
ShuffleBench: A Benchmark for Large-Scale Data Shuffling
Operations with Distributed Stream Processing Frameworks

Sören Henning
JKU/Dynatrace Co-Innovation Lab,
Johannes Kepler University Linz

Linz, Austria
soeren.henning@jku.at

Adriano Vogel
JKU/Dynatrace Co-Innovation Lab,
Johannes Kepler University Linz

Linz, Austria
adriano.vogel@jku.at

Michael Leichtfried
Dynatrace Research,

Dynatrace LLC
Linz, Austria

michael.leichtfried@dynatrace.com

Otmar Ertl
Dynatrace Research,

Dynatrace LLC
Linz, Austria

otmar.ertl@dynatrace.com

Rick Rabiser
LIT CPS Lab,

Johannes Kepler University Linz
Linz, Austria

rick.rabiser@jku.at

ABSTRACT
Distributed stream processing frameworks help building scalable
and reliable applications that perform transformations and aggre-
gations on continuous data streams. This paper introduces Shuf-
fleBench, a novel benchmark to evaluate the performance of modern
stream processing frameworks. In contrast to other benchmarks,
it focuses on use cases where stream processing frameworks are
mainly employed for shuffling (i.e., re-distributing) data records to
perform state-local aggregations, while the actual aggregation logic
is considered as black-box software components. ShuffleBench is
inspired by requirements for near real-time analytics of a large
cloud observability platform and takes up benchmarking metrics
and methods for latency, throughput, and scalability established
in the performance engineering research community. Although
inspired by a real-world observability use case, it is highly con-
figurable to allow domain-independent evaluations. ShuffleBench
comes as a ready-to-use open-source software utilizing existing
Kubernetes tooling and providing implementations for four state-
of-the-art frameworks. Therefore, we expect ShuffleBench to be
a valuable contribution to both industrial practitioners building
stream processing applications and researchers working on new
stream processing approaches. We complement this paper with an
experimental performance evaluation that employs ShuffleBench
with various configurations on Flink, Hazelcast, Kafka Streams, and
Spark in a cloud-native environment. Our results show that Flink
achieves the highest throughput while Hazelcast processes data
streams with the lowest latency.

CCS CONCEPTS
• Software and its engineering → Software performance; •
Computer systems organization → Cloud computing; • In-
formation systems → Stream management.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0444-4/24/05.
https://doi.org/10.1145/3629526.3645036

KEYWORDS
benchmarking, data shuffling, performance, stream processing
ACM Reference Format:
Sören Henning, Adriano Vogel, Michael Leichtfried, Otmar Ertl, and Rick
Rabiser. 2024. ShuffleBench: A Benchmark for Large-Scale Data Shuffling
Operations with Distributed Stream Processing Frameworks. In Proceedings
of the 15th ACM/SPEC International Conference on Performance Engineering
(ICPE ’24), May 7–11, 2024, London, United Kingdom. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3629526.3645036

1 INTRODUCTION
State-of-the-art distributed stream processing frameworks such as
Spark [4, 39], Flink [6], Kafka Streams [31, 38], or Hazelcast with its
Jet engine [10] have gained widespread adoption over the last years
not only for building data analytics pipelines, but also for imple-
menting core business logic in software-based organizations [9, 22].
Such frameworks support software engineers in building highly
scalable, reliable, and efficient applications that process continu-
ous data streams of massive volume. They provide high-level APIs
and domain-specific languages to define the processing logic as
directed acyclic processing graphs that filter, transform, aggregate,
and merge data streams.

Over the last decade, several works have been published that eval-
uate the performance of distributed stream processing frameworks
or propose new benchmarks, evaluation methods, and auxiliary
tools [5, 13, 18, 21, 34, 37]. Available benchmarks usually contain
one or a few task samples that fulfill domain-specific use cases,
for example, for analyzing car traffic data [3, 34] or aggregating
Industrial Internet of Things (IIoT) sensor measurements [13, 18].
To implement these task samples (also referred to as queries), the
benchmarks define the domain-specific processing logic with the
frameworks’ high-level APIs.

In this paper, we study a different, more general use case, where
the actual domain-specific processing logic is out of the scope of a
stream processing framework, but stream processing frameworks
are still used for their abstractions for clustermanagement, means to
scale out the data processing, fault-tolerant state management, well-
defined processing guarantees (e.g., exactly-once or at-least-once),
and rich ecosystem of documentation, support, and associated tool-
ing. We illustrate this use case inspired by requirements of a large

2

https://orcid.org/0000-0001-6912-2549
https://orcid.org/0000-0003-3299-2641
https://orcid.org/0000-0002-4415-6694
https://orcid.org/0000-0001-7322-6332
https://orcid.org/0000-0003-3862-1112
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629526.3645036
https://doi.org/10.1145/3629526.3645036


ICPE ’24, May 7–11, 2024, London, United Kingdom Sören Henning, Adriano Vogel, Michael Leichtfried, Otmar Ertl, and Rick Rabiser

cloud observability platform, where potentially thousands or mil-
lions of stateful black-box software components have to receive and
process selected data records. The literature is currently missing
a well-defined evaluation method for this use case and previous
work found that the performance of stream processing frameworks
highly depends on the use case [16].

Therefore, we propose ShuffleBench as a new stream processing
benchmark focusing on the use of stream processing frameworks
for shuffling (i.e., re-partitioning) data streams to efficiently pro-
cess data in high numbers of stateful components. ShuffleBench
provides well-defined metrics, measurement methods, and a highly
configurable task sample. Thus, it allows researchers and practi-
tioners to evaluate stream processing frameworks with respect to
performance attributes such as throughput, latency, and scalabil-
ity and regarding a representative use case. Our research design
combines requirements identified from a large cloud observability
platform with established benchmarking metrics, methods, and
techniques from the performance engineering research community.

Contributions. In summary, we make the following contribu-
tions with this paper to industry practitioners and the research
community:

• We propose ShuffleBench, a new benchmark for distributed
stream processing frameworks. It addresses a use case not
covered by existing benchmarks and is highly configurable
for different assorted characteristics.

• We provide open-source implementations1 of ShuffleBench
for different state-of-the-art stream processing frameworks
as well as associated tooling to automate running bench-
marks in Kubernetes-based cloud environments.

• We conduct an experimental evaluation covering throughput
and latency that are highly relevant metrics for stream pro-
cessing [37]. Our evaluation covers the open-source stream
processing frameworks Flink, Hazelcast, Kafka Streams, and
Spark Structured Streaming due to their industry acceptance
and academic relevance [37]. We provide a replication pack-
age and the collected data of our experiments as supplemen-
tal material [17], such that other researchers and practition-
ers may repeat and extend our work.

Outline. The remainder of this paper is structured as follows:
Section 2 introduces the fundamental concepts of distributed stream
processing frameworks and related benchmarking studies. Section 3
describes the use of stream processing for large-scale data shuffling
illustrated by industrial requirements. Afterward, Section 4 presents
ShuffleBench, our proposal for a new stream processing benchmark.
Section 5 employs ShuffleBench to evaluate four stream processing
frameworks regarding their throughput and latency for different
configurations. Section 6 concludes this work and discusses future
work.

2 BACKGROUND AND RELATEDWORK
In the following, we briefly introduce the fundamental concepts of
modern stream processing frameworks and discuss related work
on benchmarking stream processing frameworks.

1https://github.com/dynatrace-research/ShuffleBench

2.1 Distributed Stream Processing
Stream processing frameworks perform operations such as filter-
ings, transformations, or aggregations in near-real time on continu-
ous streams of data [19]. State-of-the-art frameworks are designed
for high throughput and low-latency processing, while also scaling
withmassive amounts of data [9, 16]. To address these requirements,
they run in a distributed fashion on commodity hardware. A key
advantage of stream processing frameworks is that they provide
dataflow models that abstract aspects such as cluster management,
state management, and time semantics from their users [2, 31].With
such models, engineers describe the processing logic in directed
acyclic dataflow graphs of processing operators. The frameworks
allow the initiation of multiple instances across various compute
nodes, containers, or with multiple threads, with each instance
handling a distinct portion of the data. While the isolated process-
ing of data records remains unaffected by the assignment of data
portions to instances, processing that depends on previous data
records, such as aggregations, requires state management. Similar
to the MapReduce [8] programming model, keys are assigned to
records before a stateful operation. This allows the stream process-
ing frameworks routing all records with the same key to the same
instance. Consequently, no state synchronization among instances
is required, which allows operating stream processing applications
at significantly lower costs compared to, for example, Functions-
as-a-Service [29]. When a processing operator modifies the key of
a record and a subsequent operator performs a stateful operation,
the framework divides the dataflow graph into subgraphs that can
be independently processed by different instances.

Popular stream processing frameworks include Apache Flink [6],
Hazelcast with its Jet engine [10], Apache Kafka Streams [31, 38],
and Apache Spark [39] with its Structured Streaming engine [4].
Although all these frameworks follow similar concepts, several dif-
ferences in their design decisions, programming functionalities, and
execution models can be noted. Whereas Flink and Spark follow a
master-worker cluster architecture, Hazelcast and Kafka Streams
instances form clusters and perform the necessary coordination in-
ternally. Moreover, Hazelcast and Kafka Streams can be embedded
as library into applications, while Flink and Spark are the appli-
cations themselves. Spark is different from the other frameworks
as it processes the data streams as a sequence of batches (called
micro-batches), whereas the other frameworks process record by
record as they arrive. Hazelcast’s Jet engine is special by being
built on top of the Hazelcast IMDG distributed, in-memory object
store. It differs in its execution model, which is based on a concept
similar to coroutines and cooperative threads to process data at
very low latency [10]. Kafka Streams tightly integrates with the
Apache Kafka messaging system [24]. It does not support other
data sources and sinks than Kafka, but benefits from lightweight
coordination based on Kafka’s consumer group protocol.

Stream processing frameworks often read data from or write
data to messaging systems. Such messaging systems serve both as
a scalable middleware between different systems and services as
well as the necessary infrastructure to ensure fault tolerance. For
this purpose, industry-grade messaging systems such as Apache
Kafka [24, 38] employ an immutable, sequentially appended log
structure to store and replicate records across distributed nodes.

3

https://github.com/dynatrace-research/ShuffleBench


ShuffleBench: A Benchmark for Large-Scale Data Shuffling Operations with Distributed Stream Processing Frameworks ICPE ’24, May 7–11, 2024, London, United Kingdom

Table 1: Overview of related open-source stream processing benchmarks and associated benchmarking studies

DSPBench [5] OSPBench [34–36] ESPBench [18] Theodolite [13, 16] ShuffleBench
(This work)

Benchmark inspiration From the literature Car traffic IIoT IIoT Cloud observability
Application metrics Throughput,

latency
Throughput,
latency

Latency Scalability Throughput,
latency

Frameworks Spark, Storm Flink, Kafka
Streams, Spark,
Spark Structured
Streaming

Beam (Flink,
Hazelcast, Spark)

Beam, Flink,
Hazelcast, Kafka
Streams

Flink, Hazelcast,
Kafka Streams,
Spark Structured
Streaming

Deployment Virtual machines Containers, DC/OS Virtual machines Containers,
Kubernetes

Containers,
Kubernetes

Data size 1 to 60 KB approx. 200 bytes up to 280 bytes up to 100 bytes configurable
Processed record/second up to 100k up to 900k up to 10k up to one million up to one million
Customizable state size No No No No Yes

2.2 Benchmarking Stream Processing
Frameworks

A considerable number of studies proposing new benchmarks or
reporting on experimental evaluations with available benchmarks
have been published over the last years [37]. Recent examples of
open-source benchmarks include DSPBench [5], OSPBench [34],
ESPBench [18], or the streaming benchmarks from the Theodolite
framework [13]. Table 1 provided an overview of these benchmarks
and a comparison with ShuffleBench. For a systematic and compre-
hensive review of the literature on stream processing benchmarking,
we refer to our recent studies [16, 37].

The most important difference between other benchmarks and
ShuffleBench is the addressed use case. Most benchmarks re-sample
domain-specific analytics applications, for example, for IIoT data
streams [13, 18], car traffic data [34], or online gaming [21]. Our
paper in contrast investigates a more generic use case, which ad-
dresses a specific type of software architecture instead of a specific
domain.

Despite the addressed use case, we found that benchmarks pro-
posed by the research community are often not applicable for
industry-grade performance evaluations. They are often not avail-
able as open-source software or not actively maintained, lack au-
tomation, and do not use deployments that are representative for
production systems. For example, although it is nowadays common
to run stream processing applications in containerized cloud-native
environments, there is only one benchmark besides ShuffleBench
specifically tailored to such deployments [13]. Likewise, results of
performance evaluations conducted with these benchmarks are of-
ten not transferable to industry use cases, for example, because they
evaluate frameworks only at small-scale deployments [5]. Other
benchmarks or evaluations do not define metrics and measure-
ment methods, which makes the research difficult to reproduce and
extend.

Nevertheless, the literature provides valuable research on evalua-
tion metrics and measurement methods [12, 21, 34]. We build upon
such research to provide well-defined metrics and measurement
methods with ShuffleBench.

3 LARGE-SCALE DATA SHUFFLING
We illustrate the use case of large-scale data shuffling with require-
ments for continuous dashboard queries and real-time alerting of
a market-leading cloud observability platform. Using a powerful
query language, it allows internal and external clients to define
complex rules to aggregate and correlate different data sources such
as metrics, events, logs, and traces. From a software architecture
perspective, each registered query can be considered as a runtime
software component, which continuously receives all data records
that are affected by this query. We call these components real-time
consumers. They have to manage state across multiple input records
and might produce outputs. For example, a consumer that performs
an anomaly detection by correlating logs and performance metrics
might produce an output event when it detects an anomaly.

A core requirement for a corresponding query runtime is to
efficiently route data to the respective consumers while also hav-
ing cluster management abstractions, means to scale out the data
processing, fault-tolerant state management, and well-defined pro-
cessing guarantees. State-of-the-art stream processing frameworks
fulfill these properties. They also provide programmatic APIs or
dedicated SQL-like languages to define complex queries on data
streams (see related benchmarks in Section 2). However, those only
have limited relevance for our use case as we are facing a high
amount of queries that have to be executed in parallel, although
each query only requires a very small portion of the overall data
volume. Therefore, it is not required to parallelize or even distribute
the execution of a single query but only to route those data records
to a consumer as needed. Moreover, considering that dedicated soft-
ware components (e.g., anomaly detection models) can include the
logic for operations such as joins or sliding windows, these features
might not be required by the stream processing framework.

In addition to the observability use case described here, we expect
other real-world systems to have similar requirements. For example,
the stateful Function-as-a-Service [1] runtime Apache Flink Stateful
Functions2 is used in different contexts, but based on a very similar
architecture as our benchmark (see the following section).

2https://nightlies.apache.org/flink/flink-statefun-docs-master/

4

https://nightlies.apache.org/flink/flink-statefun-docs-master/


ICPE ’24, May 7–11, 2024, London, United Kingdom Sören Henning, Adriano Vogel, Michael Leichtfried, Otmar Ertl, and Rick Rabiser

Throughput Latency Scalability

Processed Records/Bytes
Per Second

End-to-End
Event Time

Load Cap./
Resource D.

Ad-hoc
Throughput

Sustainable
Throughput

End-to-End
Event Time Theodolite ...

...

...Quality

Metric

Measurement
Method

Task Sample

ShuffleBench
Architecture output rateΣ selectivity state size# consumers

ShuffleBench
Load Generator record sizefrequency

Figure 1: Overview of ShuffleBench benchmark components
according to the Empirical Standard for benchmarking.

4 THE SHUFFLEBENCH BENCHMARK
We combine the architectural requirements described above with
best practices of the performance engineering community and in-
dustrial consortia [11, 23, 28, 33].

4.1 Benchmark Design
We base our benchmark design on the ACM SIGSOFT Empirical
Standard for benchmarking [11, 30].3 It distinguishes between the
following four components of a benchmark: the qualities to be
evaluated, metrics to quantify these qualities, measurement meth-
ods for these metrics, and task samples to be evaluated with the
measurement methods. As discussed in Section 2, the task samples
of existing benchmarks have several shortcomings, making them
impractical to study our described use case. On the other hand, sev-
eral evaluation metrics, methods, and tools introduced with other
benchmarks are applicable independently of the specific use case.
According to the Empirical Standard, we, therefore, propose a new
benchmark, which, on the one hand, introduces a new task sample
but, on the other hand, takes up existing metrics and measurement
methods that have demonstrated their effectiveness in the litera-
ture. This way, we address benchmark quality attributes such as
relevance, reproducibility, fairness, verifiability, and usability as
required by industrial consortia and the research community [33].

Figure 1 provides an overview of our benchmark’s components.
In the following, we first describe the task sample in terms of its
dataflow architecture to be implemented by different stream pro-
cessing frameworks and a corresponding load generator. Afterward,
we describe the qualities, metrics, and measurement methods to
assess the task sample implementations.

4.2 The ShuffleBench Task Sample
The ShuffleBench task sample consists of a dataflow architecture to
be implemented by different stream processing frameworks and a
load generator to stress the framework. Both are highly configurable
to allow for evaluations in different scenarios.

3https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=Benchmarking

4.2.1 Benchmark Dataflow Architecture. Awell-suited way to meet
the described use case is a MapReduce-like architecture [8] on con-
tinuous data streams as it can be built with modern stream process-
ing frameworks. Figure 2 depicts our benchmark architecture for a
corresponding stream processing application. It represents the long-
running application as a static dataflow graph, with data moving
along the edges. It can be deployed with multiple instances, which
execute the same processing logic but on different data subsets. The
data processing starts by reading data records from a messaging
system such as Kafka. Kafka topics are partitioned, allowing each
instance of the stream processing application to subscribe to a ded-
icated set of partitions. In general, we cannot assume any specific
partitioning on the data. After ingestion, the matcher service finds
the relevant queries for each record. The matcher logic is wrapped
in a flatMap operation of a stream processing framework that dupli-
cates an incoming record for each relevant query while assigning a
query-identifying key to each duplicate. In a subsequent operation,
the data is re-partitioned among all instances such that all records
with the same query key are forwarded to the same instance. This
is done with an operation of the stream processing framework of-
ten called groupBy. In the next step, the actual black-box query
logic is executed, which is stateful by aggregating multiple records.
We abstract the query logic in real-time consumers, wrapped in
an aggregate operation of the stream processing framework that
manages the state. These real-time consumers adhere to a simple
interface: they consume an incoming record and the previous state
and output the updated state and, optionally, an event. Finally, these
output events are written to another Kafka topic.

4.2.2 Benchmark Implementations. We implemented the proposed
benchmark for the four stream processing frameworks Flink, Hazel-
cast, Kafka Streams, and Spark Structured Streaming. To provide
a fair comparison, the implementation of the matcher service and
the real-time consumers (which would be domain-specific in pro-
duction) are shared among all frameworks. The matcher service is
configured with a set of rules, which define their selectivity, i.e., the
probability that this rule matches a record. The actual stateful aggre-
gations logic is currently the same for each query: Every incoming
record is updates to the state of the respective real-time consumer.
The state size is configurable, but always includes the count of
received records, a checksum, and the associated timestamps of the
first and the last record (see Section 4.3.2). Real-time consumers
emit an output event if the count is divisible by a configured value
to simulate something like a generated alert.

4.2.3 Load Generator. To simulate incoming observability data,
we provide a load generator that creates data records at a config-
urable frequency with random byte content of configurable size.
We decided to use this way of generating data instead of replaying
historical data to make performance evaluations more reproducible
and ShuffleBench applicable to other domains [33]. The load genera-
tor can be deployed in a distributed fashion andwrites the generated
records to Kafka.

4.2.4 Benchmark Configuration Options. Our ShuffleBench imple-
mentations are highly configurable to evaluate frameworks for
different use cases of large-scale data shuffling tasks. This includes
the size of incoming records, the number of different real-time

5

https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=Benchmarking


ShuffleBench: A Benchmark for Large-Scale Data Shuffling Operations with Distributed Stream Processing Frameworks ICPE ’24, May 7–11, 2024, London, United Kingdom

Stream Processing Application Instances
(implemented with, e.g., Flink, Hazelcast, Kafka Streams, or Spark)

Messaging
(e.g., Kafka)

Messaging
(e.g., Kafka)

read flatMap groupBy aggregate write

read flatMap groupBy aggregate write

read flatMap groupBy aggregate writeinput #1

input #2

input #3

output #1

output #2

output #3

real-time consumers

matcher service

real-time consumers

real-time consumers

matcher service

matcher service

Figure 2: The ShuffleBench dataflow architecture at runtime for three stream processing application instances.

consumers, the total selectivity for all real-time consumers, the dis-
tribution of individual selectivities, the real-time consumer’s state
size, and their output frequency. Additionally, all stream processing
frameworks have a wide range of configuration and deployment
options that potentially impact throughput, latency, scalability, and
fault tolerance. Many of them can easily be set with ShuffleBench
to support experimental comparisons.

4.3 Qualities, Metrics and Measurement
Methods

According to requirements from industry that motivated us to de-
sign ShuffleBench, we currently support benchmarking the qualities
throughput, latency, and scalability with ShuffleBench. In the fol-
lowing, we describe our employed metrics and measurement meth-
ods for all qualities in detail. These descriptions, along with our
executable benchmarking software (see Section 4.4) support repro-
ducibility of benchmarking studies conducted with ShuffleBench,
such as our evaluation in Section 5.

4.3.1 Throughput. We supportmeasuring the throughput of stream
processing frameworks in terms of the number of incoming records
that can be processed per second. Note that the throughput in terms
of processed bytes per second can be directly derived from that.
Assuming validated functional correctness, all frameworks process
each record exactly once in the absence of failures, which means
that the output throughput is proportional to the input throughput.

Essentially, two measurement methods for throughput can be
observed in the literature. We refer to them as ad-hoc throughput
and sustainable throughput. As both have their pros and cons, we
support both within ShuffleBench and evaluate them in Section 5.

Both measurement methods have in common that they only
monitor the messaging system. This has the significant advantage
that the throughput measurements do not influence the execution
of the application. In fact, the measurement method is fully inde-
pendent of the benchmarked framework and, thus, can also be used
on arbitrary other task samples, including real-world applications.

Ad-hoc Throughput. Ad-hoc throughput measurements can be
performed by generating and sending a constant number of records

per second to the messaging system and measuring how much of
these can be processed. It has to be ensured that the generated
data volume is at least as high as the processing rate of the stream
processing framework to not limit it. Several studies appear to have
conducted throughput measurements using this approach [20, 26].
In ShuffleBench, ad-hoc throughput is measured by tracking the
rate of committed offsets at the messaging system [24].

The key advantage of the ad-hoc throughput method is that it
can be performed in a short time. However, the obtained through-
put results might not fully reflect the real behavior of the stream
processing framework when being subject to that load [12]. For
example, optimizations such as batching might allow a system to
ingest data at a higher rate when reading from a large backlog
compared to when data is ingested as it is generated.

Sustainable Throughput. Sustainable throughput [21] is defined
as the maximum load a system can sustain without violating perfor-
mance goals. Such a performance goal can be a limit on the event
latency [21, 34] or the maximum tolerable increase in the num-
ber of queued messages [13, 16, 34]. In ShuffleBench, sustainable
throughput is measured by running multiple independent experi-
ments, in which the generated load is increased from experiment to
experiment and performance goals are evaluated [12]. Per default,
we evaluate whether the number of queued messages increases
substantially over time. This can again be obtained by tracking
available message offsets and consumed message offsets at the mes-
saging system [24]. However, we also allow for using custom (e.g.,
use case-specific) performance goals.

The sustainable throughput measurement method overcomes
the limitations of the ad-hoc throughput method. It better reflects
how a tested system would behave in a real-world deployment. On
the downside, however, this method can only find a range in which
the real achievable throughput lies. Moreover, it has significantly
longer execution times compared to the ad-hoc method. Instead of
evaluating a system with one constant load rate, experiments have
to be executed for different load rates.

4.3.2 Latency. There are several different notions of latency in
stream processing [7, 21]. In ShuffleBench, we quantify latency from

6



ICPE ’24, May 7–11, 2024, London, United Kingdom Sören Henning, Adriano Vogel, Michael Leichtfried, Otmar Ertl, and Rick Rabiser

a user perspective bymeasuring how long it takes for an input event
to generate an output event. Although most frameworks collect
some kind of latency metrics, their measurement methods differ,
preventing a fair comparison. Moreover, in contrast to throughput,
we cannot measure latency purely in the messaging system since
input and output events are not natively linked to each other.

In line with van Dongen and van den Poel [34] and Hesse et al.
[18], we measure latency as the time difference between writing
a record to the input messaging topic and the time a record is
written to the output topic. These timestamps can be retrieved in a
framework-independent way as messaging systems such as Kafka
assign each record the current timestamp when appending it to
the log. To correlate both timestamps, we extract the timestamp of
the input record and append it to the record’s payload. Depending
on the framework, this is either done as part of the read operator
(see Fig. 2) or in an intermediate stateless map operation. In the
stateful aggregation step, we use this timestamp and include it in
the state. Since the whole state is emitted as part of an output event,
the final data written to Kafka contains both the time the input
event has been written to Kafka and the time the output event has
been written to Kafka. ShuffleBench comes with a latency exporter
that reads all output events and computes a frequency distribution
of their latency. The latency exporter can be scaled to multiple
instances to also cope with large output data volume.

4.3.3 Scalability. We adopt the Theodolite scalability benchmark-
ing method for stream processing systems in cloud-native environ-
ments [12, 14]. It provides two metrics for quantifying scalability:
The resource demand metric describes how the number of required
computing resources evolves with increasing load, whereas the
load capacity describes how the maximum processable load evolves
with increasing computing resources. The Theodolite measure-
ment method extends the sustainable throughput method to a two-
dimensional search space. It encompasses search strategies two
reduce the number of independent experiments to be executed.

4.4 Open-Source Benchmark Availability
We provide ShuffleBench as free and open-source research software
to the community. ShuffleBench utilizes and extends the benchmark-
ing framework Theodolite [14, 15] to automate the benchmark exe-
cution in Kubernetes-based cloud environments. This includes the
declarative definition of benchmark experiments, automated setup
and teardown of all involved software components (i.e., stream
processing frameworks, load generator, and the messaging system)
as well as the collection of measurement data.

Our benchmark implementations for different stream processing
frameworks as well as the load generator and the latency exporter
are available as source code, Java archive files, container images,
Kubernetes manifests, and Theodolite benchmark manifests. This
allows the community to engage at different levels.

5 EXPERIMENTAL EVALUATION
We employ ShuffleBench to experimentally evaluate the perfor-
mance of Flink (v. 1.17), Hazelcast (v. 5.3), Kafka Streams (v. 3.5),
and Spark Structured Streaming (v. 3.4, in the following simply
referred to as Spark). This evaluation serves two purposes: First, it

compares how different stream processing frameworks compete re-
garding large-scale data shuffling use cases to assist in selecting the
right technology. Second, it demonstrates how ShuffleBench allows
researchers and practitioners to conduct their own experiments
with different configurations of the benchmark.

After a brief description of our experimental setup (Section 5.1),
we conduct a set of experiments. Section 5.2 starts by a baseline eval-
uation of throughput using both measurement methods presented
in Section 4.3.1. Likewise, Section 5.3 reports on our baseline latency
evaluation. Afterward, Section 5.4 repeats these experiments with
a modified deployment, Section 5.5 with different generated record
sizes, Section 5.6 with a different number of real-time consumers,
and Section 5.7 with different total selectivities of the matcher
service. We discuss the results in the context of related work in
Section 5.8 and threats to validity in Section 5.9. We provide a
replication package and the collected data of our experiments as
supplemental material [17], such that other researchers and practi-
tioners may repeat and extend our work.

5.1 Experimental Setup
We conduct our experimental evaluation in a Kubernetes cluster
managed by the Elastic Kubernetes Service of Amazon Web Ser-
vices. The cluster consists of 10 nodes provisioned in the us-east-1
region: 3 m6i.xlarge nodes run the stream processing framework,
3 m6i.2xlarge nodes run one Kafka broker each, and 4 m6i.xlarge
nodes run the load generator instances plus additional benchmark-
ing infrastructure.4 Unless stated differently, we use the following
configurations: We deploy the stream processing application with
9 application instances (3 per cluster node). Each instance is as-
signed 4 GB of memory and a single virtual CPU core, resulting
in a total parallelism of 9. Except for a few adjustments for better
comparability, we test all frameworks with their default configura-
tions. We set up one million real-time consumers that all have the
same selectivity, which sum up to 20%, meaning that each record
is forwarded to 0.2 consumers on average. Each consumer emits an
output event for every tenth record. Generated records have a size
of 1024 bytes. To increase statistical rigor, we run each experiment
for 15 minutes and repeat it three times. We consider this sufficient
as our results in the following sections show no large deviations
across repetitions.

5.2 Baseline Evaluation of Throughput
In Section 4.3.1, we discuss how the ad-hoc throughput method pro-
vides throughput results faster than the more realistic sustainable
throughput method. In this evaluation, we compare the results of
both methods based on experiments. For the ad-hoc throughput
experiments, we generate 1 million records per second and mon-
itor how many are processed per second by the frameworks. For
the sustainable throughput experiments, we generate records with
different frequencies and determine the maximum frequency at
which the number of queued records in the Kafka input topic does
not substantially increase over time (the performance goal, see our
previous work for a detailed explanation of this method [16]). In
the following, we first discuss the results of Flink, Kafka Streams,

4As part of our replication package [17], we also provide the exact setup using estab-
lished Infrastructure-as-Code tooling.

7



ShuffleBench: A Benchmark for Large-Scale Data Shuffling Operations with Distributed Stream Processing Frameworks ICPE ’24, May 7–11, 2024, London, United Kingdom

Flink Hazelcast K'Streams
stream processing framework

0

100k

200k

300k

400k

500k

re
co

rd
s/

se
co

nd

(a) Ad-hoc throughput

10k 100k 1M 10M 100M
max. poll records

0

50k

100k

150k

200k

250k

300k

re
co

rd
s/

se
co

nd

(b) Ad-hoc throughput (Spark)

Flink H'cast K'Streams Spark
stream processing framework

0

50k

100k

150k

200k

250k

300k

350k

400k

re
co

rd
s/

se
co

nd

(c) Sustainable throughput

Figure 3: Baseline throughput results obtained with the ad-hoc measurement method of Flink, Hazelcast, and Kafka Streams
(a); of Spark for different limitations on the maximum number of pulled records per batch (b); and with the sustainable
measurement method of Flink, Hazelcast, Kafka Streams, and Spark (c).

and Hazelcast as they allow for a straightforward interpretation,
followed by a more detailed discussion of the results for Spark.

5.2.1 Results of Flink, Hazelcast, and Kafka Streams. Figure 3a
shows the results of the ad-hoc throughput measurement method
for Flink, Hazelcast, and Kafka Streams. We can observe a clear
ranking inwhich Flink achieves the highest throughput, followed by
Kafka Streams, and a considerably lower throughput of Hazelcast.

We contrast these results by the results of the sustainable through-
put method as shown in Fig. 3c. Considering the results obtained
by the sustainable throughput method as representative of a real
deployment, we can see that the ad-hoc method overestimates the
throughput of Flink and Kafka Streams by up to 20%. For Hazel-
cast, we can see no difference. Despite their overestimation, ad-hoc
measurements are still useful since the ranking of frameworks is
the same with both methods and ad-hoc measurements can be
performed significantly faster. For these reasons, we apply the ad-
hoc method for the throughput measurements in the following
evaluation.

5.2.2 Results of Spark. Unless further adjusted, ad-hoc throughput
measurements are not meaningful in Spark, because Spark ingests
all available data in a batch, processes this batch, and then ingests
the next batch of all available data. Data that is generated at a
larger volume than can be processed leads to ever-increasing batch
sizes and, thus, to ever-increasing batch processing time. How-
ever, Spark allows constraining the maximum number of records
pulled per batch. We experiment with different limits and show
how they impact the achieved throughput in Fig. 3b. In short, the re-
sults demonstrate the intuition that pulling more records increases
the throughput. However, this comes at the cost of high latency.
For instance, pulling in batches of 10 million records achieves a
throughput of approximately 200 000 records per second, but then
data is retrieved only every 50 seconds causing high latency (see
Section 5.3).

With the sustainable throughput method, we determine the maxi-
mum throughput without a persistent increase in queued messages.
As shown in Fig. 3c, Spark achieves a throughput of 270 000 to
280 000 records per second. However, this throughput comes again
at the cost of large batches with processing times – and thus laten-
cies (see Section 5.3) – of several seconds. Smaller data volumes
lead to reduced batch processing times and, thus, lower latency.

In summary, we observe that Spark’s throughput can be in-
creased at the cost of increased latency and latency can be decreased
at the cost of reduced throughput. This means both metrics should
always be considered in relation to each other and providing a
single result value is problematic. Nevertheless, we observe that
with our benchmark, Spark achieves a throughput similar to the
other frameworks only if a latency of a few minutes can be toler-
ated. As we consider this as too long for most stream processing
use cases [21, 32] and to reduce the space of experiment configura-
tions, we limit the maximum number of records pulled per batch
to 1 000 000 in the following throughput experiments.

5.3 Baseline Evaluation of Latency
For our baseline latency evaluations, we generate a constant load of
90 000 records per second as our baseline throughput experiments
in Section 5.2 showed that this is the maximum rate at which all
frameworks are able to process data (see Fig. 3c).

Figure 4 shows a quantile function of the observed latency of
Flink, Kafka Streams, and Hazelcast. We exclude Spark in the fig-
ure as it has a latency of over 10 seconds at every percentile. It
can be seen that Hazelcast processes data with a very low latency
of 8 milliseconds at the 95th percentile. The p95 latency of Flink
(88 milliseconds) and Kafka Streams (183 milliseconds) are consid-
erably higher but still by an order of magnitude lower than Spark’s.

8



ICPE ’24, May 7–11, 2024, London, United Kingdom Sören Henning, Adriano Vogel, Michael Leichtfried, Otmar Ertl, and Rick Rabiser

p0 p20 p40 p60 p80 p100
percentile

0

50

100

150

200

250

300

m
illi

se
co

nd
s

Flink Hazelcast Kafka Streams

Figure 4: Quantile function of the median observed latency
of Flink, Hazelcast and Kafka Streams.

5.4 Evaluation of Deployment Impact
In our baseline experiments, we deploy 9 instances of the stream
processing framework, each limited to one virtual CPU core. Thus,
all parallelization is happening on the level of Kubernetes Pods.
We compare this deployment against deploying 3 instances with
each being limited to 3 cores. This introduces a second level of
parallelization (i.e., within a single instance) while maintaining an
overall parallelism of 9. We scale the assigned memory per instance
proportionally to 12 GB.

Flink, Hazelcast, and Kafka Streams benefit to a small extent from
higher per-instance parallelization as shown in Fig. 5a. However,
Spark’s throughput decreases slightly. Figure 5b shows that the 3-
node deployment has virtually no influence on processing latency
for all frameworks.

5.5 Evaluation of Record Size Impact
In our baseline experiments, we generate data records of 1024-byte
size. While we consider this as a realistic value for our studied in-
dustrial use case, there are certainly use cases that process records
of other sizes. As related benchmarking studies often used consid-
erably smaller records [13, 18, 34], we evaluate the performance
with record sizes of 128 bytes, 256 bytes, and 512 bytes.

Figure 6a shows that all frameworks can process more records
as record sizes become smaller. It is interesting to see that in par-
ticular Hazelcast benefits from smaller record sizes. While with
1024-byte records, Flink achieves 5.3× higher and Kafka Streams
3.8× higher throughput than Hazelcast, Hazelcast achieves 68% of
the throughput of Flink and approximately the same throughput
as Kafka Streams with 128-byte records. It is also worth noting
that records smaller than 256 bytes have only a minimal impact on
Kafka Streams’ throughput.

Fig. 6b shows that the record size only slightly affects the pro-
cessing latency. We can even see a small increase in latency with
smaller records, which may seem counterintuitive. We expect this
to be because data from Kafka is pulled in batches (limited by its
size in bytes). Smaller records imply more records per batch and,

Flink Hazelcast Kafka Streams Spark
stream processing framework

0

100k

200k

300k

400k

500k

600k

re
co

rd
s/

se
co

nd

9 instances, 1 core 3 instances, 3 cores

(a) Ad-hoc throughput

Flink Hazelcast Kafka Streams
stream processing framework

0

25

50

75

100

125

150

175

200

m
illi

se
co

nd
s

9 instances, 1 cores 3 instances, 3 cores

(b) Latency at the 95th percentile

Figure 5: Experimental results comparing a deployment with
9 instances and one core per instance with a deployment of
3 instances with 3 cores per deployment.

thus, that data is potentially longer queued in Kafka before being
pulled.

5.6 Evaluation of Consumer Count Impact
ShuffleBench allows for configuring the number of real-time con-
sumers. The number of consumers impacts the runtime of the
matcher service as well as the number of state entries and, thus, the
overall state size. Our baseline evaluation used 1 million consumers,
which we now compare to 100 000 consumers. Evaluations with
significantly larger numbers would require more memory and are
therefore not covered in the evaluation.

Figure 7a shows thatwith fewer real-time consumers, the through-
put of Flink and Kafka Streams significantly increases, whereas we
can see no change for Hazelcast. This indicates that the bottleneck
of Hazelcast is unrelated to the number of consumers. With all
frameworks, there is no change in the processing latency when
using fewer consumers as shown in Fig. 7b.

9



ShuffleBench: A Benchmark for Large-Scale Data Shuffling Operations with Distributed Stream Processing Frameworks ICPE ’24, May 7–11, 2024, London, United Kingdom

Flink Hazelcast Kafka Streams Spark
stream processing framework

0

100k

200k

300k

400k

500k

600k

700k

800k

re
co

rd
s/

se
co

nd

1024 B 512 B 256 B 128 B

(a) Ad-hoc throughput

Flink Hazelcast Kafka Streams
stream processing framework

0

25

50

75

100

125

150

175

200

m
illi

se
co

nd
s

1024 B 512 B 256 B 128 B

(b) Latency at the 95th percentile

Figure 6: Experimental results comparing the impact of dif-
ferent record sizes.

5.7 Evaluation of Selectivity Impact
The summed-up selectivity of all real-time consumes describes how
much of the overall input data volume is forwarded to the groupBy
operation of ShuffleBench’s dataflow architecture. Hence, it also
determines the data volume that is re-distributed to a potentially
different application instance. Besides a total selectivity of 20% in
our baseline evaluation, we also compare a 0% and a 100% total
selectivity.

Figure 8a shows the throughput results for all frameworks. All
frameworks except Hazelcast achieve a higher throughput with
smaller selectivity. Hazelcast’s results indicate that its bottleneck is
neither due to the shuffling nor the stateful aggregation. Noticeable
is that Spark’s results throughput significantly reduces from 0%
selectivity to 20% selectivity, but only slightly from 20% selectivity
to 100% selectivity. Figure 8b shows the 95th percentile processing
latency of Flink, Hazelcast, and Kafka Streams for 20% selectivity
and 100% selectivity. There can be no latency results for 0% selectiv-
ity, as no data is shuffled and, thus, no events are output. Hazelcast
shows a very high latency with 100% selectivity as, in this case, it
can not process the generated data volume anymore, which means

Flink Hazelcast Kafka Streams Spark
stream processing framework

0

200k

400k

600k

800k

re
co

rd
s/

se
co

nd

100k 1M

(a) Ad-hoc throughput

Flink Hazelcast Kafka Streams
stream processing framework

0

25

50

75

100

125

150

175

200

m
illi

se
co

nd
s

100k 1M

(b) Latency at the 95th percentile

Figure 7: Experimental results comparing 100 000 with one
million real-time consumers.

that records are queuing up in Kafka. Surprisingly, with higher
selectivity, the latency of Flink and Kafka Streams decreases. We
expect this again to be due to buffering effects in the shuffling and
in the output step.

5.8 Discussion in the Context of Related Work
Across all our experiments, Flink processes data with the highest
throughput, followed by Kafka Streams. Only for small records of
128-byte size, Hazelcast achieves a similar throughput to Kafka
Streams. On the other hand, Hazelcast processes data with about
ten times lower latency compared to Flink, which in turn requires
approximately half the time of Kafka Streams. In our experiments
with Spark, a strong correlation between throughput and latency
can be noted. Engineers and operators can thus choose the right
balance depending on the use case. To process data of a volume
similar to that processed by other frameworks, however, latency in
the order of several seconds up to minutes has to be tolerated.

Flink’s superior performance for many use cases is also reported
in the literature [16, 21, 34]. The throughput achieved with Spark
was not as high (compared to other frameworks) as reported in

10



ICPE ’24, May 7–11, 2024, London, United Kingdom Sören Henning, Adriano Vogel, Michael Leichtfried, Otmar Ertl, and Rick Rabiser

Flink Hazelcast Kafka Streams Spark
stream processing framework

0

100k

200k

300k

400k

500k

600k

700k

800k

re
co

rd
s/

se
co

nd

0% 20% 100%

(a) Ad-hoc throughput

Flink Hazelcast Kafka Streams
stream processing framework

0

25

50

75

100

125

150

175

200

m
illi

se
co

nd
s

20% 100%

(b) Latency at the 95th percentile

Figure 8: Experimental results comparing a total selectivity
across all real-time consumers of 0%, 20%, and 100%.

some related studies [20, 34]. We believe that this is due to specific
technical aspects of our benchmark and experimental design of
avoiding configuration tuning (see Section 5.9), which can be a
requirement for Spark’s execution in clusters [34]. In the future, we
intend to further investigate Spark’s configurations and their impact
on performance. Likewise, Hazelcast’s low throughput is surprising
and could not be observed in related work [16]. Whether this is only
due to our larger record sizes or there are further particularities in
our benchmark or experimental setup has to be further evaluated.

Hazelcast’s low latency processing was also observed in the
related literature [10, 18] and is underpinned by its design [10].
Also, the strong correlation between throughput and latency in
Spark is reported in the literature [34, 37]. Recent, experimental
approaches in Spark for continuous processing5 to reduce latency
could be subject of an extended evaluation.

5https://spark.apache.org/docs/3.5.0/structured-streaming-programming-
guide.html#continuous-processing

5.9 Threats to Validity
Despite careful research design, there are threats and limitations to
the validity of our experimental evaluation, which we report below.

Threats to Internal Validity. We run all evaluations in a container-
ized environment on a public cloud platform to have a representa-
tive deployment. This means, however, that there are potentially
many factors influencing the performance, which are out of our
control [25, 28]. We address these limitations to some extent by
running individual experiments for a longer time, repeating them,
and assessing their variability. However, to reduce the benchmark-
ing setup’s complexity, we do not re-create the Kubernetes cluster
between two experiments, which means that virtual machines are
not re-provisioned before each experiment. We do not systemat-
ically run experiments at different times of the day or the week
to keep the time required for these experiments manageable. Re-
peating certain experiments at different times, however, did not
show noticeable deviations. To further mitigate these limitations,
we provide our benchmark as open-source software, allowing for
independent replication of our study.

Threats to External Validity. It is important to note that our results
report on the performance of different stream processing frame-
works for large-scale data shuffling use cases. Previous research has
shown that benchmark results of one use case are not necessarily
transferable to other use cases [16, 27, 37]. In Sections 5.4 to 5.7
we conduct throughput experiments with the less representative
ad-hoc measurement method to reduce the overall time required
for these experiments. Section 5.2 quantifies how much this method
overestimates the realistic throughput. We intentionally evaluate
all frameworks primarily using their default configurations. This
approach helps to avoid bias resulting from different degrees of
experience with the frameworks. However, we can only draw lim-
ited conclusions about potential performance improvements that
can be achieved through fine-tuning for specific scenarios. For our
experiments, we focused on a single kind of deployment (containers
in Kubernetes) on a single cloud platform. As we measure perfor-
mance on a high level (macro-benchmarking) using cloud-native
abstraction layers and by setting resource limits for the contain-
ers, we expect no significantly different results in other execution
environments.

6 CONCLUSIONS AND FUTUREWORK
This paper introduces ShuffleBench, our proposal for a new stream
processing benchmark for large-scale data shuffling operations. Be-
sides addressing a different use case than other stream processing
benchmarks, ShuffleBench also overcomes several limitations of
other benchmarks. Our benchmark design is based on requirements
identified from a large cloud observability platform and established
benchmarking metrics, methods, and techniques from the perfor-
mance engineering research community. With ShuffleBench, we
aim to support and foster research on stream processing by pro-
viding a standardized method that researchers and practitioners
can use to compare their implementations, algorithms, and config-
urations. So far, we employed ShuffleBench to evaluate throughput
and latency of Flink, Hazelcast, Kafka Streams, and Spark. Our

11

https://spark.apache.org/docs/3.5.0/structured-streaming-programming-guide.html#continuous-processing
https://spark.apache.org/docs/3.5.0/structured-streaming-programming-guide.html#continuous-processing


ShuffleBench: A Benchmark for Large-Scale Data Shuffling Operations with Distributed Stream Processing Frameworks ICPE ’24, May 7–11, 2024, London, United Kingdom

evaluation provides the most recent benchmark results to the re-
search community and serves as a starting point for researchers
and practitioners to conduct further evaluations with ShuffleBench.

Besides growing a community around ShuffleBench, we plan to
support additional qualities such as reliability. In particular, an em-
pirical investigation of the interconnection of throughput, latency,
and fault-tolerance is highly demanded. We are also currently in
the process of supporting and evaluating non-uniformly distributed
record sizes, selectivities, state sizes, and output rates to address
additional industrial requirements.

ACKNOWLEDGMENTS
We would like to thank the Johannes Kepler University Linz and
Dynatrace for co-funding this research.

REFERENCES
[1] Adil Akhter, Marios Fragkoulis, and Asterios Katsifodimos. 2019. Stateful Func-

tions as a Service in Action. Proceedings of the VLDB Endowment 12, 12 (Aug.
2019), 1890–1893. https://doi.org/10.14778/3352063.3352092

[2] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Approach
to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, out-
of-Order Data Processing. Proceedings of the VLDB Endowment 8, 12 (Aug. 2015),
1792–1803. https://doi.org/10.14778/2824032.2824076

[3] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S. Maskey,
Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. 2004. Linear Road: A
StreamData Management Benchmark. In Proceedings of the Thirtieth International
Conference on Very Large Data Bases - Volume 30 (VLDB ’04). VLDB Endowment,
480–491.

[4] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu,
Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia. 2018. Structured Stream-
ing: ADeclarative API for Real-Time Applications in Apache Spark. In Proceedings
of the 2018 International Conference on Management of Data (SIGMOD ’18). ACM,
601–613. https://doi.org/10.1145/3183713.3190664

[5] Maycon Viana Bordin, Dalvan Griebler, Gabriele Mencagli, Cláudio F. R. Geyer,
and Luiz Gustavo L. Fernandes. 2020. DSPBench: A Suite of Benchmark Appli-
cations for Distributed Data Stream Processing Systems. IEEE Access 8 (2020),
222900–222917. https://doi.org/10.1109/ACCESS.2020.3043948

[6] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[7] Badrish Chandramouli, Jonathan Goldstein, Roger Barga, Mirek Riedewald, and
Ivo Santos. 2011. Accurate latency estimation in a distributed event processing
system. In 2011 IEEE 27th International Conference on Data Engineering. IEEE,
255–266. https://doi.org/10.1109/ICDE.2011.5767926

[8] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113. https://doi.org/10.
1145/1327452.1327492

[9] Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri, and Asterios Katsifodimos.
2024. A survey on the evolution of stream processing systems. The VLDB Journal
33, 2 (2024), 507–541. https://doi.org/10.1007/s00778-023-00819-8

[10] Can Gencer, Marko Topolnik, Viliam Ďurina, Emin Demirci, Ensar B. Kahveci, Ali
Gürbüz, Ondřej Lukáš, József Bartók, Grzegorz Gierlach, František Hartman, Ufuk
Yılmaz, Mehmet Doğan, Mohamed Mandouh, Marios Fragkoulis, and Asterios
Katsifodimos. 2021. Hazelcast Jet: Low-Latency Stream Processing at the 99.99th
Percentile. Proceedings of the VLDB Endowment 14, 12 (July 2021), 3110–3121.
https://doi.org/10.14778/3476311.3476387

[11] Wilhelm Hasselbring. 2021. Benchmarking as Empirical Standard in Software
Engineering Research. In Evaluation and Assessment in Software Engineering
(EASE ’21). ACM, 457–462. https://doi.org/10.1145/3463274.3463361

[12] Sören Henning and Wilhelm Hasselbring. 2021. How to Measure Scalability
of Distributed Stream Processing Engines?. In Companion of the ACM/SPEC
International Conference on Performance Engineering. ACM. https://doi.org/10.
1145/3447545.3451190

[13] Sören Henning and Wilhelm Hasselbring. 2021. Theodolite: Scalability Bench-
marking of Distributed Stream Processing Engines in Microservice Architectures.
Big Data Research 25 (2021), 100209. https://doi.org/10.1016/j.bdr.2021.100209

[14] Sören Henning and Wilhelm Hasselbring. 2022. A Configurable Method for
Benchmarking Scalability of Cloud-Native Applications. Empirical Software

Engineering 27, 6 (Aug. 2022). https://doi.org/10.1007/s10664-022-10162-1
[15] Sören Henning and Wilhelm Hasselbring. 2022. Demo Paper: Benchmark-

ing Scalability of Cloud-Native Applications with Theodolite. In 2022 IEEE
International Conference on Cloud Engineering (IC2E). IEEE, 275–276. https:
//doi.org/10.1109/IC2E55432.2022.00037

[16] Sören Henning and Wilhelm Hasselbring. 2024. Benchmarking scalability of
stream processing frameworks deployed as microservices in the cloud. Journal of
Systems and Software 208 (2024), 111879. https://doi.org/10.1016/j.jss.2023.111879

[17] Sören Henning, Adriano Vogel, Michael Leichtfried, Otmar Ertl, and Rick Rabiser.
2024. Replication Package for: ShuffleBench: A Benchmark for Large-Scale Data
Shuffling Operations with Distributed Stream Processing Frameworks. https://doi.
org/10.5281/zenodo.10605615

[18] Guenter Hesse, Christoph Matthies, Michael Perscheid, Matthias Uflacker, and
Hasso Plattner. 2021. ESPBench: The Enterprise Stream Processing Benchmark. In
Proceedings of the ACM/SPEC International Conference on Performance Engineering
(ICPE ’21). ACM, 201–212. https://doi.org/10.1145/3427921.3450242

[19] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm.
2014. A catalog of stream processing optimizations. Comput. Surveys 46, 4, Article
46 (March 2014), 34 pages. https://doi.org/10.1145/2528412

[20] Ziya Karakaya, Ali Yazici, and Mohammed Alayyoub. 2017. A Comparison of
Stream Processing Frameworks. In 2017 International Conference on Computer and
Applications (ICCA). IEEE, 1–12. https://doi.org/10.1109/COMAPP.2017.8079733

[21] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri
Heiskanen, and Volker Markl. 2018. Benchmarking Distributed Stream Data Pro-
cessing Systems. In 2018 IEEE 34th International Conference on Data Engineering
(ICDE). IEEE, 1507–1518. https://doi.org/10.1109/ICDE.2018.00169

[22] Asterios Katsifodimos and Marios Fragkoulis. 2019. Operational Stream Process-
ing: Towards Scalable and Consistent Event-Driven Applications. In Advances in
Database Technology - 22nd International Conference on Extending Database Tech-
nology. OpenProceedings.org, 682–685. https://doi.org/10.5441/002/edbt.2019.86

[23] Samuel Kounev, Klaus-Dieter Lange, and Jóakim von Kistowski. 2020. Systems
Benchmarking. Springer.

[24] Jay Kreps, Neha Narkhede, and Jun Rao. 2011. Kafka: A distributed messag-
ing system for log processing. In Proceedings of the International Workshop on
Networking Meets Databases.

[25] Philipp Leitner and Jürgen Cito. 2016. Patterns in the Chaos—A Study of Per-
formance Variation and Predictability in Public IaaS Clouds. ACM Transac-
tions on Internet Technology 16, 3, Article 15 (April 2016), 23 pages. https:
//doi.org/10.1145/2885497

[26] H. Nasiri, S. Nasehi, and M. Goudarzi. 2019. Evaluation of distributed stream
processing frameworks for IoT applications in Smart Cities. Journal of Big Data
6, 52 (2019). https://doi.org/10.1186/s40537-019-0215-2

[27] Alessio Pagliari, Fabrice Huet, and Guillaume Urvoy-Keller. 2020. NAMB: A
Quick and Flexible Stream Processing Application Prototype Generator. In 2020
20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing
(CCGRID). IEEE, 61–70. https://doi.org/10.1109/CCGrid49817.2020.00-87

[28] Alessandro Vittorio Papadopoulos, Laurens Versluis, André Bauer, Nikolas Herbst,
Jóakim von Kistowski, Ahmed Ali-Eldin, Cristina L. Abad, José Nelson Amaral,
Petr Tůma, and Alexandru Iosup. 2021. Methodological Principles for Repro-
ducible Performance Evaluation in Cloud Computing. IEEE Transactions on
Software Engineering 47, 8 (2021), 1528–1543. https://doi.org/10.1109/TSE.2019.
2927908

[29] Tobias Pfandzelter, Sören Henning, Trever Schirmer, Wilhelm Hasselbring, and
David Bermbach. 2022. Streaming vs. Functions: A Cost Perspective on Cloud
Event Processing. In 2022 IEEE International Conference on Cloud Engineering
(IC2E). IEEE, 67–78. https://doi.org/10.1109/IC2E55432.2022.00015

[30] Paul Ralph, Nauman bin Ali, Sebastian Baltes, Domenico Bianculli, Jessica Diaz,
Yvonne Dittrich, Neil Ernst, Michael Felderer, Robert Feldt, Antonio Filieri,
Breno Bernard Nicolau de França, Carlo Alberto Furia, Greg Gay, Nicolas Gold,
Daniel Graziotin, Pinjia He, Rashina Hoda, Natalia Juristo, Barbara Kitchen-
ham, Valentina Lenarduzzi, Jorge Martínez, Jorge Melegati, Daniel Mendez,
Tim Menzies, Jefferson Molleri, Dietmar Pfahl, Romain Robbes, Daniel Russo,
Nyyti Saarimäki, Federica Sarro, Davide Taibi, Janet Siegmund, Diomidis Spinel-
lis, Miroslaw Staron, Klaas Stol, Margaret-Anne Storey, Davide Taibi, Damian
Tamburri, Marco Torchiano, Christoph Treude, Burak Turhan, Xiaofeng Wang,
and Sira Vegas. 2021. Empirical Standards for Software Engineering Research.
https://doi.org/10.48550/arXiv.2010.03525 Version 0.2.0.

[31] Matthias J. Sax, Guozhang Wang, Matthias Weidlich, and Johann-Christoph
Freytag. 2018. Streams and Tables: Two Sides of the Same Coin. In Proceedings
of the International Workshop on Real-Time Business Intelligence and Analytics
(BIRTE ’18). ACM, Article 1, 10 pages. https://doi.org/10.1145/3242153.3242155

[32] Radu Tudoran, Alexandru Costan, Olivier Nano, Ivo Santos, Hakan Soncu, and
Gabriel Antoniu. 2016. JetStream: Enabling high throughput live event streaming
on multi-site clouds. Future Generation Computer Systems 54 (2016), 274–291.
https://doi.org/10.1016/j.future.2015.01.016

[33] Jóakim v. Kistowski, Jeremy A. Arnold, Karl Huppler, Klaus-Dieter Lange, John L.
Henning, and Paul Cao. 2015. How to Build a Benchmark. In Proceedings of
the 6th ACM/SPEC International Conference on Performance Engineering. ACM,

12

https://doi.org/10.14778/3352063.3352092
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.1145/3183713.3190664
https://doi.org/10.1109/ACCESS.2020.3043948
https://doi.org/10.1109/ICDE.2011.5767926
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1007/s00778-023-00819-8
https://doi.org/10.14778/3476311.3476387
https://doi.org/10.1145/3463274.3463361
https://doi.org/10.1145/3447545.3451190
https://doi.org/10.1145/3447545.3451190
https://doi.org/10.1016/j.bdr.2021.100209
https://doi.org/10.1007/s10664-022-10162-1
https://doi.org/10.1109/IC2E55432.2022.00037
https://doi.org/10.1109/IC2E55432.2022.00037
https://doi.org/10.1016/j.jss.2023.111879
https://doi.org/10.5281/zenodo.10605615
https://doi.org/10.5281/zenodo.10605615
https://doi.org/10.1145/3427921.3450242
https://doi.org/10.1145/2528412
https://doi.org/10.1109/COMAPP.2017.8079733
https://doi.org/10.1109/ICDE.2018.00169
https://doi.org/10.5441/002/edbt.2019.86
https://doi.org/10.1145/2885497
https://doi.org/10.1145/2885497
https://doi.org/10.1186/s40537-019-0215-2
https://doi.org/10.1109/CCGrid49817.2020.00-87
https://doi.org/10.1109/TSE.2019.2927908
https://doi.org/10.1109/TSE.2019.2927908
https://doi.org/10.1109/IC2E55432.2022.00015
https://doi.org/10.48550/arXiv.2010.03525
https://doi.org/10.1145/3242153.3242155
https://doi.org/10.1016/j.future.2015.01.016


ICPE ’24, May 7–11, 2024, London, United Kingdom Sören Henning, Adriano Vogel, Michael Leichtfried, Otmar Ertl, and Rick Rabiser

333–336. https://doi.org/10.1145/2668930.2688819
[34] Giselle van Dongen and Dirk van den Poel. 2020. Evaluation of Stream Processing

Frameworks. IEEE Transactions on Parallel and Distributed Systems 31, 8 (2020),
1845–1858. https://doi.org/10.1109/TPDS.2020.2978480

[35] Giselle van Dongen and Dirk van den Poel. 2021. Influencing Factors in the
Scalability of Distributed Stream Processing Jobs. IEEE Access 9 (2021), 109413–
109431. https://doi.org/10.1109/ACCESS.2021.3102645

[36] Giselle van Dongen and Dirk van den Poel. 2021. A Performance Analysis of Fault
Recovery in Stream Processing Frameworks. IEEE Access 9 (2021), 93745–93763.
https://doi.org/10.1109/ACCESS.2021.3093208

[37] Adriano Vogel, Sören Henning, Otmar Ertl, and Rick Rabiser. 2023. A systematic
mapping of performance in distributed stream processing systems. In Euromicro
Conference on Software Engineering and Advanced Applications. IEEE. https:

//doi.org/10.1109/SEAA60479.2023.00052
[38] Guozhang Wang, Lei Chen, Ayusman Dikshit, Jason Gustafson, Boyang Chen,

Matthias J. Sax, John Roesler, Sophie Blee-Goldman, Bruno Cadonna, Apurva
Mehta, Varun Madan, and Jun Rao. 2021. Consistency and Completeness: Re-
thinking Distributed Stream Processing in Apache Kafka. In Proceedings of the
2021 International Conference on Management of Data (SIGMOD/PODS ’21). ACM,
2602–2613. https://doi.org/10.1145/3448016.3457556

[39] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker, and Ion Stoica. 2016. Apache
Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11 (Oct.
2016), 56–65. https://doi.org/10.1145/2934664

13

https://doi.org/10.1145/2668930.2688819
https://doi.org/10.1109/TPDS.2020.2978480
https://doi.org/10.1109/ACCESS.2021.3102645
https://doi.org/10.1109/ACCESS.2021.3093208
https://doi.org/10.1109/SEAA60479.2023.00052
https://doi.org/10.1109/SEAA60479.2023.00052
https://doi.org/10.1145/3448016.3457556
https://doi.org/10.1145/2934664

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Distributed Stream Processing
	2.2 Benchmarking Stream Processing Frameworks

	3 Large-Scale Data Shuffling
	4 The ShuffleBench Benchmark
	4.1 Benchmark Design
	4.2 The ShuffleBench Task Sample
	4.3 Qualities, Metrics and Measurement Methods
	4.4 Open-Source Benchmark Availability

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Baseline Evaluation of Throughput
	5.3 Baseline Evaluation of Latency
	5.4 Evaluation of Deployment Impact
	5.5 Evaluation of Record Size Impact
	5.6 Evaluation of Consumer Count Impact
	5.7 Evaluation of Selectivity Impact
	5.8 Discussion in the Context of Related Work
	5.9 Threats to Validity

	6 Conclusions and Future Work
	Acknowledgments
	References



