts 155 GB memory and 8 cores, S2 holds 113.5
GB memory with 8 cores, while S3, S4, and S5 share 83.5 GB
memory, differing in core count—2, 4, and 8 cores respec-
tively. S1, S2, and S3, while OPA favored S1 (35 blocks), S2
(25 blocks), and S5 (20 blocks). Block execution times under
GMA for 1 client were 396.11 seconds, 408.12 seconds for
2 concurrent clients, and 798.12 seconds for 4 concurrent
clients. Meanwhile, employing OPA resulted in execution
times of 279.13 seconds for 1 client, 404.11 seconds for 2 con-
current clients, and 588.76 seconds for 4 concurrent clients.
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Figure 4: Block execution time for 1, 2, 4 concurrent clients

OPA demonstrated superior performance across 1, 2, and 4
concurrent clients compared to the GMA.

As observed from the results in Table 3, OPA outperforms GMA
in almost all the cases, with a lower block execution time as com-
pared to GMA. These results are consistent across different models.
BLOOM, Falcon and LLaMA 2 with varying parameters and number
of clients.

6 ABLATION STUDIES
In this section we discuss ablation studies to better understand and
analyze the performance of OPA in LLaMPS. Figure 4 illustrates
the behavior of OPA upon increasing the number of output tokens
while keeping the batch size fixed. When the cores are limited to 2,
the block execution time shows a steep increase as the number of
output tokens increases. This is expected behavior as the compute
increases, and so does the block execution time. This is particularly
observedwith an increase in concurrency (clients 2 and 4) and hence
increase in a number of client requests. Upon adding more cores (4
and 8) we observe that the overall block execution time shows a
decreasing trend as more compute becomes available. This trend
remains consistent across the BLOOM 3b model, thus corroborating
the efficacy of the OPA approach.

Previously, in Figure 3, we discussed the knee-point of the curve
by varying the number of cores. These graphs illustrate that with
increasing batch size, adding cores is beneficial till a certain point
(i.e. 8 cores). Beyond 8 cores, we do not observe a significant im-
provement as some tasks performed during inference may not be
parallelizable beyond 8 degrees. For example, in Bloom 560m with
a batch size of 1, batch execution time is less than 20 seconds, for a
batch size of 4, it is slightly over 20 seconds, and for a batch size of
16, it is less than 40 seconds.With the increase in cores, concurrency
is more efficiently handled and this pattern holds for the Bloom 3b
model as well.

Thus, OPA shows expected behavior across varying parameters
(cores, batch sizes, number of output tokens) and the trend in the

results is consistent across models with varying parameters. The
efficacy of these results has also been validated on a heterogeneous
cpu-based cluster setup in an enterprise.

7 RELATEDWORK
In recent years, the deployment of large language models has seen
widespread adoption owing to their versatile applications in real-
world scenarios, predominantly in the field of natural language
processing (NLP). As these models increase in size and complex-
ity, their computational demands have necessitated distributed
computing solutions, given their impracticality to fit on a single
machine. Models such as OPT-175B[25], BLOOM-176B [23], and
LLama-70b[22] demand substantial accelerator memory, exceed-
ing 350 GB for inference. The computational requirements impose
a barrier, necessitating multiple high-end GPUs for downstream
tasks.

There have been efforts to distribute transformer blocks across
multiple servers. Deepspeed [3] [17][18] is a distributed inference
solution that supports large transformer-based language models.
It enables parallel inference and achieves tensor parallelism by
leveraging multiple GPUs. Deepspeed utilizes maximum available
resources on multiple servers, enhancing overall performance and
scalability.

Another approach by Deepspeed [3][17][18], namely Deepspeed
Zero inference[19] involves "offloading" model parameters to more
economical memory sources like RAM or SSD and subsequently ex-
ecuting them on the GPU layer by layer. While this strategy enables
the deployment of LLMs on a single GPU, it introduces inherent
trade-offs, such as increased latency due to the time-consuming
offloading of layers. Additionally, the large size of layers and the
substantial transfer overhead between the GPU and CPU further
contribute to these challenges.

FastServe [24] is a system for distributed inference serving of
LLMs. The system is built on NVIDIA FasterTransformer and ex-
ploits the autoregressive pattern of LLM inference to enable pre-
emption at the granularity of each output token. FastServe utilizes
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high-end GPUs and similar to DeepSpeed leverages maximum re-
sources available to minimize the job (JCT) completion time.

Another avenue to enhance LLM accessibility involves lever-
aging public inference APIs for example deploying the LLM on
Sagemaker [1] which is AWS [2] service later accessed model us-
ing API. However, the pricing structure of these APIs can render
certain research projects prohibitively expensive. This economic
constraint poses a limitation on the widespread use of LLMs for
various research endeavors and potential applications.

Petals [7] works as a decentralized framework designed for fast
inference of transformer-based models. It splits any given model
into several blocks that are hosted on different servers. These
servers can be spread out across continents, and anybody can con-
nect their own GPU! In turn, users can connect to this network as
a client and apply a chosen model to their data.

In our context, our paper introduces a novel perspective, focusing
on the inference of large language models within enterprise setups.
We seek to leverage the residual (leftover) capacity present on
servers, harnessing untapped resources for efficientmodel inference.
Our work explores the optimization of block assignment, which
stays unexplored in related literature at this point. Through this
exploration, we aim to push the boundaries of efficiency in large
language model inference, ultimately maximizing the number of
clients that can be accommodated, and thereby ensuring distributed
inference of LLMs in a cost-effective manner for enterprises by
utilizing leftover capacity.

8 CONCLUSIONS AND FUTUREWORK
Our paper introduces LLaMPS, a Large Language Model Placement
System designed to address the challenge of efficiently deploying
large language models (LLMs) within enterprise setups LLaMPS.
Our approach focuses on the placement of transformer blocks, op-
timizing the utilization of enterprise resources by utilizing leftover
capacity in worker nodes in an enterprise setup. The Optimal Place-
ment Algorithm (OPA) maximizes the number of clients that can
be served concurrently by optimally placing transformer blocks on
residual resources. Through extensive experimentation with open-
source large language models such as BLOOM (with 1b, 3b, and 7b
parameters) Falcon and LLaMA, our results consistently demon-
strate the efficacy of LLaMPS in facilitating optimal transformer
block placement. By leveraging leftover resources, LLaMPS paves
the way for enterprise-level deployment of large language mod-
els. LLaMPS can also maintain sustainability by optimally utilizing
leftover capacity of machines within an enterprise; consequently
saving the cost of buying extra machines/resources to host the
entire LLM model. As a part of future work, we plan to investigate
the feasibility of a system that dynamically identifies and utilizes
leftover capacities across cloud instances. LLaMPS can be used in
Retrieval Augmented Generation (RAG) applications for doing the
inference or other downstream tasks using LLMs when latency is
not critical.
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