
Daedalus: Self-Adaptive Horizontal Autoscaling for Resource
Efficiency of Distributed Stream Processing Systems

Benjamin J. J. Pfister
Technische Universität Berlin

Berlin, Germany
benjamin.pfister@campus.tu-berlin.de

Dominik Scheinert
Technische Universität Berlin

Berlin, Germany
dominik.scheinert@tu-berlin.de

Morgan K. Geldenhuys
Technische Universität Berlin

Berlin, Germany
morgan.geldenhuys@tu-berlin.de

Odej Kao
Technische Universität Berlin

Berlin, Germany
odej.kao@tu-berlin.de

ABSTRACT
Distributed Stream Processing (DSP) systems are capable of process-
ing large streams of unbounded data, offering high throughput and
low latencies. To maintain a stable Quality of Service (QoS), these
systems require a sufficient allocation of resources. At the same
time, over-provisioning can result in wasted energy and high oper-
ating costs. Therefore, to maximize resource utilization, autoscaling
methods have been proposed that aim to efficiently match the re-
source allocation with the incoming workload. However, determin-
ing when and by how much to scale remains a significant challenge.
Given the long-running nature of DSP jobs, scaling actions need to
be executed at runtime, and to maintain a good QoS, they should
be both accurate and infrequent. To address the challenges of au-
toscaling, the concept of self-adaptive systems is particularly fitting.
These systems monitor themselves and their environment, adapting
to changes with minimal need for expert involvement.

This paper introduces Daedalus, a self-adaptive manager for
autoscaling in DSP systems, which draws on the principles of self-
adaption to address the challenge of efficient autoscaling. Daedalus
monitors a running DSP job and builds performance models, aim-
ing to predict the maximum processing capacity at different scale-
outs. When combined with time series forecasting to predict future
workloads, Daedalus proactively scales DSP jobs, optimizing for
maximum throughput and minimizing both latencies and resource
usage. We conducted experiments using Apache Flink and Kafka
Streams to evaluate the performance of Daedalus against two state-
of-the-art approaches. Daedalus was able to achieve comparable
latencies while reducing resource usage by up to 71%.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; Avail-
ability; • Computing methodologies → Massively parallel
algorithms.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0444-4/24/05.
https://doi.org/10.1145/3629526.3645042

KEYWORDS
Distributed Stream Processing, Autoscaling, System Tuning, Per-
formance Modeling, Resource Management, Cloud Computing

ACM Reference Format:
Benjamin J. J. Pfister, Dominik Scheinert, Morgan K. Geldenhuys, and Odej
Kao. 2024. Daedalus: Self-Adaptive Horizontal Autoscaling for Resource
Efficiency of Distributed Stream Processing Systems. In Proceedings of the
15th ACM/SPEC International Conference on Performance Engineering (ICPE
’24), May 7–11, 2024, London, United Kingdom. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3629526.3645042

1 INTRODUCTION
Distributed Stream Processing (DSP) is an important paradigm that
enables quick extraction of insights from unbounded data streams
with high throughput and low latencies. The generation of stream-
ing data is continually increasing and this trend is evident across
a range of contexts, including online advertising, financial trans-
actions, and IoT sensor networks [4, 20, 21]. In order to provide a
good Quality of Service (QoS), DSP systems need to be properly
configured. Insufficient allocation of resources can lead to unstable
service delivery, while over-provisioning results in wasted energy
and higher operational costs. Achieving the right balance in re-
source allocation is therefore crucial to optimize both performance
and cost-effectiveness. However, due to the dynamic nature of
streaming workloads, configurations can quickly become obsolete.
Likewise, because the manual tuning of configurations is infeasible
over the course of a long-running job, resources can only be ad-
justed through an automated approach. Therefore, it is prudent to
provide DSP systems with self-adaptive capabilities, enabling them
to monitor themselves and respond to environmental changes by
autonomously tuning their configurations during runtime.

Automated scaling of computational resources, commonly known
as autoscaling, serves as the key method for aligning resources
with dynamic workloads in DSP systems. The scaleout, defined
by the number of worker nodes and processing slots per node, di-
rectly determines the system’s level of parallelism and influences
the overall resource allocation. This, in turn, affects each worker
node’s processing potential. Popular DSP frameworks like Apache
Flink [3], Kafka Streams [19], and Apache Spark [23], support dy-
namic adjustments in scaleout during runtime, which impacts the
job’s parallelism and subsequently its resource utilization. Typically,
these systems are deployed in cloud environments, where resources

130

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629526.3645042
https://doi.org/10.1145/3629526.3645042


ICPE ’24, May 7–11, 2024, London, United Kingdom Benjamin J. J. Pfister, Dominik Scheinert, Morgan K. Geldenhuys, and Odej Kao

are provisioned elastically and can be scaled in or out as required,
directly affecting the processing capabilities of the DSP job.

Autoscaling approaches are optimized towards various adapta-
tion goals, with most research primarily focusing on enhancing
DSP system performance by maximizing throughput or minimiz-
ing latency [4, 18]. Additionally, secondary goals like minimizing
resource usage, reducing monetary costs, lowering energy con-
sumption, or shortening recovery times are also considered [4, 21].
Despite active research in this area, there is still potential for further
advancements. Many existing methods demand in-depth system
or job knowledge, such as setting scaling thresholds or altering
DSP source code [13, 14, 24]. Often, scaling decisions lead to down-
time for initializing new workers or recalculating data distribution
among operators, yet few strategies account for this overhead. Addi-
tionally, many presume an even distribution of data across parallel
operators, which is not always the case in practical scenarios.

This paper approaches the challenges of autoscaling DSP systems
from the perspective of self-adaptation. It proposes a self-adaptive
manager called Daedalus that targets a running DSP job and hori-
zontally scales its parallelism to adapt to the incoming workload
while minimizing resource usage. In order to meet QoS require-
ments, Daedalus can optimize towards a target recovery time and
ensure that a job will recover between scaling actions. Because
scaling decisions incur an overhead cost, Daedalus employs Time
Series Forecasting (TSF) to predict the future workload in order
to reduce the frequency of scaling actions. By ensuring that the
incoming workload can be processed and minimizing system down-
time, Daedalus can achieve reasonable latencies. Scaling decisions
are realized through a combination of monitoring, performance
modeling, and TSF. Unlike most existing approaches that ignore
how data is split among parallel workers, Daedalus explicitly incor-
porates data skew in its capacity models. It is a general approach,
applicable to containerized DSP systems running in cloud environ-
ments. Daedalus has been evaluated using three benchmark DSP
jobs, employing two DSP frameworks, Apache Flink and Kafka
Streams, and is compared against two state-of-the-art approaches.

This paper is structured as follows: Section 2 reviews related
work on autoscaling, recovery time, and time series forecasting.
Section 3 describes the approach taken to realize self-adaptive au-
toscaling. In Section 4, the approach is evaluated, and the results
are discussed. Lastly, the paper is concluded in Section 5.

2 RELATEDWORK
Adaptive autoscaling for DSP systems is an active field of research.
This section describes the most relevant state-of-the-art solutions
that Daedalus builds upon and work relevant to recovery time and
TSF.

Heinze et al. [12] assess the viability of both threshold-based and
reinforcement learning autoscaling techniques using their approach
called FUGU. The authors find that reinforcement learning produces
scaling decisions that best maximize system utilization, and that
global thresholds are not well-suited for autoscaling. However, it
should also be noted that reinforcement learning techniques can
take a long time to adequately train and need to make ill-suited
scaling decisions to learn.

Dhalion [8] is a self-adaptive system developed for Heron that
employs user-defined policies to enable autoscaling. By monitoring
metrics such as backpressure, tuples waiting in buffers, and data
skew across operators, Dhalion determines if resources are over-
provisioned or under-provisioned and scales in or out accordingly.
Although Dhalion aims to be a comprehensive self-adaptive DSP
solution, defining suitable policies requires expert knowledge of the
job and system. Additionally, its autoscaling capabilities have been
found to over-provision resources. Because individual operators
are scaled one at a time after detecting backpressure, Dhalion needs
a long time to converge to an optimal configuration [13].

DS2 is a reactive autoscaling approach that monitors a running
DSP job to calculate true processing rates in order to determine
the proportional processing relationships among operators [13]. By
scaling in response to the workload, DS2 can accurately adjust the
parallelism of operators. However, DS2 assumes data skew is not
present and that workloads remain stable during scaling operations.
It also requires manual implementation of the true processing rate
metric, as this metric is not readily available in all DSP systems.

AuTraScale [24] utilizes Bayesian Optimization for operator au-
toscaling to minimize latency while maximizing total throughput.
Like DS2, it uses the true processing rates to find the minimum
parallelism needed to process a static workload. When the system is
over-provisioned or latency exceeds a target threshold, AuTraScale
reactively rescales. Although designed to find the optimal configu-
ration for a static workload, AuTraScale includes a transfer learning
algorithm to more quickly find optimal configurations if the input
rate would change. However, the authors do not evaluate their
approach on a dynamic workload and assume no data skew.

Caladrius [14] is a performance modeling tool that uses TSF to
anticipate future workloads and predict the throughput and CPU
usage for both the current and other scale-outs to enable proactive
scaling decisions. Like DS2, Caladrius models the operator topol-
ogy and relationship between operator input and output rates. The
authors make the important observation that throughput rates and
CPU utilization are linearly related. Therefore, by predicting the
throughput, the authors can predict CPU utilization. Daedaulus
is heavily influenced by this and uses the linear relationship be-
tween throughput and CPU to estimate capacity. However, whereas
Daedalus uses a CPU-throughput regression model to estimate
capacity, Caladrius relies heavily on backpressure to observe maxi-
mum throughput rates, which is an unreliable metric in presence
of data skew or slow nodes.

Relatively few DSP autoscaling approaches incorporate the over-
head cost of scaling decisions [21]. Phoebe chooses scale-outs that
can guarantee a target recovery time [10]. Martin et al. [15] pro-
vide a self-adaptive approach for a DSP system to adjust its fault
tolerance mechanism during runtime. While not an autoscaling ap-
proach, their approach allows users to provide high level constraints
such as a target recovery time. Lastly, Borkowski, Hochreiner, and
Schulte [2] note the downtime caused by autoscaling and aim to
reduce the number of rescaling actions for a threshold-based au-
toscaler. Their approach uses an extended Kalman filter to estimate
trends in the workload, similar to ARIMA. By ignoring short-term
variations in the workload, they are able to reduce the number of
scaling decisions, thereby reducing overall recovery time over the
course of the DSP job.

131



Daedalus: Self-Adaptive Horizontal Autoscaling for Resource Efficiency of Distributed Stream Processing Systems ICPE ’24, May 7–11, 2024, London, United Kingdom

Gontarska et al. [11] compare commonly used TSF methods
to assess their use in predicting DSP workloads. They compare
seven methods, including ARIMA and two deep learning methods.
Although deep learning methods produced the best predictions
overall, they also required much longer training times. The ARIMA
model, on the other hand, was trained faster and yielded good
results for making short-term predictions in the tested 5 and 15
minute forecasts. Caladrius and Phoebe both use TSF to predict
future workloads [10, 14]. Caladrius uses Facebook’s Prophet while
Phoebe also uses ARIMA.

3 APPROACH
In this paper, the challenges of autoscaling a DSP system for per-
formance optimization are approached from the perspective of
self-adaptation [5, 7, 16, 17]. Using self-adaptive autoscaling en-
ables a DSP system to monitor itself and make scaling decisions
to meet DSP requirements and adaptation goals while processing
dynamic workloads. This paper proposes a self-adaptive DSP au-
toscaler called Daedalus. Its main objectives are to ensure enough
resources are allocated to process the incoming workload while
minimizing resource usage, meet QoS requirements by targeting
a recovery time, and providing a stable level of service by enact-
ing long-lived scaling decisions over the course of a long-running
DSP job. On a high level, Daedalus uses the self-adaptive MAPE-K
control loop to continuously monitor a running DSP job by col-
lecting metrics stored in a time series database. It analyzes the
data, builds models to estimate the capacity across all potential
scale-outs, and predicts the future workload using TSF. Using both
the historical and predicted workload, it decides if a scaling action
is necessary and determines how to scale based on the described
adaptation goals and estimated recovery time. Lastly, it executes a
scaling action if necessary. A high-level overview of the approach,
its architecture, and components can be seen in Figure 1.

In order to determine when and how to scale, Daedalus builds
capacity models at the worker level using throughput and CPU uti-
lization metrics. These metrics are typically already exposed by DSP
systems so that their performance can be monitored. Monitoring
provides accurate, up-to-date insights for a job running in a cloud
environment. Previous observations, including a series of profiling
runs conducted at the beginning of a deployment as in [10], have
the potential to become less reliable over time. Since the underlying
resources or placement of operators can change over the course of
a long-running job, continually collecting metrics and monitoring
the system performance is prudent.

Developing separate self-adaptive autoscaling solutions for each
individual DSP system and job is complex and time-intensive. There-
fore, Daedalus aims to provide a general solution for containerized
DSP systems by requiring only a few commonly exposed metrics. In
this paper, Daedalus is tested with Flink and Kafka Streams, though
it is applicable to other systems as well.

Our approach makes the assumption that the DSP system is
running in a cloud environment where homogeneous resources can
be elastically scaled. However, it is also taken into account that these
homogeneous resources may not provide identical performance by
monitoring each worker individually. This approach also relies on
a few metrics being available. These include the throughput, CPU

Daedalus

Cloud Execution Environment

Scaling configurations

Adaptation
Goals

Monitor

Analyze Plan

Execute

Knowledge

Metrics
Distributed Stream
Processing System

Time Series
Database

Collect metrics

Figure 1: Daedalus architecture overview

utilization, and consumer lag for each worker, collected from the
DSP system, and the workload, collected from the data source.

3.1 Performance Modeling
At the core of our approach is a capacity model, which provides a
basis for all scaling decisions. It estimates the maximum number of
tuples that can be processed per second at a given scale-out. Know-
ing this information along with the current and future workload
informs if scaling is necessary and if so, how to scale. The capacity
model is based on the observable relationship between metrics,
especially, throughput and CPU utilization.

Figure 2 shows the relationship between the incoming workload,
CPU utilization, throughput, and end-to-end latency at a fixed
parallelism. The metrics were taken from a running job and are
therefore not influenced by a warm-up period. As long as sufficient
resources are available, the throughput of the DSP system will
match the workload. When there are no longer resources to keep
up with the rate of incoming tuples, the DSP system reaches its
maximum capacity, and CPU utilization is 100%. In this example,
throughput is capped at 60,000 tuples per second. As can be seen,
the relationship between throughput and CPU utilization is linear.

End-to-end latency is impacted by several factors and is often
job dependent. In jobs that use windowing, for example, end-to-end
latency can increase when not enough tuples exist to trigger the
end of the window. In Figure 2d, the latency is slightly influenced by
the workload while processing capacity exists. However, this effect
is minor when compared to the sharp increase when the workload
exceeds maximum processing capacity. When the system cannot
keep up with the incoming workload, either due to insufficient
resources or downtime, tuples accumulate and end-to-end latency
increases. It is therefore a main objective of Daedalus to ensure that
sufficient capacity exists to process the incoming workload and to
minimize downtime in order to limit spikes in end-to-end latency.

Much existing research on DSP autoscaling assumes that data
is split equally among parallel operators, i.e. that data skew is not
present. However, ignoring data skew can be a major weakness in
these approaches as it is often present in reality.

132



ICPE ’24, May 7–11, 2024, London, United Kingdom Benjamin J. J. Pfister, Dominik Scheinert, Morgan K. Geldenhuys, and Odej Kao

0 250 500 750 1000
Time (s)

0K

20K

40K

60K

80K

W
or

kl
oa

d 
(tu

pl
es

 / 
s)

(a) Workload

0 250 500 750 1000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Ut
iliz

at
io

n 
(%

)
(b) CPU utilization

0 250 500 750 1000
Time (s)

0K

20K

40K

60K

80K

Th
ro

ug
hp

ut
 (t

up
le

s /
 s)

(c) Throughput

0 250 500 750 1000
Time (s)

0K

10K

20K

30K

40K

50K

60K

En
d-

to
-e

nd
 L

at
en

cy
 (m

s)

(d) End-to-end latency

Figure 2: Relationships between metrics

0 200 400 600 800
Time (s)

0K

10K

20K

30K

40K

50K

60K

Th
ro

ug
hp

ut
 (t

up
le

s /
 s)

(a) Throughput per worker

0 200 400 600 800
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CP
U

(b) CPU utilization per worker

0 200 400 600 800
Time (s)

0K

100K

200K

300K

400K

500K

600K

Th
ro

ug
hp

ut
 (t

up
le

s /
 s)

(c) Total throughput

0 200 400 600 800
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Ut
iliz

at
io

n 
(%

)

(d) Average CPU utilization

Figure 3: Maximum throughput at a parallelism of 12 show-
ing data skew and an average CPU utilization of 0.8.

Figure 3 shows metrics from a DSP job with stateful operators
processing tuples at maximum capacity with a parallelism of 12. In
this example, the data is generated randomly across 100 keys, and
each worker reads from its own Kafka partition. In theory, the keys
could be almost evenly distributed among parallel operators, with
each worker handling eight or nine keys. However, as can be seen
in Figure 3a and Figure 3b, data skew is apparent and the workers
display a spectrum of throughput and CPU utilization. Although a
worker using only 75% CPU is theoretically capable of processing
more tuples, it cannot receive more tuples due to how the keys are
distributed. Its maximum capacity is thus capped at its throughput

at 75% CPU utilization. As seen in Figure 4, data skew across work-
ers remains proportional at different levels of throughput and is
most prominent at high CPU utilization. Following these observa-
tions, in general, the maximum capacity of a worker is limited by
its proportion to the worker with the highest CPU utilization.

0 2000 4000 6000 8000 10000
Time (s)

0K

20K

40K

60K

80K

100K

120K

Th
ro

ug
hp

ut
 (t

up
le

s /
 s) Worker 1

Worker 2

(a) Throughput per worker

0 2000 4000 6000 8000 10000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Ut
iliz

at
io

n 
(%

)

Worker 1
Worker 2

(b) CPU utilization per worker

Figure 4: Proportional data skew over CPU utilization

A worker’s theoretical maximum capacity corresponds to how
many tuples it can process at 100% CPU utilization. The calculation

Capacity =
Throughput

CPU Utilization
yields a quick estimation of a worker’s maximum capacity. How-
ever, as can be seen in Figure 5a, the accuracy of this estimation
is highly dependent on the level of CPU utilization. Although this
simple capacity calculation provides a reasonable estimation when
CPU utilization is greater than 70%, and the maximum capacity
estimation at a given CPU utilization is higher than the observed
throughput, a more accurate capacity estimation is needed to in-
form stable scaling decisions. Given the linear relationship between
throughput and CPU utilization, seen in Figure 5b, linear regression
lends itself well to this task. Because only one explanatory variable
is required to predict a worker’s maximum throughput, it is pos-
sible to build a simple regression model using an efficient online
analytical calculation. Using throughput as the dependent variable
𝑦 and CPU utilization as the independent variable 𝑥 , the throughput
at a given CPU utilization can be predicted using the simple linear
regression formula 𝑦 = 𝛼 + 𝛽𝑥 , where 𝛼 is the y-intercept and 𝛽 is
the slope. The slope can be calculated by dividing the covariance
of CPU (𝑋 ) and throughput (𝑌 ) observations by the variance of
CPU observations. The y-intercept is given by subtracting the slope
multiplied by the mean of all CPU observations (𝑋 ) from the mean

0.0 0.2 0.4 0.6 0.8 1.0
CPU

0K

20K

40K

60K

80K

100K

120K

Es
tim

at
ed

 C
ap

ac
ity

 (t
up

le
s /

 s)

(a) Estimated capacity

0.0 0.2 0.4 0.6 0.8 1.0
CPU

0K

20K

40K

60K

80K

100K

120K

Th
ro

ug
hp

ut
 (t

up
le

s /
 s)

(b) Observed throughput

Figure 5: Capacity over CPU utilization

133



Daedalus: Self-Adaptive Horizontal Autoscaling for Resource Efficiency of Distributed Stream Processing Systems ICPE ’24, May 7–11, 2024, London, United Kingdom

of all throughput observations (𝑌 ). Put together, this yields the fol-
lowing equation to predict the capacity at a desired CPU utilization
CPUdesired:

Capacity = 𝑌 − cov(𝑋,𝑌 )
var(𝑋 ) · 𝑋 +

cov(𝑋,𝑌 )
var(𝑋 ) · CPUdesired

To update such a model with new observations, the running co-
variance, variance, and means can be computed using an adaptation
of Welford’s online algorithm for calculating variance [22]. The
algorithm passes over new observations once, updating the count of
observations and the delta for the new mean CPU and throughput
observations. These values are then used to update the variance,
covariance, CPU, and throughput means. Welford’s algorithm is
numerically stable and all required values can be computed on one
pass of the data, meaning that there is no need to save observations,
which could require much storage space over the course of time.

A linear regression model is computed for each worker individ-
ually to increase the accuracy of the overall capacity estimation
at a given scale-out. To find the capacity for each worker while
accounting for data skew, the linear regression model can predict
the value at the expected maximum CPU utilization. As described
previously, the expected maximum CPU utilization of a worker is
proportional to the worker with the maximum CPU.

Daedalus differentiates capacity estimations at seen and unseen
scale-outs. The capacity at the current scale-out is calculated by
summing the estimated capacity across all workers. The estimation
for a current scale-out can accurately assess how data is distributed
among workers. The capacity at other scale-outs is estimated us-
ing the average capacity multiplied by the scale-out. While this
can not guarantee how data will be distributed at that scale-out,
it provides an adequate heuristic. When possible, Daedalus uses
previously observed capacity estimations over purely predicted
estimates for seen scale-outs. Ideally, the regression models would
have a range of CPU observations in order to be more robust and
accurate. However, due to the low variance present in the CPU-
throughput regression (as seen in Figure 5b), relatively few data
points are needed to accurately estimate capacity. From experimen-
tation, the regression model is able to accurately estimate capacity
in as little as 60 seconds, the time of a single loop. This observation
holds across different jobs and various scale-outs.

3.2 Scaling Decisions
Central to any autoscaling approach is how it makes scaling de-
cisions. While reactive approaches benefit from being able to use
real observations to inform scaling decisions, the point at which
this data is available can lead to QoS violations until an acceptable
scale-out is deployed. On the other hand, proactive approaches
need to deal with the uncertainty of predicting the future. Daedalus
uses a hybrid of reactive and proactive approaches, using both ob-
served data and future forecasts in order to reactively scale in and
proactively scale out.

In a reactive manner, Daedalus uses historical workload data
since the last iteration of the MAPE-K loop to find the minimum
scale-out needed to process the workload. This helps to offset un-
certainty from inaccurate future predictions, such as when future

forecasts are lower than the actual workload. Using TSF the work-
load can be anticipated to enable proactive scaling decisions. TSF
grants the ability to scale out before capacity is exceeded, helping
to reduce QoS violations and minimize end-to-end latency. It also
enables making long-lived scaling decisions, as a scale-out can be
chosen that can handle the current and future workload. It also al-
lows to more accurately calculate recovery time, instead of needing
to assume that the workload will remain constant.

In each iteration of the MAPE-K loop, the workload since the
last iteration is collected, capacities are estimated for all scale-outs,
and the future workload is predicted. With this information, it can
be determined if rescaling is necessary and if so, how to rescale.

The pseudocode for determining the appropriate scale-out is
shown in Algorithm 1. Because Daedalus aims to make long-lived
scaling decisions, the algorithm first checks if rescaling is abso-
lutely necessary in case a rescale recently occurred. If a rescale was
done in the last ten minutes, it checks that the current capacity
can handle the average observed workload and maximum future
workload until the next loop iteration. The average workload is
used instead of the maximum in order to remove noise from the
actual workload, such as any spikes that may have occurred. In
case both of these conditions are true, the algorithm returns and
no rescaling is necessary.

Algorithm 1: An algorithm to determine the scale-out

Data: C := Capacities, W := Workload, TSF
if time since last rescale < 600s then

if C𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > W𝑎𝑣𝑔 and TSF𝑚𝑎𝑥 until next loop then
return current parallelism

for 𝑖 = 1 to MaxScaleout do
if C𝑖 > W𝑎𝑣𝑔 then

𝑅𝑇𝑖 ← predict_recovery_time(i)

if 𝑅𝑇𝑖 > 𝑅𝑇𝑡𝑎𝑟𝑔𝑒𝑡 then
continue

if 𝐶𝑖 < TSF𝑚𝑎𝑥 until 𝑅𝑇𝑖 then
continue

if i = current parallelism then
return i

if i < current parallelism and𝐶𝑖 < consumer lag then
continue

if C𝑖 > TSF𝑚𝑎𝑥 then
return i

return MaxScaleout

The algorithm then iterates over all possible scale-outs to find
the lowest number of workers that can process the incoming work-
load for the next 15 minutes and ensures that recovery is possible
within a target time. In the first step, it is checked that the scale-out
is capable of processing the average observed workload, similar to
reactive autoscaling approaches. This prevents assessing the valid-
ity of smaller scale-outs that cannot handle the incoming workload,
which would produce an inaccurate scaling decision.

Next, the recovery time is predicted for the scale-out. The recov-
ery time estimates the time needed to process accumulated tuples

134



ICPE ’24, May 7–11, 2024, London, United Kingdom Benjamin J. J. Pfister, Dominik Scheinert, Morgan K. Geldenhuys, and Odej Kao

while the system is down until it can catch up to a normal state.
This handles cases for scaling in and out (when the examined scale-
out is different from the current scale-out) as well as failure (when
the scale-out is the same as the current scale-out). If the estimated
recovery time is greater than the specified target recovery time, the
currently investigated scale-out is invalid and the next scale-out
is examined. It is also checked that the scale-out can handle the
future workload while recovering. Otherwise, a rescale would be
necessary while the system is recovering. If this is the case, the
next scale-out is examined.

At this point in the algorithm, the examined scale-out is valid. In
case the current parallelism is the same as the examined scale-out,
the algorithm returns and no rescaling is necessary. Otherwise, the
examined scale-out requires scaling in or out. To prevent scaling in
too early, the consumer lag is investigated. In case the consumer lag
is larger than the examined capacity, it is a good indication that the
system is recovering or potentially overloaded. Even though the
target recovery time would be met when scaling in, it is beneficial
to wait until the system has caught up to provide better end-to-end
latencies. Therefore, the next scale-out is examined, potentially
pushing the decision to scale in until the next iteration.

Lastly, to ensure that the scale-out will be long-lived, it is checked
that the capacity is greater than the maximum of the full TSF pre-
diction of 15 minutes. Doing so also helps to minimize the need to
scale again after 10 minutes, making the first check of the algorithm
a precautionary measure. After a scaling action has been initiated,
the system is given three minutes to adjust to the new scale-out
before another scaling action can occur. This allows the system to
stabilize and helps prevent flapping, where autoscaling alternates
between scaling in and out. Including a grace period is a common
practice. For example, Kubernetes Horizontal Pod Autoscaler (HPA)
uses a default stabilization time of five minutes. Since Daedalus
anticipates the future workload and scaling decisions are designed
to be long-lived, this arbitrary threshold should have little impact.
However, because no scaling actions can be taken in this period, it
increases the need to generate accurate scaling decisions.

3.3 Time Series Forecasting
TSF is used to anticipate future workloads and enables proactive
scaling decisions that help to make long-lived scaling decisions, re-
duce the overhead cost of rescaling, and minimize latencies. Despite
DSP workloads being dynamic and therefore difficult to predict,
TSF has been shown to improve autoscaling decisions to reduce
resource consumption and better meet QoS requirements [10, 11].
Multiple TSF methods exist including ARIMA, Holt-Winters, FB
Prophet, and deep learning methods. TSF models often need to
be configured themselves, which can be challenging and require
expert knowledge. Fortunately, models such as auto-ARIMA ex-
ist that automatically find optimal parameters based on provided
workload data. Using the pmdarima1 library, an initial model is
trained with the available workload, and the model is updated with
the latest workload observations in every iteration of the MAPE-K
loop. A new forecast is generated in each loop to predict the next
15 minutes of the workload at second-level granularity.

1https://alkaline-ml.com/pmdarima/index.html, Accessed: March 2024

Though ARIMA has been extensively evaluated and has been
found to produce good forecasts for up to 15 minutes [11], it is
essential to evaluate the quality of the forecasts and include a mech-
anism to retrain models that consistently deliver poor predictions.
In each iteration of the MAPE-K loop, the latest workload metrics
are collected and a new forecast is generated. At this point, it is
possible to compare the previous forecast with the latest workload
observations. To gain an insight into the overall accuracy of the
forecast, the weighted absolute percentage error (WAPE) is used,
which is calculated by weighting the error between the actual val-
ues and forecasts with the sum of the actual values over all units of
time. A lower WAPE indicates a better forecast. In case the previous
forecast was inaccurate with respect to the workload, it is possible
that the next forecast will be similarly inaccurate. If this happens,
the ARIMA forecast is replaced with a forecast that applies a simple
regression on the workload. This heuristic uses the slope from the
latest workload observations and projects the workload 15 minutes
into the future. This linear approximation only provides a fallback
forecast when the previous TSF prediction was poor. If the TSF
predictions are consistently poor for 15 consecutive iterations, the
TSF model is retrained in a background thread to not interrupt the
execution of the MAPE-K loop. Once training is completed, the
newly trained model replaces the existing one.

3.4 Recovery Time
Recovery time is a vital, yet often overlooked, aspect of autoscaling
DSP systems. DSP systems must be fault tolerant and continue to
operate despite failures that are likely to occur over the course of a
long-running job. In addition to failures, when rescaling, processing
must often be stopped temporarily in order to start new workers
and recompute data parallelism among stateful operators. To ensure
exactly-once processing, the DSP system must reprocess tuples that
occurred after the last completed checkpoint as well as process
tuples that arrived while the system was down. In addition to this
accumulated backlog, tuples will continue to arrivewhile the system
is catching up. As depicted in Figure 6, recovery time describes the
time from when processing stops, due to rescaling or failure, until
the system has caught up and processed the accumulated backlog.
Only then can normal processing resume.

Recovery time has a direct impact on end-to-end latency. While
the DSP system is down tuples cannot be processed, increasing
their end-to-end latency. While the system is recovering, the accu-
mulated backlog must be processed before the tuples that continue
to arrive can be processed, creating a cascading effect. Therefore,
by incorporating a target recovery time into autoscaling decisions,
latency can be better minimized by avoiding long recovery times.

Recovery time can be predicted by calculating the accumulated
backlog and estimating how long it will take to process the backlog
in addition to the incoming workload using the extra processing
capacity of the targeted scale-out.

The accumulated backlog of tuples is given by the tuples that
need to be reprocessed since the last completed checkpoint and
tuples that arrive while the system is down. For calculating the
number of tuples since the last checkpoint, the worst case is as-
sumed, for example, 10 seconds for a 10 second checkpoint interval.
The number of tuples to be reprocessed can therefore be calculated

135

https://alkaline-ml.com/pmdarima/index.html


Daedalus: Self-Adaptive Horizontal Autoscaling for Resource Efficiency of Distributed Stream Processing Systems ICPE ’24, May 7–11, 2024, London, United Kingdom

Historical Forecast

Last Completed
Checkpoint

System
Restarted

System
Recovered

Rescale/
Failure

Accumulated Backlog

Recovery Time

Downtime

Figure 6: Predicting recovery time

by taking the number of tuples that occurred in the last checkpoint
interval seconds using the historical workload. The worst case is
assumed in order to provide a comparative baseline regardless of
when the last checkpoint actually occurred with respect to the pre-
diction. Failures and rescaling can occur at any time. Assuming the
worst case also results in a larger recovery time prediction than
would be expected on average, which provides a buffer to better
achieve the target recovery time.

To estimate the number of tuples that arrive while the system is
down, it is necessary to anticipate the time the system is down and
use the workload forecast. The anticipated downtime is initially
set to 30 seconds for scaling out and 15 seconds for scaling in.
However, this value can be adaptively updated by monitoring the
actual recovery time, discussed in the next section. This generally
yields more accurate recovery time predictions over time.

After the DSP system restarts, it can begin processing the accu-
mulated backlog using themaximum capacity of the target scale-out.
While doing so, tuples will continue to arrive. Though the system
will process the backlog first, when determining the point at which
the system is caught up, the order tuples are processed is irrelevant.
The end of the recovery time can thus be determined using the ex-
tra capacity, forecast, and accumulated backlog. The extra capacity
available at the target scale-out can be obtained by subtracting the
forecast from the capacity. For each future step, it is then checked
if the cumulative extra capacity exceeds the accumulated backlog.
When this is the case, the system has recovered, and the predicted
recovery time can be returned.

3.5 Monitoring with Anomaly Detection
To improve the accuracy of recovery time predictions, the actual
recovery time after a scaling action is observed using statistical
anomaly detection. When monitoring recovery time, the goal is to
identify when processing returns back to normal after rescaling.
Anomaly detection is therefore a fitting paradigm, as it provides
a means for classifying normal and abnormal behavior. Because
the objective is to find points when the system’s throughput devi-
ates from the incoming workload, it is sufficient to use statistical
anomaly detection on the difference between the workload and
throughput. Statistical anomaly detection classifies observations as
anomalous if the distance of an observation to the mean is above
a certain threshold. Daedalus uses the threshold of one standard
deviation. The anomaly detection model keeps track of the job’s
running mean and variance of the difference between workload and
throughput usingWelford’s previously mentioned online algorithm.
After a rescaling action, Daedalus checks for anomalies until the

system has recovered. Because it takes time for a system to recover,
the anomaly detection monitoring is run in a background thread to
prevent interfering with the MAPE-K loop.

3.6 Implementation
Daedalus uses the proven MAPE-K control loop for self-adaptive
systems to provide structured execution. The monitor, analyze, plan,
and execute phases are structured as follows:
• Monitor: Daedalus collects metrics from Prometheus. From
the DSP system, it collects the throughput for each worker
measured by the number of records consumed by the source
operator, CPU utilization of each worker using a moving
average of one minute to reduce noise, and the overall con-
sumer lag representing available, but not processed, tuples.
For convenience, the job up-time and current parallelism are
also collected. From the data source, the incoming workload
rate is collected and measured in tuples per second.
• Analyze: The maximum capacity of each worker is calcu-
lated using CPU-throughput regression models, and the ca-
pacity for each scale-out is estimated. The ARIMA TSF and
anomaly detection models are updated, and the future work-
load is predicted using the TSF model.
• Plan: The optimal scale-out is determined using the algo-
rithm described in Algorithm 1. The chosen scale-out must
be able to process the incoming workload and recover within
the target recovery time. If rescaling is necessary, the scale-
out must also be able to process the predicted workload.
• Execute: Any planned scaling action is executed by the Ku-
bernetes client. The actual recovery time is then monitored
with anomaly detection in a background thread.
• Knowledge: Knowledge represents the shared information
between models. This is the collected metrics, capacity mod-
els, forecasts, anomaly detection, scaling actions, and recov-
ery time information.

The MAPE-K loop runs every 60 seconds and takes on average
one second to execute because of its low computational complexity.

4 EVALUATION
To demonstrate the effectiveness of Daedalus, it is evaluated with
three DSP jobs and two DSP systems, Flink and Kafka Streams.
The next sections describe the DSP jobs, the comparison systems,
experimental setup, and results. This chapter concludes with a
discussion that evaluates the overall performance of Daedalus.

4.1 DSP Jobs
Daedalus is evaluated with three representative DSP jobs: Word-
Count, Yahoo Streaming Benchmark, and Traffic Monitoring. All
relevant code can be found in the Daedalus GitHub repository2.

4.1.1 WordCount. WordCount is a popular DSP job that is readily
available for different DSP systems, as it frequently serves as the
exemplary tutorial to illustrate stream processing. Because of its
simplicity and ubiquity, WordCount is often used to compare DSP
systems [1]. WordCount computes a running total of word occur-
rences in a given text corpus. It takes lines of text as input, splits

2https://github.com/dos-group/daedalus

136

https://github.com/dos-group/daedalus


ICPE ’24, May 7–11, 2024, London, United Kingdom Benjamin J. J. Pfister, Dominik Scheinert, Morgan K. Geldenhuys, and Odej Kao

the line into words, and returns each word along with its cumula-
tive word count. In order to test the job with dynamic workloads,
WordCount has been modified to read input from a Kafka source.
The output of words and their count are written to a console sink.

4.1.2 Yahoo Streaming Benchmark. The Yahoo Streaming Bench-
mark was one of the first benchmarks to evaluate major modern
DSP systems including Apache Storm, Apache Spark, and Apache
Flink [6]. Though created in 2016, it continues to be used to com-
pare DSP systems and the pipeline serves as a baseline for further
benchmarking jobs [20]. The pipeline features representative op-
erations of stream processing jobs such as filtering, windowing,
aggregation, and joining data with a database. The job is an ad-
vertising analytics use case that consists of deserializing JSON ad
events from a Kafka source, filtering ads based on an event type
and removing unnecessary fields, matching the ad to a campaign ID
stored in Redis, and counting the number of times an ad was viewed
within a ten second tumbling window. In the original benchmark,
read and write operations to Redis became a bottleneck when oper-
ating at larger scales. For this reason, the job has been modified so
that campaign IDs from Redis are cached in the DSP job and the
resulting ad counts are written to a Kafka sink instead of Redis.

4.1.3 Traffic Monitoring. The Traffic Monitoring job is an IoT use
case that calculates the average speed of moving vehicles in a partic-
ular radius adapted from the IoT Vehicles Experiment [9]. The job
reads JSON vehicle events from a Kafka source, filters out events
not contained within a radius of interest, calculates the average
speed of vehicles in a ten second tumbling window, and enriches
the vehicle information before outputting to a Kafka sink.

4.2 Workload Generation
In order to test the effect of dynamic workloads on autoscaling
approaches, each job is run with a generator that produces a con-
figurable amount of tuples per second to a Kafka topic. The data
generators use the Akka actor system to simulate tuples in a highly
scalable way. Generators are run inside the Kubernetes cluster to
increase scalability and reduce the impact of network latency.

Each job is tested with a representative workload. Given its arti-
ficial nature, the workload for the WordCount job is a sine wave
with two periods. The Yahoo Streaming Benchmark workload is
taken from realistic online advertising click-through rate data3.
Lastly, the traffic monitoring workload was generated based on
the TAPASCologne scenario and SUMO to simulate realistic traffic
patterns in the city of Berlin [9]. Each job was benchmarked to
determine the maximum throughput achievable with 12 workers.
All workloads have been scaled so that the maximum number of
tuples is less than this throughput in order to more fairly compare
autoscaling approaches to a static scale-out with 12 workers. Addi-
tionally, workloads are scaled to a duration of 6 hours. With these
parameters, the workloads allow for a range of scaling decisions to
test autoscaling approaches.

3https://www.kaggle.com/competitions/avazu-ctr-prediction, Accessed: March
2024

4.3 Comparison Systems
In order to demonstrate its usefulness, Daedalus is compared to a
static deployment capable of processing the peak workload, HPA
native to Kubernetes, and Phoebe, a recent state-of-the-art approach
conceptually comparable to Daedalus.

4.3.1 Static Deployment. To serve as a baseline, a static deployment
with 12 workers is deployed. As previously stated, this scale-out is
capable of processing the peak workload for each job. It can there-
fore indicate if autoscaling approaches over-provision resources.
While it is likely to have the highest resource consumption, it should
also provide stable latencies because it will not rescale. It there-
fore provides a baseline latency comparison as well as showing the
potential reduction of resource usage achieved through autoscaling.

4.3.2 Horizontal Pod Autoscaler. Kubernetes provides a built-in
method for automatically scaling resources called a Horizontal Pod
Autoscaler (HPA). A HPA monitors one or more metrics, such as
CPU utilization or memory, and horizontally scales the target de-
ployment in accordance with a user-defined policy. By default, the
HPA monitors whether metrics violate the defined thresholds every
15 seconds. The HPA ignores instances that have not started yet
in its calculation and waits for a default of five minutes between
performing scaling actions to avoid flapping. While HPAs are com-
monly used and intuitive to understand, choosing a reasonable
threshold to fairly compare with Daedalus is not simple. In line
with Daedalus’s objectives, the DSP system should target a high uti-
lization to process the incoming workload with minimal resources
while leaving extra processing capacity to recover from failure or
rescaling actions. As shown in Figure 3, a system operating at full
capacity does not necessarily use 100% CPU. Though Daedalus
does not use CPU utilization thresholds to trigger scaling decisions,
most scaling decisions occurred between 80% and 85% when testing
with Flink. Therefore, two HPA deployments are tested. One target-
ing 80% utilization, and one targeting 85% utilization. With Kafka
Streams, the HPA deployments target 60% and 80% utilization.

4.3.3 Phoebe. Phoebe is an approach fairly similar to Daedalus,
and unlike many other DSP autoscaling approaches, its source code
is publicly available4. Phoebe uses initial profiling runs to build
QoS models and TSF to better meet QoS requirements. Similarly to
Daedalus, it is capable of choosing worker parallelism in accordance
with a target recovery time. Unlike Daedalus though, Phoebe ex-
plicitly models and accounts for latency. It also injects failures into
profiling runs, measures the resulting recovery times, and incor-
porates them into its QoS models. Phoebe was implemented using
Flink and also evaluated using the Yahoo Streaming Benchmark.

4.4 Experimental Setup
Experiments were run on a five-node Kubernetes cluster with ample
CPU and memory, totaling 160 cores and 640 GB RAM. Details can
be seen in Table 1. The experiments make use of Apache Kafka as a
data source and sink. Kafka topics have been created with the same
number of partitions as the maximum scale-out so that each worker
can consume from its own partition. Prometheus is used as a time
series database and periodically scrapes metrics from Kafka and

4https://github.com/dos-group/phoebe, Accessed: March 2024

137

https://www.kaggle.com/competitions/avazu-ctr-prediction
https://github.com/dos-group/phoebe


Daedalus: Self-Adaptive Horizontal Autoscaling for Resource Efficiency of Distributed Stream Processing Systems ICPE ’24, May 7–11, 2024, London, United Kingdom

Resource Details

OS Ubuntu 20.04.3
CPU AMD64 Processor, 32 cores, 2.8GHz

Memory 128 GB RAM
Storage 3TB RAID0 (3x1TB, Linux software RAID)

Network 10 GBit Ethernet NIC
Software Kubernetes v1.24.3, Docker v19.3, Java v1.11,

Flink v1.16.0, Kafka v3.2, ZooKeeper v3.8,
HDFS v2.8, Redis v6.2.7, Prometheus v2.39.1
Table 1: Cluster specifications

the target DSP system. Redis is used as a data store for the Yahoo
Streaming Benchmark. Lastly, HDFS is used by Flink for saving
checkpoints to storage.

All approaches are deployed at the same time and read from the
same Kafka source topic. For Flink deployments, each approach is
deployed in application mode, ensuring resource isolation as there
is no shared JobManager. The Flink deployments also make use of
Flink’s recently introduced reactive-mode,5 a built-in method that
allows elastic scaling. With reactive mode, Flink will automatically
scale to the number of desired replicas and rescale the job from
the last completed checkpoint. Defining the desired number of
replicas is done using Daedalus or HPA. For both Flink and Kafka
jobs, a custom metric was added to measure end-to-end latency.
This metric measures the time from tuple generation until the end
of processing, ignoring windowing periods. The 95th percentile
latency is reported in the results. Across all our setups, we provided
workers with significant memory access to preemptively ensure
that memory constraints did not become a bottleneck. This was
validated through empirical observations.

Approaches are evaluated by the quality of their scaling deci-
sions. All jobs use exactly-once processing semantics and the DSP
systems process all tuples. Therefore, end-to-end latency is a more
suitable metric to indicate the processing performance. End-to-
end latencies are reported by an empirical cumulative distribution
function. Average latencies are also reported, though they can be
misleading, since peaks of high latency during rescaling can skew
an average upwards. While some papers exclude rescaling down-
time in result calculations, this is misleading as recovery time is a
crucial factor. Therefore, no metrics are excluded in the results.

4.5 Flink Experiment Results
This section contains the results for the Wordcount, Yahoo Stream-
ing Benchmark, and TrafficMonitoring experiments run using Flink
as the target DSP system. For these experiments, Daedalus used a
recovery time of 600 seconds. Each experiment was executed five
times to ensure consistency of the results. As the form of presen-
tation of the results is repeated, we briefly explain the individual
subplots on the basis of Figure 7: Figure 7a shows the workload over
time; Figure 7b illustrates the number of workers over time as a
result of the respective scaling method; Figure 7c presents the cumu-
lative probability of observed latencies, which allows for statements

5https://flink.apache.org/2021/05/06/reactive-mode.html, Accessed: March 2024

0 5000 10000 15000 20000
Time (s)

0K

10K

20K

30K

40K

W
or

kl
oa

d 
(tu

pl
es

 / 
s)

(a) Workload

0 2500 5000 7500 10000 12500
Time (s)

0
2
4
6
8

10
12
14
16
18

Pa
ra

lle
lis

m

Daedalus
HPA 80

HPA 85
Static 12

(b) Number of workers

102 103 104

Latencies (log-scale)
0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y 
(%

)

Daedalus
HPA 80
HPA 85
Static 12

(c) Latency distribution

Daedalus HPA 80 HPA 85 Static 120.0

0.2

0.4

0.6

0.8

1.0

Re
so

ur
ce

 U
sa

ge
 (N

or
m

al
ize

d)

(d) Resource usage

Figure 7: Flink WordCount results

such as "more than 80% of all latency values where smaller or equal
103ms for Daedalus"; Lastly, the total resource usage, normalized
with respect to the static baseline, is displayed in Figure 7d.

4.5.1 WordCount Results. The results for the WordCount job are
shown in Figure 7. Despite the job’s simplicity, WordCount is highly
susceptible to data skew, making it challenging to accurately esti-
mate capacity for unseen workloads. In practice, this also means
that the maximum observed capacity of workers at a specific scale-
out can vary after rescaling to that scale-out again later in the job.
Nevertheless, all autoscaling approaches were able to match the
resources to the workload and process tuples in a timely manner.
In general, the autoscaling approaches scale out around the same
time, but Daedalus is able to scale in faster than the HPA methods.

As can be seen in Figure 7c, generally, all approaches perform
very similarly with most latency measurements falling between
102ms and 103ms. Average latencies over the span of the job are
as follows: Daedalus with 1,171 ms, HPA 80 with 1,791 ms, HPA
85 with 961 ms, and Static 12 with 1,408 ms. Notably, the static
scale-out has proportionally slightly higher latencies. As found in
previous research [24] and shown in Figure 2d, over-provisioning
resources does not guarantee optimal latencies. Proportionally, the
autoscaling approach latencies are quite similar. The larger increase
in latencies above the 95% mark indicates when the systems are
temporarily unavailable due to autoscaling.

When comparing resource utilization, Daedalus uses signifi-
cantly fewer resources. On average, Daedalus used 5.4 workers,
HPA 80 used 7.8, HPA 85 used 7.0, and the static scale-out natu-
rally used 12. Overall, Daedalus used 55% less resources than the
static scale-out, 31% less resources than the HPA 80, and 23% less
resources than the HPA 85. So with fewer resources, Daedalus was
able to achieve comparable latencies to HPA.

4.5.2 Yahoo Streaming Benchmark Results. The results for the Ya-
hoo Streaming Benchmark are shown in Figure 8. Here, the HPA 80

138

https://flink.apache.org/2021/05/06/reactive-mode.html


ICPE ’24, May 7–11, 2024, London, United Kingdom Benjamin J. J. Pfister, Dominik Scheinert, Morgan K. Geldenhuys, and Odej Kao

0 2500 5000 7500 10000 12500
Time (s)

0K

100K

200K

300K

400K

W
or

kl
oa

d 
(tu

pl
es

 / 
s)

(a) Workload

0 2500 5000 7500 10000 12500
Time (s)

0
2
4
6
8

10
12
14
16
18
20
22
24

Pa
ra

lle
lis

m

Daedalus
HPA 80

HPA 85
Static 12

(b) Number of workers

104 105

Latencies (log-scale)
0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y 
(%

)

Daedalus
HPA 80
HPA 85
Static 12

(c) Latency distribution

Daedalus HPA 80 HPA 85 Static 120.0

0.2

0.4

0.6

0.8

1.0

Re
so

ur
ce

 U
sa

ge
 (N

or
m

al
ize

d)

(d) Resource usage

Figure 8: Yahoo Streaming Benchmark results

and 85 deployments scale very similarly. As can be seen in Figure 8b,
they also allocate more workers than is necessary for a significant
portion of the experiment. Both HPA deployments scale over 12
when the workload is around half of its maximum. Daedalus also
over-provisions resources during the highest peak due to TSF pre-
dictions that the workload will continue to rapidly increase. As
with the WordCount experiment, Daedalus scales in more quickly.

As seen in Figure 8c, Daedalus was proportionally able to achieve
the lowest latencies while having slightly more downtime than the
HPA deployments. Overall, average latencies for all approaches
were similar, being within 1.5 seconds of each other. On average,
Daedalus had 9,106 ms, HPA 80 had 7,862 ms, HPA 85 had 8,042 ms,
and Static 12 had 7,576 ms. Also for this experiment, the latter did
not proportionally achieve lower latencies. The highest latencies
for the static scale-out come from when the workload is lowest.

On average, Daedalus used 5.5 workers, HPA 80 used 10, HPA
85 used 9.6, and the static scale-out naturally used 12. Daedalus
used 54% less resources than the static scale-out, 45% less resources
than the HPA 80, and 43% less resources than the HPA 85. Again,
Daedalus was able to process all tuples with reasonable latencies
using minimal resources.

4.5.3 Traffic Monitoring Results. The results of the Traffic Monitor-
ing experiment can be seen in Figure 9. The major challenge of this
workload comes from two large spikes where the workload rapidly
increases and decreases. As with the Yahoo Streaming Benchmark,
the HPA methods scaled similarly and allocated more workers than
necessary. Again, Daedalus was able to scale to match the workload.
It was able to react more quickly to the falling workload, scaling in
faster than both the HPA approaches.

As seen in Figure 9c, for the majority of the job, Daedalus and
the HPA methods had very similar proportional latencies. All au-
toscaling approaches had lower average latencies than the static
scale-out: Daedalus with 6,176 ms, HPA 80 with 5,566 ms, HPA

0 2500 5000 7500 10000 12500
Time (s)

0K

20K

40K

60K

80K

100K

W
or

kl
oa

d 
(tu

pl
es

 / 
s)

(a) Workload

0 2500 5000 7500 10000 12500
Time (s)

0
2
4
6
8

10
12
14
16
18
20
22
24

Pa
ra

lle
lis

m

Daedalus
HPA 80

HPA 85
Static 12

(b) Number of workers

104

Latencies (log-scale)
0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y 
(%

)

Daedalus
HPA 80
HPA 85
Static 12

(c) Latency distribution

Daedalus HPA 80 HPA 85 Static 120.0

0.2

0.4

0.6

0.8

1.0

Re
so

ur
ce

 U
sa

ge
 (N

or
m

al
ize

d)

(d) Resource usage

Figure 9: Traffic Monitoring results

85 with 5,671 ms, and Static 12 with 8,778 ms. As with the Yahoo
Streaming Benchmark, the lowest latencies for the static scale-out
occurred during the highest peaks of the workload.

Daedalus also used fewer resources than the comparison ap-
proaches. On average, Daedalus used 3.5 workers, HPA 80 used
5.9, HPA 85 used 5.6, and the static scale-out naturally used 12.
Percentually, Daedalus used 71% less resources than the static scale-
out, 41% less resources than the HPA 80, and 38% less resources
than the HPA 85. For all Flink experiments, Daedalus was able to
achieve similar latencies with fewer resources.

4.6 Kafka Streams Experiment Results
To show that Daedalus is a general approach that can work with
any DSP framework, it is tested with Kafka Streams using the
WordCount job. The other two DSP jobs used so far, namely Yahoo
Streaming Benchmark and Traffic Monitoring, do not qualify for
this comparison as no implementations for Kafka Streams exist.
The results are shown in Figure 10. As with the Flink WordCount
job, the job is susceptible to data skew and the maximum capacity at
a given parallelism is highly dependent on how data is split among
workers. This is especially apparent when observing the peaks
of the workload in Figure 10b. Unlike in the Flink experiments,
HPA 80 was not able to process tuples in a timely manner and
under-provisioned resources. This is also evident in the empirical
cumulative distribution function.

The static workload had an almost constant latency and was
able to achieve the best overall latencies with an average of 8,343
ms. Daedalus performed next best with an average of 10,566 ms.
HPA 60 was slightly worse with an average latency of 15,453 ms.
Lastly, the HPA 80, which was not able to match the workload had
an average of 102,153 ms.

Compared to the deployments that were able to process the
workload, Daedalus used fewer resources. On average, Daedalus
used 5.2 workers, HPA 60 used 5.8, HPA 80 used 4, and the static

139



Daedalus: Self-Adaptive Horizontal Autoscaling for Resource Efficiency of Distributed Stream Processing Systems ICPE ’24, May 7–11, 2024, London, United Kingdom

0 2500 5000 7500 10000 12500
Time (s)

0K

25K

50K

75K

100K

125K

150K

W
or

kl
oa

d 
(tu

pl
es

 / 
s)

(a) Workload

0 2500 5000 7500 10000 12500
Time (s)

0
2
4
6
8

10
12
14
16

Pa
ra

lle
lis

m

Daedalus
HPA 60

HPA 80
Static 12

(b) Number of workers

104 105

Latencies (log-scale)
0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y 
(%

)

Daedalus
HPA 60
HPA 80
Static 12

(c) Latency distribution

Daedalus HPA 60 HPA 80 Static 120.0

0.2

0.4

0.6

0.8

1.0

Re
so

ur
ce

 U
sa

ge
 (N

or
m

al
ize

d)

(d) Resource usage

Figure 10: Kafka Streams WordCount results

0 5000 10000 15000 20000
Time (s)

0K

20K

40K

60K

W
or

kl
oa

d 
(tu

pl
es

 / 
s)

(a) Workload

0 5000 10000 15000 20000
Time (s)

0
2
4
6
8

10
12
14
16
18
20
22

Pa
ra

lle
lis

m

Daedalus Phoebe

(b) Number of workers

103 104

Latencies (log-scale)
0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y 
(%

)

Daedalus
Phoebe

(c) Latency distribution

Daedalus Phoebe0.0

0.2

0.4

0.6

0.8

1.0

Re
so

ur
ce

 U
sa

ge
 (N

or
m

al
ize

d)

(d) Resource usage

Figure 11: Comparison with Phoebe

scale-out naturally used 12. Daedalus used 57% less resources than
the static scale-out and 11% less resources than the HPA 60. From
these results, one can infer that Daedalus is a generally applicable
solution. With Kafka Streams, it was able to provide a stable level
of service using minimal resources.

4.7 Comparison with Phoebe
The results of comparing Daedalus to Phoebe using the Yahoo
Streaming Benchmark can be seen in Figure 11. For this experi-
ment, a sine workload was chosen to compare Phoebe’s scaling
decisions to those in its paper. In addition, the recovery time target

of 600 seconds was chosen, since lower recovery time targets (e.g.
180 seconds as in the original publication) caused Phoebe to stay
primarily at the maximum scale-out of 18 with the tested workload.

When looking at the parallelism in Figure 11b, the scaling deci-
sions of Phoebe do not appear to mirror the workload. However,
when examining the logs, the scaling decisions are reasonable and
balance achieving a minimum latency with a recovery time below
the 600 second target. It should also be noted that these results
do not match those from the initial paper, where the number of
workers were more in line with the workload. In contrast, Daedalus
scaled more frequently, but also more in line with the workload.

When examining latencies, Phoebe outperformed Daedalus by
achieving proportionally lower latencies and faster recovery times.
Daedalus achieved an average latency of 9,624 ms and a maximum
latency of 88 seconds, while Phoebe achieved an average latency
of 3,340 ms and a maximum latency of 65 seconds. The maximum
latencies indicate the longest time that the system was unavailable,
and both maximum latencies were under the target recovery time.

When comparing resources used during the autoscaling part of
the experiment, Daedalus used 19% less resources, using an aver-
age of 10.1 workers while Phoebe used an average of 12.4 workers.
However, Phoebe also requires initial profiling runs to build perfor-
mance models. When incorporating profiling time, Daedalus used
53% less resources.

4.8 Discussion
The conducted experiments show that Daedalus achieves its goals:
It allocates sufficient resources to process the incoming workload,
processes tuples in a timely manner to achieve reasonable latencies,
minimizes resource usage, and makes long-lived scaling decisions.

For methods such as HPA, adequate thresholds must first be
determined. Even then, these fixed thresholds do not guarantee op-
timal resource usage or meeting QoS requirements. As an example,
for Flink, the HPA 80 over-provisioned resources (i.e. competitive
latencies in exchange for higher resource usage), while for Kafka
Streams, it under-provisioned resources (i.e. lower resource usage in
exchange for undesirable latencies). Seemingly, technical variations
in DSP systems and the implementation of DSP jobs pose challenges
to the HPA methods to achieve generalization. In addition, the HPA
methods do not incorporate data skew, which occurred in these
experiments, leading to suboptimal scaling decisions.

Comparing Daedalus to an approach like Phoebe highlights the
trade-offs that can be made in autoscaling. By using initial pro-
filing runs to build latency models, Phoebe can target scale-outs
that result in minimal latencies. However, this comes at the cost
of increased resource usage as a result of the required initial pro-
filing runs. In contrast, Daedalus focuses on minimizing resource
usage and builds its capacity models by monitoring a running job.
It focuses on ensuring throughput and does not explicitly model
latency. The autoscaling approach to use ultimately depends on
the requirements of the DSP job. An approach similar to Phoebe is
more appropriate when the primary goal is to minimize latencies
as much as possible, while Daedalus is more suitable for optimizing
resource efficiency. To further attain lower latencies, Phoebe manu-
ally creates a checkpoint before rescaling, minimizing the amount
of tuples that need to be reprocessed. In contrast, Daedalus uses

140



ICPE ’24, May 7–11, 2024, London, United Kingdom Benjamin J. J. Pfister, Dominik Scheinert, Morgan K. Geldenhuys, and Odej Kao

Flink’s reactive mode, which restarts the job from the last com-
pleted checkpoint. While this adaptation could improve achievable
latencies, the implementation to configure a manual checkpoint
before rescaling is dependent on the DSP system and would make
Daedalus less generalizable.

The effectiveness of Daedalus relies on its ability to accurately
ascertain worker capacity across all scale-outs.While it is difficult to
truly determine the maximum capacity given factors like data-skew,
it can be approximated by ensuring ample tuples in the data source
to saturate the system and observing the throughput at different
scale-outs. Comparing the observed capacities to the estimates from
Daedalus gives insights into the estimation accuracy. Generally, the
estimated capacities typically differ less than 5% from the observed
capacities, with the majority between 0% and 3%. Therefore, it can
be concluded that Daedalus can accurately estimate capacity.

Since the quality of scaling decisions are also impacted by TSF,
the accuracy of TSF predictions was evaluated. TSF predictions
were generally accurate with errors typically falling below 5%. In
fact, the threshold for poor predictions at 25% was never reached.

In this evaluation, the recovery time heuristic was tested using
the time needed to recover from a rescale. However, real failures
typically incur longer recovery times since the DSP system must
first detect the failure. While Daedalus accounts for failure by using
a worst-case recovery time calculation, an evaluation that injects
failures is left for future work. In general, a lower desired recov-
ery time will lead to higher resource utilization, making recovery
time the primary factor influencing autoscaling decisions. On the
contrary, a higher desired recovery time will have less impact on
scaling decisions, with actual processing capacity becoming the
key determinant. To align with HPAs for comparison purposes, we
opted for a higher recovery time of 600 seconds without exploring
the boundaries or quantifying the precise influence of the recov-
ery time parameter. In our experiments, the predicted recovery
time was almost always greater than the measured recovery time.
However, due to the worst-case calculation, the accuracy ranges
wildly from a 1% difference to a 140% difference when comparing
the actual and predicted recovery times. This lack of precision is a
limitation to this approach and could be improved in future work.

5 CONCLUSION
This paper presents Daedalus, a self-adaptive autoscaling approach
for DSP systems. Daedalus monitors running DSP jobs, builds
worker-level capacity models using readily available CPU and
throughput metrics, and scales resources to meet adaptation goals.
Its primary objectives are to process incoming workloads efficiently
while minimizing resource usage and to make long-lived scaling de-
cisions to reduce system downtime. After evaluation with three rep-
resentative DSP jobs in two DSP systems, Flink and Kafka Streams,
Daedalus proves to be an effective autoscaling method. It accurately
estimates the maximum processing capacity across different scale-
outs and matches resources to the incoming workload. Using up
to 71% fewer resources, Daedalus achieves latencies comparable to
those of a static scale-out and HPA. When compared to Phoebe, a
state-of-the-art approach that explicitly models latency, Daedalus
does not quite achieve the same low latencies, nonetheless, it still
provides a stable level of service with fewer resources than Phoebe.

A current limitation of Daedalus is its inability to target scale-outs
for minimal latencies, and incorporating a fitting latency model is
considered a direction for our future work.

REFERENCES
[1] Maycon Viana Bordin, Dalvan Griebler, Gabriele Mencagli, Cláudio Fer-

nando Resin Geyer, and Luiz Gustavo Fernandes. 2020. DSPBench: A Suite
of Benchmark Applications for Distributed Data Stream Processing Systems.
IEEE Access 8 (2020).

[2] Michael Borkowski, Christoph Hochreiner, and Stefan Schulte. 2019. Minimizing
Cost by Reducing Scaling Operations in Distributed Stream Processing. Proc.
VLDB Endow. 12 (2019).

[3] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single
engine. Data Engineering Bulletin (2015).

[4] Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli, and Gabriele Russo Russo.
2022. Run-time Adaptation of Data Stream Processing Systems: The State of the
Art. ACM Computing Surveys (CSUR) (2022).

[5] Tao Chen, Rami Bahsoon, Shuo Wang, and Xin Yao. 2018. To Adapt or Not
to Adapt?: Technical Debt and Learning Driven Self-Adaptation for Managing
Runtime Performance. In ICPE. ACM.

[6] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves,
Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Peng,
and Paul Poulosky. 2016. Benchmarking Streaming Computation Engines: Storm,
Flink and Spark Streaming. In IPDPS. IEEE Computer Society.

[7] John M. Ewing and Daniel A. Menascé. 2014. A meta-controller method for
improving run-time self-architecting in SOA systems. In ICPE. ACM.

[8] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and Karthikeyan
Ramasamy. 2017. Dhalion: Self-Regulating Stream Processing in Heron. Proc.
VLDB Endow. 10 (2017).

[9] Morgan Geldenhuys, Benjamin J. J. Pfister, Dominik Scheinert, Lauritz Tham-
sen, and Odej Kao. 2022. Khaos: Dynamically Optimizing Checkpointing for
Dependable Distributed Stream Processing. In FedCSIS.

[10] Morgan K. Geldenhuys, Dominik Scheinert, Odej Kao, and Lauritz Thamsen.
2022. Phoebe: QoS-Aware Distributed Stream Processing through Anticipating
Dynamic Workloads. In ICWS. IEEE.

[11] Kordian Gontarska, Morgan K. Geldenhuys, Dominik Scheinert, Philipp Wies-
ner, Andreas Polze, and Lauritz Thamsen. 2021. Evaluation of Load Prediction
Techniques for Distributed Stream Processing. In IC2E. IEEE.

[12] Thomas Heinze, Valerio Pappalardo, Zbigniew Jerzak, and Christof Fetzer. 2014.
Auto-scaling techniques for elastic data stream processing. In DEBS. ACM.

[13] Vasiliki Kalavri, John Liagouris, Moritz Hoffmann, Desislava C. Dimitrova,
Matthew Forshaw, and Timothy Roscoe. 2018. Three steps is all you need:
fast, accurate, automatic scaling decisions for distributed streaming dataflows. In
OSDI. USENIX Association.

[14] Faria Kalim et al. 2019. Caladrius: A Performance Modelling Service for Dis-
tributed Stream Processing Systems. In ICDE. IEEE.

[15] André Martin, Tiaraju Smaneoto, Tobias Dietze, Andrey Brito, and Christof
Fetzer. 2015. User-Constraint and Self-Adaptive Fault Tolerance for Event Stream
Processing Systems. In DSN. IEEE Computer Society.

[16] Diego Perez-Palacin and Raffaela Mirandola. 2014. Uncertainties in the modeling
of self-adaptive systems: a taxonomy and an example of availability evaluation.
In ICPE. ACM.

[17] Jason Porter, Daniel A. Menascé, Hassan Gomaa, and Emad Albassam. 2018.
TESS: Automated Performance Evaluation of Self-Healing and Self-Adaptive
Distributed Software Systems. In ICPE. ACM.

[18] Henriette Röger and Ruben Mayer. 2019. A Comprehensive Survey on Paral-
lelization and Elasticity in Stream Processing. ACM Computing Surveys (CSUR)
52 (2019).

[19] Matthias J. Sax, Guozhang Wang, Matthias Weidlich, and Johann-Christoph
Freytag. 2018. Streams and Tables: Two Sides of the Same Coin. In BIRTE. ACM.

[20] G. van Dongen and D. Van den Poel. 2020. Evaluation of Stream Processing
Frameworks. IEEE Transactions on Parallel and Distributed Systems 31, 8 (2020).

[21] Adriano Vogel, Dalvan Griebler, Marco Danelutto, and Luiz Gustavo Fernan-
des. 2022. Self-adaptation on parallel stream processing: A systematic review.
Concurrency and Computation: Practice and Experience 34 (2022).

[22] B. P. Welford. 1962. Note on a Method for Calculating Corrected Sums of Squares
and Products. Technometrics 4 (1962).

[23] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker, and Ion Stoica. 2016. Apache
Spark: A Unified Engine for Big Data Processing. Commun. ACM (2016).

[24] Liang Zhang, Wenli Zheng, Chao Li, Yao Shen, and Minyi Guo. 2021. AuTraScale:
An Automated and Transfer Learning Solution for Streaming System Auto-
Scaling. In IPDPS. IEEE.

141


	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Performance Modeling
	3.2 Scaling Decisions
	3.3 Time Series Forecasting
	3.4 Recovery Time
	3.5 Monitoring with Anomaly Detection
	3.6 Implementation

	4 Evaluation
	4.1 DSP Jobs
	4.2 Workload Generation
	4.3 Comparison Systems
	4.4 Experimental Setup
	4.5 Flink Experiment Results
	4.6 Kafka Streams Experiment Results
	4.7 Comparison with Phoebe
	4.8 Discussion

	5 Conclusion
	References



