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ABSTRACT
Several methods of the Java Class Library (JCL) rely on vectorized
intrinsics. While these intrinsics undoubtedly lead to better per-
formance, implementing them is extremely challenging, tedious,
error-prone, and significantly increases the effort in understand-
ing and maintaining the code. Moreover, their implementation is
platform-dependent. An unexplored, easier-to-implement alterna-
tive is to replace vectorized intrinsics with portable Java code using
the Java Vector API. However, this is attractive only if the Java code
achieves similar steady-state performance as the intrinsics.

This paper shows that this is the case. We focus on the hashCode

and equals computations for byte arrays. We replace the platform-
dependent vectorized intrinsics with pure-Java code employing the
Java Vector API, resulting in similar steady-state performance. We
show that our Java implementations are easy to fine-tune by exploit-
ing characteristics of the input (i.e., the array length), while such
tuning would be much more difficult and cumbersome in a vector-
ized intrinsic. Additionally, we propose a new vectorized hashCode

computation for long arrays, for which a corresponding intrinsic
is currently missing. We evaluate the performance of the tuned
implementations on four popular benchmark suites, showing that
the performance are in line with those of the original OpenJDK 21
with intrinsics.

Finally, we describe a general approach to integrate code using
the Java Vector API into the core classes of the JCL, which is chal-
lenging because premature use of the Java Vector API would crash
the JVM during its fragile initialization phase. Our approach can be
adopted by developers to modify JCL classes without any changes
to the native codebase.
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1 INTRODUCTION
In the context of the Java Virtual Machine (JVM), intrinsics [2, 21]
are a complex runtime machinery introduced for implementing
efficient low-level operations.1 Intrinsics are often implemented in
the form of template-generated, assembly-like code or as dedicated
nodes in the intermediate representation (IR) used by the just-
in-time (JIT) compiler. Several methods of the Java Class Library
(JCL) are implemented as intrinsics to improve performance [19]:
instead of relying on the JIT compiler to optimize a pure-Java
implementation, the JIT compiler directly emits machine code as
specified by the intrinsic. In this way, the compilation cost is reduced
since the compiler does not need to perform optimization passes.
Moreover, by leveraging intrinsics, JVM developers can express low-
level computations which are not directly expressible in the Java
language. With the increasing support of vector instructions [1] (i.e.,
special machine instructions leveraging SIMD registers to apply
an operation to multiple data elements in parallel) in common
processors, intrinsics can leverage such instructions to improve
performance even on ordinary hardware. We refer to such intrinsics
as vectorized intrinsics.

1Intrinsics are used for multiple reasons, such as for making low-level resources
accessible or for improving performance. This paper focuses solely on the latter type
of intrinsics, in particular on those making use of vector instructions.
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While intrinsics undoubtedly lead to better performance, im-
plementing them is extremely challenging [8, 50]. In addition to
the very specific knowledge needed to write highly optimized,
template-generated assembly code for a target architecture, imple-
menting an intrinsic is hard, tedious, error-prone, requires a major
development effort, and makes debugging, tuning, and testing very
time-consuming. Moreover, as intrinsics are platform-dependent,
the above effort should be repeated for every architecture that one
wishes to support. This issue is aggravated in vectorized intrinsics,
since even processors of the same architecture may support differ-
ent vector extensions. As an example, x86 processors may support
Streaming SIMD Extensions [24] (SSE), which have been released
in four different versions (SSE1, SSE2, SSE3, SSE4) and Advanced
Vector Extensions [25] (AVX), released in three different versions
(AVX, AVX2, AVX512). To fully leverage vector instructions, de-
velopers need to implement different versions of the vectorized
intrinsics, each making use of the vector instructions supported
by the underlying processor. Due to this complexity and effort
required, in practice, developers implement vectorized intrinsics
only for very common architectures (e.g., x86) and only for selected
methods of the JCL (e.g., commonly and frequently used primitives
on byte arrays such as hashCode and equals), where the complexity
and cost of implementing an intrinsic is justified by a significant
performance gain.

These issues—huge effort in development, debugging, and test-
ing, limited portability, substantial platform dependence of vector
instructions—can be mitigated by replacing vectorized intrinsics
with equivalent platform-independent Java code making use of
the Java Vector API (JVA) [35], which allows developers to express
explicit vector operations from Java code using an object-oriented
API, without resorting to any native code. Using the API, appropri-
ate vector instructions are emitted by the JIT compiler depending
on the vector instructions supported by the architecture; hence, the
same Java code can be executed on multiple platforms, possibly
supporting different vector extensions.

The goal of this paper is to show that in addition to reducing
the effort in understanding, extending, and maintaining the code,
replacing vectorized intrinsics with equivalent Java code using the
JVA results in similar steady-state performance, making the ap-
proach attractive even in production-level JVMs. We present a brief
background on intrinsics in Section 2. As practical use cases, we
apply this approach to the hashCode (Section 3) and equals (Sec-
tion 5) computations for byte arrays. Moreover, as the code is now
easier to extend, debug, and test, we show that it is also easy to
fine-tune the code, exploiting characteristics of the input (i.e., the
array length); fine-tuning would be very difficult to implement in
an intrinsic. Furthermore, we propose a new vectorized hashCode

computation for long arrays, for which a corresponding intrinsic is
currently missing (Section 4). We evaluate the performance of the
tuned implementations of hashCode and equals for byte arrays (but
not the new vectorized methods) using four popular benchmark
suites, showing that they provide similar performance than the
vectorized intrinsics (Section 6). Our implementation is portable
and can be run on any JVM and any architecture supported by
the JVA, whereas the vectorized intrinsics in OpenJDK 21 [14] (the
latest version of one of the most used JVMs worldwide) only work
on selected architectures.

The JVA cannot be used during the fragile JVM initialization
phase, because it would lead to the premature initialization of
classes when the JVM is not yet ready to execute arbitrary Java code.
This is a major obstacle, because many methods of the JCL (includ-
ing hashCode and equals, on which we focus) are already exercised
in the early phases of JVM initialization. This paper proposes a
general approach to solve this issue. We describe our approach to
modify the Java source code of the JCL, such that our Java imple-
mentation making use of the JVA can substitute the use of intrinsics
in core classes of the JCL (Section 7). Our approach does not require
any change in the native codebase.

To summarize, we show a new, practical way to implement prim-
itives in the JCL using the JVA, offering an attractive, more portable,
and easier-to-maintain alternative to the use of vectorized intrin-
sics. Our approach does not require any knowledge of the OpenJDK
native codebase and can be reused by researchers and practitioners
to modify JCL classes. In particular, our work makes the following
contributions:

• We propose and evaluate fine-tuned JVA implementations
of hashCode and equals for byte arrays (Sections 3 and 5,
respectively).

• We propose and evaluate a new vectorized hashCode JVA
implementation for long arrays (Section 4).

• We assess the performance of our new JVA implementa-
tions of hashCode and equals for byte arrays on four popular
benchmark suites for Java (Section 6).

• We propose an approach to modify the Java source code of
the core classes of the JCL (Section 7).

We complement the paper with an overview of related work (Sec-
tion 8), a discussion on the limitations of our approach (Section 9),
and our concluding remarks (Section 10).

2 BACKGROUND
Intrinsic functions (henceforth also called intrinsics for short and
also known as built-in functions) are functions whose implemen-
tations are specially handled by the managed language runtime
system. In particular, the managed language runtime system pro-
vides 1) a default implementation of the intrinsic function, written
in themanaged language, and 2) operating system- and architecture-
specific semantically equivalent optimized implementations of the
intrinsic function. If an optimized implementation is available for
the underlying operating system and architecture, at runtime, the
interpreter and/or the compiler replaces the default implementation
with that optimized implementation. Optimized implementations
often leverage operating system and hardware features that are not
available in the managed language constructs and APIs, such as
vector operations.

Since implementing intrinsics is challenging [8, 50], JVMs im-
plement intrinsics only for some particular architectures and only
for some frequently used methods provided by the JCL. Intrinsic
implementations may vary not only depending on the operating
system and the underlying architecture but also based on the JVM
version, JVM vendor, and JIT compiler the JVM uses. For this reason,
the platform-dependency of intrinsics aggravates the unpredictable
performance of Java code on different architectures.
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In this paper, we conduct our experiments on OpenJDK, a widely
used open-source JVM implementation. OpenJDK specifies two
types of intrinsics [21]: 1) library intrinsics that “may be replaced
with hand-crafted assembly code, with hand-crafted compiler IR,
or with a combination of the two” [22], and 2) bytecode intrinsics
that are “not replaced by special code, but they are treated in some
other special way by the compiler” [20]. In our work, we focus on
intrinsics replaced by the JIT compiler and implemented as hand-
crafted assembly code that leverages vector hardware instructions.
We note that implementing this kind of instrinsics in OpenJDK not
only requires knowledge of the low-level assembly programming
model, but also knowledge of the metaprogramming techniques
used to implement their code generation.

3 VECTORIZED HASHCODE FOR BYTE
ARRAYS

In this section, we present the vectorized implementation and eval-
uation of the hashCode method. In Java, every object and array
supports method hashCode, which returns an integer associated
with the object or array. In this section, we focus on the hashCode

computation for byte arrays, which is used also to compute the
hashCode for Java Strings (as they are internally implemented as
byte arrays). An efficient hashCode calculation for Java String is
very important in multiple scenarios, such as pattern-matching
algorithms [30, 31, 46, 47], data-processing systems [10, 23, 49],
and data compression [18]. Arrays.hashCode is implemented as a
variant of the polynomial rolling hash function [28], computed as
reported in Equation 1.

ℎ𝑎𝑠ℎ (𝑠 ) =
{
0 if 𝑁 = 0∑𝑁 −1

𝑖=0 𝑠 [𝑖 ] · 𝑝𝑁 −𝑖−1 mod𝑚 otherwise
(1)

where 𝑠 is an array of length 𝑁 , 𝑠 [𝑖] is the 𝑖-th element of 𝑠 , while 𝑝
and𝑚 are positive integers. In OpenJDK 21, 𝑝 = 31,𝑚 = 232, and the
computation is performed by a vectorized intrinsic requiring AVX2
vector instructions (which use 256-bit vector registers). We note
that the mod 232 operation is obtained implicitly due to overflows.
The intrinsic has recently been introduced in OpenJDK 21 [13]. We
highlight that our experiments show that the previous implemen-
tation of hashCode (i.e., as simple scalar loop) is not automatically
optimized with the superword auto-vectorization optimization per-
formed by the JIT compiler: as shown in Figure 1, the intrinsic
largely outperforms the pure-Java implementation.

3.1 HashCode Implementation for Byte Arrays
The implementation of the vectorized intrinsic for Arrays. hashCode
in OpenJDK 21 can be found in the link [17]. Due to its complex-
ity, for the sake of clarity, we introduce the recast version of the
intrinsic (i.e., an equivalent version using pure Java code relying
on the JVA) and discuss this version. We note that all our versions
presented in this paper have been thoroughly tested with generated
test cases. The pseudo-code of the recast is shown in Figure 2. Vari-
ables with a bar on top denote vectors. Since the intrinsic relies on
AVX2 instructions, the implementation (using four accumulators)
efficiently processes 32 bytes in each iteration. The AVX2 instruc-
tions can only operate on 8 input bytes at a time, since each byte is
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Figure 1: Performance comparison between the OpenJDK 21
hashCode intrinsic and the byte-to-byte loop in pure-Java code
implemented in the JCL up to OpenJDK 20.

converted to a 32-bit integer (zero extension), resulting in a fourfold
size increase of the data.

The implementation initializes the accumulators (each contain-
ing 8 integers) with zeroes (lines 5–8). Then, it loads the coefficient
representing the constant 3132 (line 9). This constant depends on
the number of bytes processed per iteration (32 in our example) and
is loaded from the POW31 array. Both our implementation and the
intrinsic use pre-computed powers of 31. At position 𝑖 , the POW31

array stores the value 31𝑖 .
The main computation unfolds through the sequence of loading

data (lines 12–15) and accumulating the computed intermediate re-
sults (lines 16–19). The accumulators are updated with the product
of the prior accumulation and the coefficient, adding then the latest
loaded data. Subsequently, the index advances by 32, reinstating the
computation if at least 32 bytes remain. After the loop, each vector is
multiplied with a reversed list storing the powers of 31 (lines 21–24).
Ultimately, an aggregation is applied to all accumulators through
an addition (line 25), yielding the hash value.

Subsequently to the execution of the unrolled vectorized loop, the
code processes eventual residual bytes (up to 31). If such bytes exist
(i.e., the array length is not a multiple of 32), they are aggregated
using a scalar loop that processes 2 bytes in each iteration. This
can be seen in lines 29–31. As in the case of the vectorized unrolled
loop, the intrinsic uses this strategy to reduce the dependencies
between iterations. After the loop, a single remaining byte may still
need to be processed. If so, it is subsequently added to the hash
value (line 33).

During the implementation of the recast version, we observed
two improvements that could be applied to use more vector in-
structions. We describe the improvements in the following text and
implement them in a tuned version of hashCode.

The first improvement regards the computation of hashcode for
arrays of < 32 bytes. In this case, the intrinsic processes all the
input data with scalar operations (processing 2 bytes in each loop
iteration). In our tuned version, we use scalar computation only for
arrays of < 8 bytes, while for lengths from 8 to 31, we use vectorized
instructions relying on a single accumulator.
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1 int hashCode_recast(byte[] s) {
2 int len = s.length;
3 int h = 0;
4 if (len >= 32) {
5 𝑎𝑐𝑐0 = zero(8_INT);
6 𝑎𝑐𝑐1 = zero(8_INT);
7 𝑎𝑐𝑐2 = zero(8_INT);
8 𝑎𝑐𝑐3 = zero(8_INT);
9 𝑚 = load(8_INT , POW31 [32]);
10 int bound = len & ~31; // (length /32) *32
11 for (int i = 0; i < bound; i += 32) {

12 𝑑𝑎𝑡𝑎0 = fromArray (8_BYTE , s, i);

13 𝑑𝑎𝑡𝑎1 = fromArray (8_BYTE , s, i+8);

14 𝑑𝑎𝑡𝑎2 = fromArray (8_BYTE , s, i+16);

15 𝑑𝑎𝑡𝑎3 = fromArray (8_BYTE , s, i+24);

16 𝑎𝑐𝑐0 = 𝑎𝑐𝑐0.mul(𝑚).add(𝑑𝑎𝑡𝑎0.convert (...));

17 𝑎𝑐𝑐1 = 𝑎𝑐𝑐1.mul(𝑚).add(𝑑𝑎𝑡𝑎1.convert (...));

18 𝑎𝑐𝑐2 = 𝑎𝑐𝑐2.mul(𝑚).add(𝑑𝑎𝑡𝑎2.convert (...));

19 𝑎𝑐𝑐3 = 𝑎𝑐𝑐3.mul(𝑚).add(𝑑𝑎𝑡𝑎3.convert (...));
20 }
21 𝑎𝑐𝑐0 = 𝑎𝑐𝑐0.mul(POW31 [31..24]);
22 𝑎𝑐𝑐1 = 𝑎𝑐𝑐1.mul(POW31 [23..16]);
23 𝑎𝑐𝑐2 = 𝑎𝑐𝑐2.mul(POW31 [15..8]);
24 𝑎𝑐𝑐3 = 𝑎𝑐𝑐3.mul(POW31 [7..0]);
25 h = 𝑎𝑐𝑐0.add(𝑎𝑐𝑐1).add(𝑎𝑐𝑐2)
26 .add(𝑎𝑐𝑐3).reduce(ADD);
27 }
28 int i = 1 + (len & ~31);
29 for (; i < len ; i += 2) {
30 h = 31 * 31 * h + 31 * (s[i-1] & 0xff) +

(s[i] & 0xff);
31 }
32 if (i == len) {
33 h = 31 * h + (s[i-1] & 0xff);
34 }
35 return h;
36 }

Figure 2: Pseudo-code of the recast version of hashCode for
byte arrays using the JVA.

The second improvement applies for lengths > 32 that are not
multiples of 32. The intrinsic processes the residual bytes (i.e., length
mod 32) in a scalar loop. Instead, we use up to four additional
vector instructions to process 8 bytes at a time. At the end, our
tuned implementation loads the last 8 bytes of the array and applies
a vector mask, setting to zero the vector positions that contain
previously processed bytes to avoid processing them twice. The
remaining (not masked) bytes are finally processed in the same way
as in the loop using only vector instructions.

3.2 Evaluation Methodology and Experimental
Setup

We designed a micro-benchmark to compare the execution time of
the different hashCode implementations for different array lengths.
Our goal is to understand whether our pure-Java implementations
(recast and tuned) achieve similar steady-state performance as the
intrinsic. In this section, we describe our evaluation methodology.
We will use the same methodology in Sections 4.2 and 5.2. All the
experiments in this paper are executed on a machine equipped

with an Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz, featuring 16
physical cores supporting the AVX512 instruction set (supporting
512-bit vector registers). Hyper-threading and turbo boost are dis-
abled. The machine has 256GB of RAM @ 3200MHz. The kernel is
Linux 5.15.0-25-generic, and the OS is Ubuntu 22.04 LTS. We use
OpenJDK build 21.0.1+12-29.

Our figures report the execution time for each array length from
0 to 512. In each run of the micro-benchmark (within one JVM
process), we perform 40k series of measurements, each series with
513 measurements (on byte arrays of lengths 0–512). In each series,
we execute the 513 measurements in a randomized order, to ensure
that our dynamically compiled Java implementations do not gain
any unfair advantage due to predictable execution paths. Among
the 40k series of measurements, we consider the first 20k as warm-
up, ignoring them.We run the micro-benchmark 5 times in different
JVM processes. Overall, each data point (i.e., execution time) in the
shown figures is the arithmetic mean of 100k measurements (the
20k steady-state measurements for each of the 5 runs). We note that
there is no object allocation during these measurements, and we use
the Epsilon no-op garbage collector [4] to prevent any interference
of the measurements by the garbage collector. In all figures where
the x-axis represents different array lengths, the y-axis shows the
execution time in nanoseconds.

3.3 Evaluation of HashCode for Byte Arrays
Figure 3 presents a comparison of the steady-state performance of
different hashCode implementations: the hashCode intrinsic imple-
mented in OpenJDK 21 and the recast and tuned versions using the
JVA. As the intrinsic only uses AVX2 instructions, the recast and
tuned versions only use 256-bit vector instructions as well. The
figures also show a tuned version that exploits AVX512 (i.e., 512-bit
vector instructions), which was easily written with the JVA. For a
fair comparison with the intrinsic, our focus remains exclusively
on the 256-bit implementation. We show the AVX512 version only
to highlight the potential for further performance enhancement on
processors that support 512-bit vector instructions.

As shown in the figure, the curves of each version exhibit dif-
ferent characteristics. The performance trend of the intrinsic and
the recast is characterized by its main vectorized loop using four
accumulators and the residual computation employing a scalar
loop. This can be seen in the figure, where the shortest execution
times are measured for array lengths that are multiples of 32, for
which the hashCode computation involves only vector instructions.
Then, the subsequent 31 data points in the curve follow a pattern
of increasing overhead due to the scalar loop.

The performance curve of our tuned implementation is also
shaped by its main vectorized loop featuring four accumulators
(for lengths ≥ 32). However, a notable difference lies in the final
phase of the hashCode computation. Here, we substitute the scalar
for loop iterations with vector instructions that process up to 8
bytes at a time. Since often there are less than 8 residual bytes, we
apply a mask to disable unused lanes of the vector instruction. This
approach leads to a discernible pattern marked by four steps within
each 32-byte range. Each step in the range corresponds to the final
vector instructions processing 8 bytes using a mask, accompanied
by extra vector instructions (at most three) every 8 bytes. While
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Figure 3: Performance comparison between the OpenJDK 21 hashCode intrinsic and our pure-Java recast and tuned implementa-
tions.

our optimization performs slightly worse than the intrinsic when
there are only few residual bytes, it shows speedups when more
residual bytes need to be processed.

In our experiments, we observe a different trend between the
intrinsic and the recast version up to an array length of 160; be-
yond this threshold, the two implementations show comparable
performance. This is because for longer arrays, the execution time
is dominated by the loop using four accumulators, which is im-
plemented in the same way in all versions. Compared with the
intrinsic, our experimental results on this micro-benchmark show
an overall speedup (geometric mean of the speedup factors for all
measured lengths) of 0.94× for the recast version and of 1.10× for
the tuned version.

4 VECTORIZED HASHCODE FOR LONG
ARRAYS

In this section, we present and evaluate our implementation of the
vectorized hashCode computation for long arrays. In OpenJDK 21,
this computation has not (yet) been intrinsified. We describe a pure-
Java vectorized implementation to show that using the JVA we can
easily vectorize additional methods in the JCL that do not benefit
from auto-vectorization.

Figure 4 illustrates the hashCode computation for long arrays.
The computation makes use of the same polynomial rolling hash
function we introduced in the previous section (Equation 1), with
the difference that a pre-processing step is performed, consisting
of an XOR operation on the most- and least significant part of each
long element, yielding an integer (line 4).

4.1 HashCode Implementation for Long Arrays
We describe a new pure-Java implementation that exploits 256-bit
vectors to efficiently vectorize the hashCode computation for long
arrays. Figure 5 shows the core part of the proposed implementa-
tion.2 As mentioned before, the interesting aspect is reading the
data in a way to fully exploit the potential of vector instructions.

2For more details on vector operations in our pseudo-code, such as withLane, refer to
the documentation of class Vector and its subclasses [26].

1 public static int hashCode(long[] ls) {
2 int h = 1;
3 for (long l : ls) {
4 int hash = (int)(l ^ (l >>> 32));
5 h = 31 * h + hash;
6 }
7 return h;
8 }

Figure 4: Pseudo-code of hashCode for long arrays in Open-
JDK 21.

The main loop is implemented in lines 6–17. In lines 7–10, we load
4 array elements into a long vector and reinterpret it as an integer
vectors of 8 elements. We perform this operation 4 times, reading 16
long elements (reinterpreted as 32 integers) in total. In lines 11–14,
we 1) perform the XOR operation between each pair of integers origi-
nated from the same long via vector shifts, and 2) merge the results
from the 4 part vectors into 2 data vectors, interleaving the results
in even and odd positions. Finally, in lines 15–16, we perform the
hashCode computation.

4.2 Evaluation of HashCode for Long Arrays
Figure 6 compares the steady-state performance of the default
hashCode implementation in OpenJDK 21 with ours. The method-
ology and experimental setup are the same ones described in Sec-
tion 3.2. As can be seen from the figure, our vectorized imple-
mentation significantly improves performance w.r.t. the default
implementation. The performance improvement is more evident
as the array length increases. Overall, experimental results on this
micro-benchmark show that our JVA implementation outperforms
the JCL implementation by a speedup factor (geometric mean of
the speedup factors for all measured lengths) of 1.92×.

5 VECTORIZED EQUALS FOR BYTE ARRAYS
In this section, we present a vectorized implementation and evalua-
tion of the equals method, which determines the equality of two
arrays. It is extensively employed in applications and libraries, for
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1 int hashCode_long(long[] ls) {
2 int len = ls.length;
3 ... // omitted code for len < 16
4 𝑎𝑐𝑐0 = zero(8_INT);
5 𝑎𝑐𝑐1 = zero(8_INT).withLane(7, 1);
6 for (int i = 0; i <= len -16; i += 16) {
7 𝑝𝑎𝑟𝑡0 = fromArray (4_LONG ,ls,i).asInt();
8 𝑝𝑎𝑟𝑡1 = fromArray (4_LONG ,ls,i+4).asInt();
9 𝑝𝑎𝑟𝑡2 = fromArray (4_LONG ,ls,i+8).asInt();
10 𝑝𝑎𝑟𝑡3 = fromArray (4_LONG ,ls,i+12).asInt();

11 𝑑𝑎𝑡𝑎0 = 𝑝𝑎𝑟𝑡0.shiftLeft ().XOR(𝑝𝑎𝑟𝑡0)
12 .blend(𝑝𝑎𝑟𝑡1.shiftRight ().XOR(𝑝𝑎𝑟𝑡1), mask);

13 𝑑𝑎𝑡𝑎1 = 𝑝𝑎𝑟𝑡2.shiftLeft ().XOR(𝑝𝑎𝑟𝑡2)
14 .blend(𝑝𝑎𝑟𝑡3.shiftRight ().XOR(𝑝𝑎𝑟𝑡3), mask);

15 𝑎𝑐𝑐0 = 𝑎𝑐𝑐0.mul(POW31 [16]).add(𝑑𝑎𝑡𝑎0);

16 𝑎𝑐𝑐1 = 𝑎𝑐𝑐1.mul(POW31 [16]).add(𝑑𝑎𝑡𝑎1);
17 }
18 ... // omitted code for residual (len -i) longs
19 }

Figure 5: Pseudo-code of the vectorized implementation of
hashCode for long arrays using the JVA.
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Figure 6: Performance comparison between the OpenJDK 21
hashCode implementation and our version using the JVA.

example, string equality is internally implemented as arrays equal-
ity. This operation is implemented as a simple loop comparing one
byte in each iteration. The loop could in principle be automatically
vectorized with the superword auto-vectorization of the JIT com-
piler. However, we highlight that our experiments show that such
an optimization is not applied on equals: as shown in Figure 7, the
intrinsic largely outperforms the pure-Java implementation. In this
section, we show that an implementation based on the JVA shows
performance in line with the intrinsic.

5.1 Equals Implementation for Byte Arrays
We focus on the equals implementation for byte arrays, where
equality is determined by performing byte-to-byte comparisons.
The equals implementation starts testing trivial cases, such as the
arrays’ references and their lengths. Subsequently, the implemen-
tation resorts to a byte-to-byte comparison to check whether the
elements are equal, which is implemented as an intrinsic [16].
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Figure 7: Performance comparison between the OpenJDK 21
equals intrinsic and the byte-to-byte loop in pure-Java code
implemented in the Java Class Library.

1 int equals_recast(byte[] s1, byte[] s2) {
2 ... // check if s1 and s2 have same length
3 int len = s1.length;
4 if (len >= 64) {
5 int pos = 0;
6 do {
7 if (!( fromArray (64_BYTE , s1, pos)
8 .cmpEQ(fromArray (64_BYTE , s2, pos))
9 .allTrue ()) return false;
10 pos += 64;
11 } while (pos < len -64);
12 return fromArray (64_BYTE , s1, len -64)
13 .cmpEQ(fromArray (64_BYTE , s2, len -64))
14 .allTrue ();
15 } else if (len >= 32) {
16 return fromArray (32_BYTE , s1, 0)
17 .cmpEQ(fromArray (32_BYTE , s2, 0))
18 .allTrue () &&
19 fromArray (32_BYTE , s1, len -32)
20 .cmpEQ(fromArray (32_BYTE , s2, len -32))
21 .allTrue ();
22 } else {
23 for (int j = 0; j < len; j++) {
24 if (s1[j] != s2[j]) {
25 return false;
26 }
27 }
28 return true;
29 }
30 }

Figure 8: Pseudo-code of the recast version of equals for byte
arrays using the JVA.

Based on the original implementation of the intrinsic, we imple-
ment a recast version using the JVA (see Figure 8). As the intrinsic
employs 512-bit vector instructions if available, our recast version
also uses them. For arrays with lengths from 64, the implementation
iterates over the arrays, comparing them in batches of 64 bytes at a
time (lines 6–11). Subsequently, a final vector instruction is utilized
to compare all residual bytes (lines 12–14). This vectorized com-
parison loads the final vector starting at position len-64 (line 12),
possibly comparing some array elements for a second time.
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Figure 9: Performance comparison between theOpenJDK21 equals intrinsic and our pure-Java recast and tuned implementations.

For arrays with lengths from 32 to 63, the implementation com-
pares the arrays with two 256-bit vector comparisons, i.e., from
position 0 to 31, and from position len-32 to len-1 (lines 16–21).
Arrays with length < 32 are compared using scalar instructions.

We now suggest a few code improvements that could lead to
better performance by exploiting vector instructions also on arrays
shorter than 32 bytes. The core loop described in Figure 8, applicable
for lengths ≥ 64 bytes (lines 6–11), remains unchanged. The code
for lengths from 32 to 63 also remains unchanged, i.e., the two
vector comparisons (32 bytes each). However, we use the scalar
loop for byte-to-byte comparison only for arrays with less than 8
bytes. For arrays with lengths from 8 to 16, our implementation
executes two 64-bit vector comparisons. Finally, for arrays with
lengths from 17 to 31, our tuned implementation executes two
128-bit vector comparisons.

5.2 Evaluation of Equals for Byte Arrays
For evaluating equals, we use again the same methodology de-
scribed in Section 3.2. However, since we have to compare two
arrays, we initially duplicate all the byte arrays. We always com-
pare two identical arrays, meaning that equals has to process all
the array content to find that the arrays are equal.

In Figure 9, we compare the overall steady-state performance of
our implementations (recast and tuned) with the intrinsic. As can
be seen in the graph, the range of lengths where the performance
difference is most visible is between 0 and 32. In this range, both
the intrinsic and the recast versions use scalar computations to pro-
cess short strings. The intrinsic compares multiple bytes reading
integers and shorts out of the byte array, while the recast performs
a byte-wise comparison, explaining their performance difference
in this range. The tuned version uses scalar computation only for
arrays with less than 8 bytes, and only vector instructions other-
wise. Compared with the intrinsic, our experimental results on this
micro-benchmark show an overall speedup (geometric mean of the
speedup factors for all measured lengths) of 0.95x for the recast
version, and of 1.04x for the tuned version.

6 EVALUATION ON BENCHMARK SUITES
In this section, we evaluate steady-state performance of the tuned
hashCode and equals implementations using the JVA that we de-
scribed in Sections 3 and 5, respectively. To modify the Java source
code of the JCL, we employ the approach described later in Sec-
tion 7. We conduct a performance evaluation on popular realistic
benchmark suites for the JVM. We note that our goal is not to
significantly outperform the (already optimized) vectorized intrin-
sics, but to demonstrate that the easy-to-tune pure-Java alternative,
in addition to being easier to implement, test, debug, and main-
tain, can replace the intrinsic implementation without impairing
steady-state performance.

Our evaluation considers the Renaissance [36], DaCapo [7], and
ScalaBench [42] benchmark suites. For Renaissance and ScalaBench,
we use the latest versions of the suites at the time of writing (Re-
naissance GPL v0.15.0 and ScalaBench v0.1.0). For DaCapo, we use
both v9.12-Bach (released in December 2009) and v23.11-Chopin
(released in November 2023). We note that the two DaCapo versions
are substantially different in their workloads. We exclude bench-
marks whose execution on Java 21 is not supported or with known
bugs [40]. We use the default input size. Benchmarks can execute
multiple iterations, which can either be considered as warm-up
or steady-state. We run warm-up iterations until dynamic compi-
lation and GC ergonomics are stabilized, as follows. For DaCapo
and ScalaBench, we follow the approach described by Lengauer
et al. [29], executing 40 warm-up iterations for each benchmark.
For Renaissance, we use the same number of warm-up iterations
as specified in the documentation [37]. All other iterations after
warm-up are classified as steady-state. Our measurements consider
only steady-state iterations, and we execute 10 such iterations for
each benchmark. Finally, we run every benchmark 10 times in dif-
ferent JVM processes, collecting a total of 100 steady-state iterations
(from 10 different JVM processes). For the measurements, we use
the same experimental setup described in Section 3.2, except we
use the default G1 garbage collector [11].

Table 1 reports the execution time of each benchmark when
run 1) with the original vectorized intrinsic as implemented in
OpenJDK 21, and 2) with our tuned implementation using the JVA.
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Table 1: Performance comparison on popular benchmark suites: original OpenJDK 21 with hashCode and equals intrinsics,
vs. modified OpenJDK 21 using our tuned JVA implementation.

Benchmark Intrinsic Vector API Benchmark Intrinsic Vector API

Renaissance
GPL 0.15.0

Time
(ms)

Std.
dev.

Time
(ms)

Std.
dev.

Rel.
diff.

DaCapo
23.11-Chopin

Time
(ms)

Std.
dev.

Time
(ms)

Std.
dev.

Rel.
diff.

akka-uct 6604.54 140.23 6610.62 160.85 -0.09% avrora 3383.00 15.69 3369.85 17.59 0.39%
als 1415.16 11.77 1416.98 13.85 -0.13% biojava 8109.00 124.73 8642.29 89.29 -6.58%
chi-square 621.24 84.75 610.75 86.91 1.69% eclipse 12693.16 53.74 12683.34 45.49 0.08%
dec-tree 740.63 23.93 747.20 24.21 -0.89% fop 583.33 3.00 585.46 3.41 -0.37%
dotty 767.41 15.16 766.05 16.61 0.18% graphchi 5034.84 70.58 4994.41 35.61 0.80%
finagle-chirper 1793.15 25.29 1779.18 27.60 0.78% h2 2679.13 38.83 2686.87 42.92 -0.29%
finagle-http 2068.98 24.63 2112.00 15.25 -2.08% jme 6920.72 2.75 6924.44 2.80 -0.05%
fj-kmeans 1084.49 4.16 1136.04 9.38 -4.75% jython 4279.78 88.23 4296.74 85.05 -0.40%
future-genetic 1851.89 34.66 1866.27 30.41 -0.78% kafka 5046.25 28.54 5008.61 30.20 0.75%
gauss-mix 683.33 51.74 679.78 53.18 0.52% luindex 4900.54 58.55 4899.83 57.11 0.01%
log-regression 711.14 44.19 735.34 58.01 -3.40% lusearch 3137.30 39.01 3149.17 41.59 -0.38%
mnemonics 2667.95 6.47 2766.90 263.81 -3.71% pmd 1539.85 13.91 1615.78 18.57 -4.93%
movie-lens 6478.20 50.63 6492.78 38.31 -0.23% spring 2382.96 183.22 2463.59 91.42 -3.38%
naive-bayes 336.51 29.15 340.15 32.34 -1.08% sunflow 3690.26 357.97 3691.84 328.14 -0.04%
neo4j-analytics 1526.52 16.99 1539.31 29.80 -0.84% xalan 589.07 5.76 601.11 6.10 -2.04%
page-rank 2843.99 56.93 2866.12 52.79 -0.78% zxing 1231.35 7.89 1246.63 9.20 -1.24%
par-mnemonics 2048.16 25.53 2080.03 70.24 -1.56% Geo. mean 3068.70 3101.97 -1.08%
philosophers 2793.10 99.25 2761.93 170.18 1.12%
reactors 9097.17 543.53 9117.86 497.19 -0.23%
rx-scrabble 113.89 11.09 113.73 12.20 0.14%
scala-stm-bench7 810.70 37.92 811.33 50.56 -0.08%
scrabble 87.12 9.08 86.89 8.49 0.27%
Geo. mean 1246.00 1254.88 -0.71%

ScalaBench
0.1.0

Time
(ms)

Std.
dev.

Time
(ms)

Std.
dev.

Rel.
diff.

DaCapo
9.12-Bach

Time
(ms)

Std.
dev.

Time
(ms)

Std.
dev.

Rel.
diff.

apparat 5122.33 169.34 5129.38 145.43 -0.14% fop 175.91 5.38 177.77 4.01 -1.06%
factorie 10716.55 217.71 10852.47 426.89 -1.27% h2 2275.57 116.82 2282.13 120.95 -0.29%
kiama 222.29 17.26 222.62 18.93 -0.15% jython 1286.18 81.78 1297.37 50.33 -0.87%
scalac 761.20 36.63 762.31 35.45 -0.15% luindex 367.44 4.85 369.65 5.06 -0.60%
scaladoc 1281.05 7.72 1269.87 27.39 0.87% lusearch 109.90 7.95 110.39 7.80 -0.45%
scalap 90.10 4.76 90.33 4.62 -0.26% lusearch-fix 111.75 7.12 109.86 7.90 1.69%
scalariform 323.94 18.69 327.00 19.29 -0.94% pmd 482.10 30.15 480.73 29.96 0.28%
scalaxb 180.26 6.64 180.10 6.71 0.09% sunflow 501.29 34.37 493.01 29.16 1.65%
tmt 3217.71 45.83 3279.01 50.93 -1.91% xalan 119.72 1.63 120.96 1.41 -1.04%
Geo. mean 836.92 840.47 -0.42% Geo. mean 343.87 344.11 -0.07%

For fairness, since OpenJDK 21 does not use any intrinsics for
hashCode on long arrays, we do not use the version described in
Section 4 in this evaluation. The execution times reported in the
table represent the arithmetic mean of 100 steady-state iterations
for each benchmark. We also report the standard deviation, the
relative difference of the execution time of the JVA implementation
w.r.t. the intrinsic (i.e., the difference between the execution time
of the intrinsic and the one of the JVA implementation, divided by
the one of the intrinsic) and the overall per-suite geometric-mean
execution times and relative difference.

As one can see from the table, our tuned implementation using
the JVA does not impair steady-state performance w.r.t. the intrin-
sic in the evaluated benchmarks. Overall, our version results in
very similar steady-state performance to the vectorized intrinsic.
Considering the average (geometric mean) of all benchmarks in a

suite, our version results in a relative difference of -0.71% (Renais-
sance), -0.42% (ScalaBench), -1.08% (DaCapo-Chopin) and -0.07%
(DaCapo-Bach). Considering all benchmarks, the average execution
time (geometric mean) relative difference is 0.67%.

Overall, our implementations provide similar steady-state per-
formance than the vectorized intrinsics, but with the benefit of
being written purely in Java, being much more portable, easier
to understand, maintain, and fine-tune. In addition, our approach
avoids writing platform-specific code to exploit particular vector
extensions a processor may support—the JVA automatically uses
the vector instructions supported by the underlying architecture.

7 MODIFYING CORE CLASSES IN THE JCL
In this section, we detail our approach to modify the Java source
code of the JCL, such that our Java implementations making use of
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the JVA can substitute the use of intrinsics in core classes of the JCL
(particularly in class Arrays). Even though the JCL is implemented
as part of the JVM, our approach does not require one to modify the
native code of the JVM and hence can be exploited by developers
without the need to recompile the JVM. We note that our approach
is fully compliant with the JVM specification. We describe our
approach in the context of OpenJDK 21 and we remark that we
evaluated our approach on state-of-the-art benchmark suites in
Section 6.

Modifying core classes in the JCL (such as Arrays) is challeng-
ing [6, 33, 39, 41] since during the early phases of JVM initialization,
many Java features (including the JVA, as well as e.g. the Java Re-
flection API [34]) cannot be used. Modifying JCL methods (such
as Arrays.hashCode and Arrays.equals) to use such features will
cause JVM crashes. The reason is that modified JCL classes may
alter the order in which classes are initialized, leading to premature
class initializations. Moreover, when modifying methods in the
JCL classes, it is crucial to avoid cyclic dependencies that would
lead to an infinite recursion in class initialization. This behaviour
is particularly subtle because a modified method may trigger the
initialization of some classes, and the initializers of these classes
may use (directly or indirectly) the modified method.

To ensure proper JVM initialization, our approach introduces
initialization guards and leverages class redefinition. In particular,
our modified JCL methods make use of a custom JVMInitialization

class that allows checking whether JVM initialization has completed
via its isInitialized static method, which returns a boolean flag.
Below, we describe how our approach enables the use the JVA in
JCL core classes.

7.1 Modified JCL Methods and Initialization
Guards

Wemodify methods in the JCL by inserting our implementation into
the body of the original method implementation, guarded by a con-
ditional invoking the JVMInitialization.isInitialized method. If
this method returns true, our implementation (using the JVA) is ex-
ecuted. Otherwise, the original JCL implementation is used. Thanks
to our guard (that checks whether JVM initialization has completed)
and because the JVM ensures lazy class initialization upon the first
use of a class [32], the classes used by our implementation (i.e., the
classes of the JVA) will not be initialized during JVM initialization.

7.2 Class JVMInitialization
Since Java does not expose an interface to checkwhether JVM initial-
ization has completed, we implement the static JVMInitialization
.isInitialized method, which returns a boolean flag that is tog-
gled right after JVM initialization. This method could be trivially
implemented by storing the boolean flag in a volatile static field and
by setting this field to true in the beginning of an application’s main
method. However, this incurs a serious performance issue: the cost
of a volatile read upon each invocation of the isInitializedmethod
can be significant and jeopardize the optimizations introduced by
our implementations.

For this reason, we implement the flag as a static isInit- ialized
method that initially returns the boolean constant false, and we
use a Java agent [15] to redefine the isInit- ialized method to

return true upon the execution of the agent’s premain method (i.e.,
when the JVM is ready to execute arbitrary Java code). This strat-
egy allows exploiting the branch-elimination optimization of the
JIT compiler, improving performance even further. From the JIT-
compiler perspective, the static isInitialized method returns a
constant and hence only one of either our implementation or the
original JCL implementation will be executed. The compiler will
therefore perform branch elimination and remove the code of the
implementation that will never be executed, increasing the code
size budget for other optimizations, such as method inlining. In the
(unlikely) case that the JIT compiler already optimized the modified
method during JVM initialization, before our Java agent redefines
the isInitialized method, we rely on OpenJDK’s deoptimization
feature to ensure the correctness of our solution. Moreover, the JIT
compiler in OpenJDK will re-compile and optimize hot code after
our class redefinition, ensuring that our initialization guards incur
no overhead in steady state.

Finally, to avoid cyclic dependencies that would lead to infinite
recursions in class initialization, we make the Java agent (which
is allowed to execute arbitrary Java code) initialize all the classes
used by our implementations before redefining the isInitialized

method.

8 RELATEDWORK
In this section, we discuss related work. We first discuss techniques
to improve performance of high-level and managed languages (Sec-
tion 8.1). Then, we detail benchmarks for vector computations in
high-level languages (Section 8.2).

8.1 Portability without Sacrificing Performance
Substantial research effort has beenmadewith the goal of proposing
portable and high-level programming languages, domain-specific
languages (DSL), and libraries without sacrificing performance [3,
48]. As an example, in the “abstraction without overhead” line of
work, [9, 44, 45] show that by leveraging staged compilation [38],
the cost of abstractions can be removed at compilation time, al-
lowing developers to implement high-performance applications in
high-level languages. Within this line of work, an alternative vector
API for Scala and Java has been proposed by Stojanov et al. [43]
to express vector computations with a high-level DSL, showing
that an implementation leveraging the proposed DSL for expressing
vector operations can outperform pure Java code that relies on auto-
vectorization. In contrast, we evaluate our implementations based
on the JVA against vectorized intrinsics, which are not the result of
automatic program transformation, but fine-tuned implementations
carefully written by expert JVM developers.

Generally, the need for expressing low-level operations within
high-level programming languages has been discussed and moti-
vated by Frampton et al. [12]. This work proposes techniques to
safely integrate low-level components within high-level languages,
as done in the JVA. Similarly, we demonstrate that the JVA allows
optimizing the JCL without the burden of writing intrinsics.
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8.2 Benchmarking Vector Computations on
Managed Runtimes

Basso et al. propose JVBench [5], a benchmark suite for the JVA,
showing that by leveraging the API, developers can write appli-
cations that result in higher performance with respect to auto-
vectorization. The Swan benchmark suite [27] has been proposed
for benchmarking vectorized operations in the context of mobile
applications. In contrast to these benchmark suites, we analyze the
performance of the JVA against fine-tuned vectorized intrinsics. To
the best of our knowledge, our work is the first to demonstrate that
the JVA can be used to easily optimize core JCL classes without the
burden of writing vectorized intrinsics.

9 LIMITATIONS
A limitation of our work is that, while the most popular architec-
tures and JVMs support the JVA, not all of them fully support the
API. Nonetheless, this API exhibits continuous performance im-
provements in subsequent versions and enables higher performance
than relying on the JVM’s limited auto-vectorization capabilities [5].
Another limitation is that our evaluation was conducted on a sin-
gle machine and architecture (x86). We plan to experiment more
extensively on a wide range of architectures.

By delegating the generation of vector instructions to the JVA,
the code (if hot) will be processed by the JIT compiler, which may
apply decisions resulting in suboptimal performance. In contrast,
in OpenJDK 21 the code specified in the intrinsic is emitted with-
out undergoing further optimizations, giving more control to the
developers.

Finally, using the JVA incurs extra JIT-compilation costs, while
machine-code generation for an intrinsicmay be faster. Thismay im-
pair the performance of short-running applications, as steady-state
performance may be reached later in the application’s execution.
As part of our ongoing research, we are investigating whether our
approach negatively affects startup performance or not.

10 CONCLUSIONS
In this paper, we support the claim that replacing platform-dependent
template-generated assembly code implemented via vectorized in-
trinsics with equivalent, portable, pure-Java code using the JVA
does not impair steady-state performance, making the approach
attractive even in production-level JVMs. We show this by replac-
ing the vectorized intrinsics of hashCode and equals for byte arrays
with equivalent Java code. Moreover, in addition to reducing the
effort in understanding, extending, debugging, testing, and main-
taining the code, the resulting code is much easier to fine-tune to
further improve performance. We propose code improvements for
hashCode and equals, where tuning is based on the array length;
such tuning would be difficult to implement in vectorized intrinsics.
Furthermore, we proposed a new vectorized hashCode computation
for long arrays, for which a corresponding intrinsic is missing in
OpenJDK 21.

Our evaluation shows that our tuned implementations provide
similar performance than the vectorized intrinsics on four popular
and realistic benchmark suites. Finally, we present a technique
that can be adopted by developers to modify core classes of the

JCL without disrupting JVM initialization; our technique does not
require any changes to the native codebase of OpenJDK.

The findings in this work highlight the potential of the JVA as a
viable alternative for vectorizing other compute-intensive methods
in the JCL using only platform-independent Java code, avoiding
writing complex platform-dependent native code that is hard to
understand, extend, maintain, debug, and test.

As part of our future work, in addition to tackling the limitations
discussed in Section 9, we plan to expand our use cases, replacing
vectorized intrinsics in other commonly executed methods in the
JCL with pure-Java code using the JVA, evaluating the performance
improvements. We also plan to identify methods that could benefit
from vectorization via the JVA and for which a vectorized intrinsic
is currently missing. Finally, we will evaluate more metrics (e.g.,
energy consumption) and hardware architectures (e.g., ARM).
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