
InstantOps: A Joint Approach to System Failure Prediction and
Root Cause Identification in Microservices Cloud-Native

Applications
Raphael Rouf

raphaelr@my.yorku.ca

York University

Toronto, Ontario, Canada

Mohammadreza Rasolroveicy

roveicy@ibm.com

IBM Canada Lab

Markham, Ontario, Canada

Marin Litoiu

mlitoiu@yorku.ca

York University

Toronto, Ontario, Canada

Seema Nagar

senagar3@in.ibm.com

IBM Research

Bangalore, India

Prateeti Mohapatra

pramoh01@in.ibm.com

IBM Research

Bangalore, India

Pranjal Gupta

Pranjal.Gupta2@ibm.com

IBM Research

Bangalore, India

Ian Watts

ifwatts@ca.ibm.com

IBM Canada Lab

Markham, Ontario, Canada

ABSTRACT
Asmicroservice and cloud computing operations increasingly adopt

automation, the importance of models for fostering resilient and

efficient adaptive architectures becomes paramount. This paper

presents InstantOps, a novel approach to system failure predic-

tion and root cause analysis leveraging a three-fold modality of IT

observability data: logs, metrics, and traces. The proposed method-

ology integrates Graph Neural Networks (GNN) to capture spatial

information and Gated Recurrent Units (GRU) to encapsulate the

temporal aspects within the data. A key emphasis lies in utilizing a

stitched representation derived from logs, microservices events(e.g.

Image Pull Back Off, PVC Pending), and resource metrics to predict

system failures proactively. The traces are aggregated to construct

a comprehensive service call flow graph and represented as a dy-

namic graph. Furthermore, permutation testing is applied to harness

node scores, aiding in the identification of root causes behind these

failures.

To evaluate the efficiency of InstantOps, we utilized in-house

data from the open-source application Quote of the Day (QoTD) as

well as two publicly available datasets, MicroSS and Train Ticket.

The F1 scores obtained in predicting the system failures from these

data sets were 0.96, 0.98, and 0.97, respectively, beating the state-

of-the-art. Additionally, we further evaluated the efficiency of root

cause analysis using MAR and MFR. These results also outperform

the state of the art.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

ICPE ’24, May 7–11, 2024, London, UK
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0444-4/24/05.

https://doi.org/10.1145/3629526.3645047

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies; Feature selection; Regularization; • Information sys-
tems→ Clustering; • Networks→ Network performance analy-

sis.

KEYWORDS
Cloud Computing, Anomaly Prediction, Resource Overload, Ma-

chine Learning, Root Cause Analysis

ACM Reference Format:
Raphael Rouf, Mohammadreza Rasolroveicy, Marin Litoiu, Seema Nagar,

Prateeti Mohapatra, Pranjal Gupta, and Ian Watts. 2024. InstantOps: A Joint

Approach to System Failure Prediction and Root Cause Identification in Mi-

croservices Cloud-Native Applications. In Proceedings of the 15th ACM/SPEC
International Conference on Performance Engineering (ICPE ’24), May 7–
11, 2024, London, United Kingdom. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3629526.3645047

1 INTRODUCTION
With the growing use of cloud computing, enhanced system sta-

bility and reliability have become critical due to increased depen-

dence on cloud servers for data storage and processing. Anomalies–

unusual deviations from expected system behavior, can signify po-

tential security breaches or malfunctions, posing risks to system

availability and integrity [2, 13]. Anomaly Detection and prediction

are crucial in server and cloud environments for the immediate iden-

tification of abnormal activities, thereby preventing these issues

from escalating into serious problems [7, 35].

The automatic detection and prediction of anomalies and fail-

ures in microservice applications have garnered significant interest

among researchers in recent years. Historically, anomaly detection

has been a focus of extensive study. Techniques such as statistical

methods, clustering, and rule-based systems have been employed

for this purpose [1, 5, 9, 11, 12, 24, 25, 28]. However, as modern

systems have become more interconnected and intricate, there has

119

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629526.3645047
https://doi.org/10.1145/3629526.3645047

ICPE ’24, May 7–11, 2024, London, UK Raphael Rouf et al.

been a palpable shift towards leveraging machine learning models

to achieve enhanced efficiency and accuracy in anomaly detec-

tion [6, 7, 18, 26].

To gain a holistic perspective of the system’s health, research

has particularly emphasized various single-modal data sources:

Traces in [16, 32, 38]: Traces offer insights into the flow of re-

quests and the interactions among different microservices. Anom-

alies in traces, such as unexpected latencies or failed requests, can

be revealing. For instance, a deviation from a usual 10-millisecond

response time to a full second indicates potential concerns.

Logs in [4, 8, 23, 29]: Logs, the textual records generated by ap-

plications and infrastructure components, provide a comprehensive

context about events, errors, and warnings. A surge in error mes-

sages or emergent warning patterns that deviate from the standard

can pinpoint anomalies.

Resource and Performance Metrics in [19, 21, 27, 33]: Monitoring

various metrics, including CPU usage, memory allocation, network

activity, response time, and throughput, offers pivotal insights into

the system’s performance and health. Unforeseen spikes, drops, or

inconsistencies in these metrics might be indicative of performance

bottlenecks, inefficiencies, or other health-related concerns within

a service.

However, recent studies [14, 15, 36] suggest that relying solely

on single-modal data for failure localization may not be adequately

efficient. One primary reason is that a single failure can have cascad-

ing effects on multiple facets of microservices. Such a failure might

manifest itself in various modalities, leading to multiple anomaly

patterns. For instance, a database slowdown might result in both

extended response times (observable in traces) and a surge in error

logs.

Furthermore, there exist certain failures thatmight not be evident

in specific modalities. If detection methods rely solely on one modal-

ity, they risk missing out on these anomalies. A classic example

might be an internal logic error in a service that doesn’t necessarily

result in increased resource usage or evident trace anomalies but

could still produce erroneous outputs.

Given these complexities, there’s a growing consensus in the

research community about the necessity of a multi-modal approach,

combining data from various sources to create a holistic and more

accurate picture of the application’s health.

In this paper, through the introduction of InstantOps, we aug-
ment the existing state-of-the-art research [14–16, 34, 36] by fusing

multimodal data source including logs, traces, resource metrics, and

microservices events (e.g. Image Pull Back Off, PVC pending) in a

time series format to predict system failures at the service (node)

level. In this paper, we characterize a ‘node’ as an individual service

within the micro-service architecture. Specifically, our objective is

to predict, identify, and localize the nodes in the system that might

be responsible for imminent system failures. By pinpointing and

localizing the problematic node within the microservice architec-

ture, we can strategize appropriate remediation measures, such as

node scaling or resource configuration.

We stitch the multi-modal data for a time window in a novel

fashion, where traces act as a thread. We serialize logs, traces,

and metrics for each time window. In this process, we intertwine

traces as the stitching thread, serializing logs, and metrics for each

time window. This serialized data aids in constructing a dynamic

dependency graph that delineates the interconnections among ser-

vices—wherein nodes represent services and their interactions are

depicted as edges.

Moreover, we enrich this dependency graph by merging both

logs and resource metrics as attributes assigned to its nodes. This

augmentation enhances the representation of the system’s spatial

features at specific points in time. To analyze and comprehend

these spatial features, we employ Graph Neural Networks (GNN),

recognizing that a system’s failure isn’t a single-point occurrence

but a lifecycle that gradually progresses toward a system crash.

Understanding the temporal evolution of these spatial features is

imperative. To address this, we utilize Gated Recurrent Unit (GRU)

models, acknowledging the importance of capturing the system’s

changing dynamics over time.

Our focus lies not only in training a multi-modal GNN-GRU

model for predicting system failures but also in utilizing the learned

node scores to localize the root cause. This approach allows us to

repurpose the trained model for the specific task of root cause

analysis. By leveraging the insights gained from failure prediction,

particularly the node scores, we aim to guide the root cause analysis

process. We believe that the predictive learning captured in failure

prediction can significantly aid in root cause localization, thereby

aligning our methodologies for a more comprehensive understand-

ing of system behavior and failure analysis.

The contributions of this paper can be summarized as follows:

• Novel System Failure Prediction: We introduce a unique

approach to predict system failures by fusing multimodal

observability data in a novel fashion wherein we overlay

the logs and metrics data as node attributes in the graph

constructed using the traces.

• We propose to capture both temporal and spatial aspects in

effective failure prediction.

• Innovative Root Cause Analysis Method: We use the multi-

modal system failure prediction model for pinpointing the

root causes of failures at the node level.

• Comprehensive Experimental Study: We conduct an exten-

sive experimental analysis to evaluate the efficiency of our

model in terms of both prediction accuracy and root cause

analysis. This assessment is based on two open-source and

one proprietary dataset derived from open-source microser-

vice systems.

The remainder of the paper is organized as follows: Section 2

describes the motivation behind our experiments and study. In

Section 3, we discuss recent related works in failure predictions and

anomaly detection in microservices, specifically focusing on the

use of multimodal datasets. Section 4 details our methodology and

elaborates on our GNN-GRU based algorithm for detecting failures

in microservices. Section 5 delves into our approach to temporal

failure prediction and root cause analysis including an explanation

of the algorithms. In Section 6, we discuss the evaluation of our

experimental study. Section 7 addresses the potential threats to

validity. Finally, in Section 8, we conclude our findings and present

potential avenues for future research.

120

InstantOps: A Joint Approach to System Failure Prediction and Root Cause Identification in Microservices Cloud-Native Applications ICPE ’24, May 7–11, 2024, London, UK

2 MOTIVATION:
The analysis of system failures necessitates a thorough examina-

tion of diverse data modalities. Prior research indicates that relying

solely on single-modal data is inadequate for capturing the intri-

cacies of failure patterns, especially in microservice applications.

In this paper, we utilize three distinct datasets: Anafusion’s Mi-

croSS [36], TraceRCA’s Train Ticket [16], and an in-house dataset

for the “Quote of the Day (QOTD)" open-source application. These

datasets comprise different combinations of logs, traces, events,

and metrics, depending on the specific experiment. For instance,

the QOTD dataset incorporates logs, traces, events, and resource

metrics, while the Train Ticket dataset emphasizes traces and met-

rics. To ensure a comprehensive evaluation, all datasets encompass

records of every failure injection. Our primary objective is to deter-

mine the precision of system failure predictions when leveraging

supervised learning. Distinctly from previous models, we incorpo-

rate edges into the system to systematically assess the impact on

specific nodes. Furthermore, in this paper, the edges are constructed

by the communications among the services in the microservice ap-

plication.

The analysis of these interactions offers critical insights into

which nodes require interventions, such as scaling, restarting, or

remediation of various failures.

For system failure prediction, multiple neural network models

are tested to ascertain the most efficient predictive methodology.

The effectiveness of InstantOps is subsequently quantified using

metrics including accuracy, precision, recall, and the F1 Score. To

benchmark its performance, InstantOps is compared against two

established methods, Anafusion and TraceRCA.

3 RELATEDWORKS
Recent works have significantly leaned into exploring methods for

anomaly and failure detection within microservices and cloud ap-

plications, leveraging various data-oriented and machine-learning

approaches.

Zhao et al. [36] proposed a novel approach called AnoFusion

for unsupervised failure detection through multimodal data for

microservice systems. AnoFusion uses GTN to learn the correlation

of the heterogeneous multimodal data and constructs a heteroge-

neous graph structure. Then, GAT is utilized to capture significant

features and update the heterogeneous graph. Finally, GRU is used

to predict the data pattern at the next moment. However, while

AnoFusion looks at the system level to predict the failures of the

microservice, we focus our attention on the service level to localise

which nodes are the leading cause in predicting the system failures

and take that into account in our system failure prediction. In Ana-

fusion, the authors model one node, in this paper, we model the

entire microservice application. Furthermore, our model is built

with multiple data sources such as events from each microservices.

Zhang et al. [34] proposed an alternative method known as Di-

agFusion. This approach leverages multimodal data to enhance

fault detection by employing advanced embedding techniques fast-

Text and data augmentation. It constructs a dependency graph and

employs a graph neural network to pinpoint the root cause and

identify the type of failure.

Li et al. [16] proposed TraceRCA, a root cause microservice

localization approach designed for trace anomaly detection and

flagging abnormal traces to predict the root cause. Zhou et al. [38]

presented MEPFL, a model designed to predict latent errors that

possess the potential to precipitate failures, especially during the

runtime in production environments of microservice applications.

This approach is realized through the comprehensive analysis of

system trace logs and the training of prediction models utilizing fea-

tures distilled from these logs. In essence, MEPFL aims to empower

developers by providing them with the capacity to identify and

rectify faults before their manifestation as failures in a production

setting. The model specifically addresses three predominant types

of faults in microservice applications: system overload, memory

leak, and sudden node crash. These fault types constitute nearly

half of all microservice application faults, substantiated by existing

empirical studies, underscoring the pivotal role and applicability of

MEPFL in fortifying the reliability of microservice applications. The

TraceRCA and MEPFL approaches are designed to take not only

account traces but metrics, logs, and events using edge interactions

of the nodes to localize the faults at the service level.

Lee et al. [15] introduced a novel approach named Hades, de-

signed for detecting system anomalies in software systems. Hades

seamlessly integrates heterogeneous data sources, including logs

and metrics, to proficiently identify system anomalies. These anom-

alies, which encompass system failures, performance degradation,

and other unanticipated behaviors, are detected promptly, thereby

enabling system administrators to enact corrective actions swiftly.

To facilitate the prediction of system anomalies, the authors employ

a binary classification approach, wherein each data chunk is labeled

as either ’normal’ or ’anomalous.’ Lee et al. [14] proposed Eadro,

an approach for anomaly detection within microservices. Eadro

operates by modeling the standard behavior of microservices and

identifying deviations from this established normalcy. Specifically,

it employs a deep neural network to derive discriminative repre-

sentations of microservice statuses through multi-modal learning,

compelling the model to apprehend fundamental features indica-

tive of anomalies through multi-task learning. The model, which

ingests multi-source monitoring data—including traces, logs, and

Key Performance Indicators (KPIs)—generates a score for each mi-

croservice, reflecting the likelihood of an anomaly. A higher score

indicates a greater probability of the microservice encountering an

anomaly. Eadro’s anomaly detection module is capable of identi-

fying various types of anomalies, such as network-related issues,

resource exhaustion, and software bugs. By pinpointing the root

causes of anomalies, Eadro assists system administrators and devel-

opers in promptly troubleshooting and addressing issues. Research

works similar to Hades and Eardo aim to detect system anomalies

and failure, our intention is not to detect system anomalies but to

predict the anomalies at the next minute based on the last 5 minute

time window.

4 METHODOLOGY
In this section, we provide a systematic approach designed to pre-

dict system failures and facilitate subsequent root cause analysis

using Graph Neural Networks (GNNs) in a Microservice application.

We initiate with the standardization of features and then proceed

121

ICPE ’24, May 7–11, 2024, London, UK Raphael Rouf et al.

Figure 1: InstantOps Offline Training Model

to the systematic construction of a graph. In this representation,

nodes symbolize system components, while edges correspond to

the interactions between these components, quantified on a per-

minute basis. To quantify the frequency of these interactions, we

incorporate the concept of ‘weights’.

When an interaction between or services is observed for the first

time within a specified duration, we create an edge between the two

corresponding nodes in GNN, and the weight of the edges is 1. If an

edge between these nodes already exists within this timeframe, its

weight is incremented by 1, marking an additional recorded inter-

action. Essentially, this weight serves as a metric, representing the

number of interactions between two nodes within the designated

interval. For example, if the weight of an edge between node A and

node B is 10, it indicates that Service A interacted with Service B

10 times within the specified observation period.

Further, a GNN model is developed, integrating node feature

information and graph topology to generate node embeddings.

The mathematical framework defines the forward propagation and

convolution operations within the GNN and Graph Convolutional

Network (GCN) layers. Additionally, the model is extended to incor-

porate edge features, enhancing the representation of interactions.

Temporal aspects and dependencies of the system are incorporated

by using a Gated Recurrent Unit (GRU) model. During the train-

ing phase, the cross-entropy loss function is employed to optimize

model parameters to minimize the difference between predicted

outputs and actual labels. We predict system failure when the entire

application crashes or if the application receives 500 errors more

than 99% of the time in the 𝑡 + 1 time windows. Finally, the model’s

predictive accuracy, a quantifiable metric that measures the propor-

tion of correct predictions relative to the total, is used to evaluate

its ability to predict system failures and enable root cause analysis.

As shown in Figure 1, the workflow of InstantOps is divided

into multiple stages:

First, we preprocess and serialize the multi-modal data-set within

a controlled time-frame. For each data source, we define time win-

dows with the same size. The sequence of the time windows defines

the stream of graphs for our model. Next, we construct the Graph

Neural Networks using edges and nodes. For each time window, we

add the features to the nodes in the graph. The layers of the GNN

aggregate information from neighbors in a graph. We then filter

features by selecting important keywords from logs and events that

serve as features and correlating them with resource metrics. The

first layer takes the features, while the second layer accepts the

output from the first and produces additional graph neural network

features.

After processing the node features with the GNN layers, the node

embeddings are further refined through a GRU cell. For failure pre-

diction, we consider both the features and temporal aspects across

different timestamps to predict system failures in the subsequent

time moment, which in our case is 𝑡 + 1. This layer can capture

temporal dependencies in the node embeddings produced by the

GNN layers. While GRU models are traditionally used for sequence

data, in our approach, we use it as an additional transformation for

node embeddings.

We further elaborate on our steps below:

4.1 Data Preprocessing and Graph Construction
Data normalization is conducted to maintain consistency among

the dataset features, expressed mathematically as:

𝑥
std

=
𝑥 − 𝜇
𝜎

where 𝑥 is the raw feature, 𝜇 is the mean, and 𝜎 is the standard

deviation of the feature across all data points.

A graph𝐺 is then defined as𝐺 = (𝑉 , 𝐸), where𝑉 is a set of nodes

representing microservices, and 𝐸 is a set of edges representing

122

InstantOps: A Joint Approach to System Failure Prediction and Root Cause Identification in Microservices Cloud-Native Applications ICPE ’24, May 7–11, 2024, London, UK

interactions between services. The adjacency matrix 𝐴 ∈ R𝑛×𝑛
encapsulates the number of interactions, where 𝐴𝑖 𝑗 = 1 if an inter-

action exists between services represented by nodes 𝑣𝑖 and 𝑣 𝑗 , and

0 otherwise. In other paper, authors define Edges 𝑒𝑖 𝑗 ∈ 𝐸 can also

be defined based on metrics between nodes:

𝑒𝑖 𝑗 = 𝑓 (logs𝑖 𝑗 ,metrics𝑖 𝑗)

where 𝑓 represents a function determining interactions between

nodes based on logs and metrics.

4.2 Log Parsing
To predict system failure and their respective causes, serialization

of the logs is an integral part of our work. The architectural design

of this project is inspired by our previous work, BERTOps [8],

which utilizes the Drain [10] to extract structured information from

raw log data by clustering log lines into templates based on their

structural similarity and BERT [3] for building an encoder based

Large Language Model (LLMs) for the log data. By fine-tuning the

pre-trained BERTOps model on labeled data from downstream tasks

such as log classification and fault category prediction, BERTOps

can learn to accurately represent log data and perform various log

analysis tasks with high accuracy. While BertOps aims to classify a

log line, in this paper, we classify each node and extract vital features

from the logs, such as the number of errors a node receives within

the specific time window. For instance, given the log structure

“[2023-08-22T17:20:12.083] [Error] default - [418241] Quote request

timeout", we extract the following features: timestamp, node id,

number of errors. These features will be added to the nodes for a

corresponding time window.

4.3 GNN Model Formulation
Leveraging the ability of GNNs to capture localized graph struc-

tures and enable accurate predictions, the formulation and forward

propagation within a GNN layer include the transformation and

aggregation of node features across successive layers, adhering to:

𝐻 (𝑙+1) = 𝜎

(
𝐷̃−

1

2 𝐴̃𝐷̃−
1

2𝐻 (𝑙)𝑊 (𝑙)
)

where:

• 𝐻 (𝑙) is the matrix of node features at layer 𝑙 ,

• 𝐴̃ = 𝐴 + 𝐼 includes the adjacency matrix 𝐴 fortified with

self-loops 𝐼 ,

• 𝐷̃ represents the degree matrix of 𝐴̃,

• 𝑊 (𝑙) denotes the weight matrix at layer 𝑙 ,

• 𝜎 embodies a non-linear activation function.

This structural formulation of GNN simultaneously ensures the

preservation of spatial relations between nodes and facilitates an

iterative enhancement of node representations through the aggre-

gation of neighboring information. This mechanism is instrumental

in decoding intricate patterns, which are crucial for the predictive

analysis of system failures, and provides a robust foundation for

subsequent root cause analysis.

4.4 Graph Neural Network Model Development
The GNN model leverages both node feature information and topo-

logical structure. The forward propagation of a GNN model is often

expressed as:

ℎ
(𝑙+1)
𝑣𝑖 = 𝜎

©­«
∑︁

𝑣𝑗 ∈𝑁 (𝑣𝑖)
𝑊 (𝑙) · ℎ (𝑙)𝑣𝑗

ª®¬
where ℎ

(𝑙)
𝑣𝑖 represents the feature vector of node 𝑣𝑖 at layer 𝑙 and

𝑁 (𝑣𝑖) is the set of neighbors of node 𝑣𝑖 .
The operation in a Graph Convolutional Network (GCN) layer

can be expressed as:

𝐻 (𝑙+1) = 𝜎

(
𝐷̃−

1

2 𝐴̃𝐷̃−
1

2𝐻 (𝑙)𝑊 (𝑙)
)

where 𝐴̃ = 𝐴 + 𝐼 and 𝐷̃ is the degree matrix of 𝐴̃.

Enhancing the GCN model to include edge features, the node

representation becomes:

ℎ
(𝑙+1)
𝑣𝑖 = 𝜎

©­«
∑︁

𝑣𝑗 ∈𝑁 (𝑣𝑖)
𝑊 (𝑙) · ℎ (𝑙)𝑣𝑗 +𝑈

(𝑙) · 𝑒𝑖 𝑗
ª®¬

where 𝑈 (𝑙) is a trainable weight matrix for edge representations at

layer 𝑙 .

5 TEMPORAL FAILURE PREDICTION AND
ROOT CAUSE ANALYSIS

In this section, we discuss the approaches for failure prediction and

root cause analysis.

5.1 Temporal Failure Prediction
In our approach, we integrate the power of Graph Neural Networks

(GNN) with Gated Recurrent Units (GRU) to predict temporal fail-

ures. The GNN captures the spatial structure of the data by operat-

ing on a graph, encapsulating local neighborhood information of

each node through iterative feature aggregation from its neighbors.

The propagation in GNN is steered by the adjacency matrix Ã and

its diagonal degree matrix D̃, formalized as:

X(𝑙+1) = 𝜎

(
D̃−

1

2 ÃD̃−
1

2X(𝑙)W(𝑙)
)

The Gated Recurrent Unit (GRU) captures the temporal dynamics

across sequences. The GRU discerns sequential patterns using its

intrinsic update and reset gates. The vital computations within the

GRU include:

𝑟𝑡 = 𝜎 (𝑊𝑟𝑥𝑡 +𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (Reset gate)

𝑧𝑡 = 𝜎 (𝑊𝑧𝑥𝑡 +𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (Update gate)

ˆℎ𝑡 = tanh(𝑊𝑥𝑡 +𝑈 (𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏) (New potential hidden

state)

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ˆℎ𝑡 (Actual hidden state

update)

For each sequence and its respective time step, the GNN first

imbibes spatial information derived from the graph. The conjoined

features from the GNN for every time step are subsequently fun-

neled into the GRU, which modifies its hidden state according to

its preceding state and the contemporary input. The culminating

output of the GRU forms the basis of the prediction. The associated

loss is computed relative to the true labels, followed by a backward

123

ICPE ’24, May 7–11, 2024, London, UK Raphael Rouf et al.

pass to refine the model parameters. Upon training, this model can

be employed to prognosticate failures for imminent time steps.

Algorithm 1 Temporal Failure Prediction using GNN with GRU

1: procedure GNN_TemporalFailurePrediction(nodes, edges,
y)

2: Standardize nodes
3: Map node names to integers in edges and nodes
4: Convert nodes, edges, y to data
5: Initialize GNN-GRU model with 2 GCN layers and a GRU

layer

6: for each epoch do
7: for each time window in train_loader do
8: Get temporal sequence of nodes for the time window
9: for each time-step 𝑡 do
10: X(𝑙+1) ← 𝜎

(
D̃−

1

2 ÃD̃−
1

2X(𝑙)W(𝑙)
)

11: 𝑟𝑡 ← 𝜎 (𝑊𝑟𝑥𝑡 +𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)
12: 𝑧𝑡 ← 𝜎 (𝑊𝑧𝑥𝑡 +𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)
13:

ˆℎ𝑡 ← tanh(𝑊𝑥𝑡 +𝑈 (𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏)
14: ℎ𝑡 ← (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ˆℎ𝑡

15: Use ℎ𝑡 for prediction

16: Compute loss with CrossEntropy

17: Backward pass

18: Update model parameters

19: Evaluate on the validation set

20: Compute metrics (Accuracy, Precision, Recall, F1 Score)

21: Predict failure for 𝑡 + 1 using current model state

22: return Trained GNN-GRU model

Table 1: Conjoined features from the GNN

Features Traces Metrics Logs Events

of Node Interactions ✓
CPU Usage ✓
Memory Usage ✓
Disk I/O ✓
Network I/O ✓
5XX Errors ✓
2XX Requests ✓
4XX Errors ✓
API Latency ✓
CrashLoopBackOff ✓
ImagePullBackOff ✓
NodeNotReady ✓
PodScheduled ✓
NodeReady ✓
Unhealthy ✓
VolumeMount ✓
Failed (Image Pull) ✓
Resource Constraints ✓

Figure 2 depicts the model architecture of a system designed for

predicting system failure at the node level in a microservice applica-

tion. This system employs a hybrid approach, integrating a Graph

Neural Network (GNN) with a Gated Recurrent Unit (GRU) model.

The GNN component is responsible for capturing the interactions

among microservice nodes, effectively learning from the topologi-

cal structure of the microservices network. Each node in the GNN

represents a microservice, and the edges reflect the interactions

between these services.

The GRU part of the model handles the temporal aspects of the

system’s features, such as resource utilization and error rates, which

are critical for understanding the state of the system over time. The

GRU’s ability to maintain information across time steps makes it

particularly suitable for this task, as it can recognize patterns that

precede a system failure.

The figure illustrates nodes representing different layers and

operations within the neural network, such as convolutional layers

(conv1.lin.weight, conv2.lin.weight), which are used in process-

ing nodes interactions, and GRU components (gru_cell.weight_ih,

gru_cell.weight_hh), which are adept at handling temporal aspects.

The AccumulateGrad nodes suggest the accumulation of gradient

values for each parameter across multiple batches or time steps.

In the computational graph shown, we see the backward propa-

gation flow, which is part of the training phase where the model’s

parameters are adjusted. The backward nodes represent the deriva-

tives of the loss function with respect to the model’s parameters,

and the arrows indicate the direction of the gradients’ flow.

Figure 2: The Diagram for GNN+GRU Neural Network Model

5.2 Root Cause Analysis
In complex microservice applications, identifying the root causes of

faults is critical for maintaining operational efficiency and reliability.

124

InstantOps: A Joint Approach to System Failure Prediction and Root Cause Identification in Microservices Cloud-Native Applications ICPE ’24, May 7–11, 2024, London, UK

To systematically analyze and diagnose faults in our system, we

employ a two-fold metric-based approach. This approach focuses

on evaluating the effectiveness of InstantOps root cause localization

processes at the node level. Specifically, we utilize Mean First Rank

(MFR) and Mean Average Rank (MAR) as our primary metrics.

Mean First Rank (MFR):MFR focuses on the position where

the first correct item (fault) appears in a ranked list. In the context

of fault analysis, this means identifying the most likely root cause

of a problem as quickly as possible. The quicker a primary fault is

identified, the faster remedial actions can be taken. This is crucial

in systems where prompt fault resolution is essential to minimize

downtime or prevent cascading issues. In practice, MFR is calculated

by averaging the ranks at which the first true fault appears across all

instances in a dataset. A lowerMFR value indicates higher efficiency

in pinpointing the primary fault quickly.

Mean Average Rank (MAR): MAR extends the analysis to

consider the average rank of all relevant items in the ranked list.

This is particularly important in scenarios where multiple potential

faults might contribute to a problem. MAR provides a broader view

of the system’s diagnostic accuracy. It is essential for comprehensive

fault identification, especially in complex systems where multiple

issues can coexist or be interrelated. MAR is calculated by averaging

the ranks of all relevant faults across each instance in the dataset.

It involves more intricate computations as it takes into account the

position of each relevant item, not just the first one.

To implement these metrics, we utilized three different datasets,

each comprising a ranked list of potential faults for each node gen-

erated upon the detection of a fault in the system. For instance, in

the case of the QoTD datasets, we encountered three distinct faults:

CPU, Memory, and DNS. The ranked lists from these datasets are

then scrutinized using the MFR and MAR metrics, allowing us to

quantify the accuracy and efficiency of our fault identification pro-

cess. This methodology ensures a robust analysis of the diagnostic

capabilities at the node level within our system.

6 EVALUATION
Here, we present the data for evaluation, evaluate our methods for

failure prediction and root cause analysis, and present the perfor-

mance of the models on various datasets and baselines.

6.1 Datasets
In this paper, we utilized two open-source microservice datasets:

Train-Ticket and MicroSS, and Quote of the Day (QoTD) application

that was deployed in-house on IBM OpenShift Clusters V4.12.36

with 16 CPU cores, and 32 GB Ram.

Train-Ticket [37]which comprises 41microservices, is frequently

used by researchers for root cause identification and localization.

We accessed this application made available online by Li et al., [16]

to enable comparative analysis with their findings. Three types of

faults were introduced [16]: application bugs, CPU exhaustion, and

network congestion. While these faults were introduced at various

system levels, we specifically focused on those injected into the

microservices, aligning them for comparison with the other two

datasets.

MicroSS, also known as the Genetic AIOps Atlas (GAIA) dataset
1
,

contains 10 microservices, two databases (MYSQL and Redis), and

is supported by five host machines. It is designed to cater to both

mobile and PC users. The GAIA dataset encompasses five distinct

faults: system hang-ups, process crashes, system failures like login

issues, missing files, and access denials. A record detailing the in-

jection of these failures is provided alongside the data. This dataset

has been widely used for predicting system failure and root cause

localization in [36] and [34].

The QoTD open-source application
3
consists of eight distinct

microservices. We deployed QoTD on IBM OpenShift clusters and

introduced a variety of faults using Chaos-Mesh
4
. These faults

include disruptions in CPU, memory, and DNS.

Formonitoring purposes, we employed Instana
5
, which provided

data points such as API response times, error codes, and various

resource utilization metrics: CPU, memory, disk, and network. We

utilized LogDNA
6
to extract application logs. Furthermore, we

devised a custom script to capture events per minute at the node

level. This script monitored events like “Scheduled", “Unscheduled",

“Pulled", “Failed", “Started", etc. These events were retrieved by

querying ‘oc describe <resource> <resource-name>’.

6.2 Evaluation Metrics
6.2.1 Failure Prediction: The model is trained using CrossEntropy

loss, formulated as:

𝐿 = − 1

𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 log(𝑦𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖)

where 𝑦𝑖 and 𝑦𝑖 are the true label and predicted probability for

sample 𝑖 , respectively.

To assess the model, accuracy and F1 Score are computed. Accu-

racy is given as:

Accuracy =
Number of Correct Predictions

Total Number of Predictions

F1 Score is calculated using precision and recall, which con-

sider the model’s performance regarding false positives and false

negatives. F1 Score is expressed as:

𝐹1 = 2 × Precision × Recall
Precision + Recall

with

Precision =
True Positives

True Positives + False Positives
and

Recall =
True Positives

True Positives + False Negatives
6.2.2 Root Cause Analysis: To validate and understand the impact

of crucial nodes for the root cause, we employed a function for

evaluating the accuracy without k nodes. This function deliberately

nullifies the top k nodes (based on their importance) and evaluates

how the model’s accuracy is affected without their presence:

12

3
https://gitlab.com/quote-of-the-day/quote-of-the-day/-/tree/master

4
https://chaos-mesh.org/

5
https://www.ibm.com/products/instana

6
https://www.ibm.com/case-studies/logdna-cloud

125

ICPE ’24, May 7–11, 2024, London, UK Raphael Rouf et al.

• Ranking Nodes: Nodes are ranked in descending order

based on their computed importance.

• Nullification of Top Nodes: Features of the top k nodes

are set to zero, effectively removing their influence from the

network.

• Model Evaluation: With these nodes nullified, the model’s

accuracy is gauged again, highlighting the impact of these

crucial nodes on the network’s overall performance. A pro-

nounced drop in these accuracies compared to the baseline

underscores the critical nature of these nodes within the

network.

Top-k accuracy is a metric commonly used in retrieval and rec-

ommendation tasks. It measures how often the true item (or one of

the true items) appears in the top 𝑘 items of the ranked list and is

defined as:

𝐴@𝑘 =
1

|𝐴|
∑︁
𝑎∈𝐴

{
1 if 𝑅𝐶𝑎

𝑖
∈ 𝑅𝐶𝑎

𝑠 [𝑘]
0 otherwise

where,

• 𝐴 is the set of test samples.

• 𝑅𝐶𝑎
𝑖
is the true root cause instance for sample 𝑎.

• 𝑅𝐶𝑎
𝑠 [𝑘] is the set of top-k predicted instances for sample 𝑎.

Mean First Rank (MFR) evaluates the average rank at which the

first correct item is found in the ranked list and is defined as:

MFR =
1

𝑁

𝑁∑︁
𝑖=1

rank𝑖

where,

• 𝑁 is the total number of ranked lists.

• rank𝑖 is the rank of the first true item in the 𝑖𝑡ℎ ranked list.

Mean Average Rank (MAR) measures the average rank of all

relevant items in the ranked list. It’s a s metric when there are

multiple relevant items per query, and you want to assess how well

the system ranks all of them on average and is defined as:

MAR =
1

𝑁

𝑁∑︁
𝑖=1

©­« 1

|𝑅𝑖 |
∑︁
𝑟 ∈𝑅𝑖

rank𝑖,𝑟
ª®¬

where,

• 𝑁 is the number of ranked lists.

• 𝑅𝑖 is the set of relevant items for the 𝑖𝑡ℎ ranked list.

• rank𝑖,𝑟 is the rank of relevant item 𝑟 in the 𝑖𝑡ℎ ranked list.

6.3 Results and Discussions
In this paper, we focus on the resources’ over-utilization (also

known as overload) use case as the cause of anomalies. The assump-

tion is that resource utilization happens due to causes external to

the applications we monitor. Within this particular use case, our ex-

periments are organized around several research questions, which

are discussed below.

• RQ1: How efficient is InstantOps for system failure predic-

tion compared to other neural network algorithms?

• RQ2: How does the efficiency of InstantOps for failure

prediction compare to state-of-the-art methods?

• RQ3: How does InstantOps perform root cause analysis as

compared to other neural network algorithms?

• RQ4: How does InstantOps perform in terms of root cause

node localization compared to existing methods?

6.3.1 RQ1: How efficient is InstantOps for system failure predic-
tion compared to other neural network algorithms? To assess the

efficiency of InstantOps, three distinct datasets were utilized, as
shown in Table 2. The first, MicroSS, is an open-source dataset

comprising 419,959 data. This data was divided into training and

testing sets with 84,026 and 335,933, respectively. The Train Ticket

open-source dataset encompasses 24,492 data, which are further

divided into 19,337 for testing and 5,085 for training. Lastly, our in-

house dataset includes 450,000 data, with a distribution of 360,000

for testing and 90,000 for training.

Table 2: Data Overview for Applications

Application Total Samples Test_data train_data

MicroSS 419959 335933 84026

Train Ticket 24492 19337 5085

QoTD 450000 360000 90000

For each dataset, several applications metrics were considered

which we defined as features: application resource utilization, logs

detailing errors for each node within specific timeframes (e.g., 1

minute), edge constructions that link nodes with traces within

certain time windows, and the frequency of interactions between

nodes. These metrics assist in identifying anomalies by observing

deviations in standard node interactions. Specifically for the QoTD

dataset, we also incorporated event metrics, capturing events such

as out of memory, scheduled activities, pull events, failed creation

events, and image pull back-offs on a per-node basis. Using this

data, we aimed to predict systemic failures.

We adhered to a standard Service Level Agreement (SLA) that

designates a system as “failed" if 99.9% of the total requests received

on the server resulted in errors, such as a 503 error, within a specific

timeframe (e.g., 1 minute). The labeled dataset was employed to

validate the accuracy of our predictive efforts.

Further validation was sought by leveraging multiple neural

network models, as delineated in Table 3. These models, previously

utilized by other researchers [34, 36], were examined to compare

the effectiveness of InstantOps. Notably, InstantOps employs a

Graph Neural Network (GNN) to structure the relationships be-

tween features and nodes. Additionally, a Gated Recurrent Unit

(GRU) captures temporal aspects of each node in the system, such

as time lags of t-2 and t-5.

The performance metrics revealed that InstantOps achieved

the highest F1 score for MicroSS at 0.98, with a recall of 0.98 and a

precision of 0.97. Similar scores were observed for the Train Ticket

dataset. For the QoTD dataset, the F1 score was 0.96, with a recall

and precision both measuring 0.96. When comparing other neural

network algorithms using the MicroSS dataset, the combination of

GTN with GRU and LSTM yielded an F2 score of 0.94. The Train

Ticket dataset registered a score of 0.92 for the integration of GTN

and LSTM, while GNN and LSTM achieved 0.94.

126

InstantOps: A Joint Approach to System Failure Prediction and Root Cause Identification in Microservices Cloud-Native Applications ICPE ’24, May 7–11, 2024, London, UK

Table 3: Comparison of different algorithms for MicroSS,
Train Ticket, and QoTD datasets

MicroSS Train Ticket QoTD

Algorithm Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

InstantOps 0.97 0.97 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.96 0.96 0.96
GNN+LSTM 0.93 0.93 0.93 0.93 0.91 0.87 0.91 0.89 0.91 0.94 0.94 0.94

GNN 0.90 0.93 0.90 0.91 0.87 0.83 0.87 0.85 0.92 0.93 0.92 0.93

GTN 0.73 0.93 0.73 0.81 0.92 0.86 0.92 0.89 0.88 0.89 0.88 0.88

GTN+LSTM 0.95 0.93 0.96 0.94 0.93 0.92 0.96 0.92 0.91 0.90 0.94 0.93

GTN+GRU 0.96 0.92 0.96 0.94 0.93 0.86 0.93 0.90 0.92 0.94 0.89 0.92

RQ1: We showed that by fusing traces, logs, and met-
rics and capturing temporal aspects using GRUs to
identify anomalies by observing deviations in the
interactions between services, InstantOps obtained
higher precision, recall and F1 scores in comparison
to other neural network algorithms on three data-
sets: QoTD, MicroSS and Train Ticket.

6.3.2 RQ2: How does the efficiency of InstantOps for failure pre-
diction compare to state-of-the-art methods? Table 4 illustrates a

comparison study between InstantOps, JLT and Anafusion to es-

tablish a multimodal baseline.

The JLT method aggregates the results from JumpStarter [22],

LogAnomaly [23], and Traceanomaly [20]. It employs majority vot-

ing, marking a failure if two or more modalities fail simultaneously.

A notable observation about JLT is that it disregards the correlation

among different modalities. For the MicroSS dataset, which inte-

grates metrics, logs, and traces, JLT achieves an F1 score of 0.61, a

recall of 0.94, and a precision of 0.46.

To further improve JLT’s performance for fault prediction, Zhao

et [36]. proposed Anafusion, an unsupervised failure detection

technique that integrates multimodal data for microservices. It uses

a graph neural network to learn the correlations in the heteroge-

neous multimodal dataset. For the sameMicroSS dataset, Anafusion

achieved an F1 score of 0.85, a recall of 0.94, and a precision of 0.79.

In InstantOps, we have further refined the Anafusion model by

constructing a graph based on traces, which displays interactions

among the nodes in real time. InstantOps employs both GNN and

GRU to account for the system’s temporal aspects. Our experimental

results indicate that InstantOps, when applied to the MicroSS

dataset, achieves an F1 score of 0.98, a precision of 0.97, and a recall

of 0.98.

Table 4: The Average Percentage Among Precision, Recall,
and F1-Score of Different Approaches on MicroSS Dataset

Approach

Modality MicroSS Dataset

Metric Log Trace Prec. Rec. F1

InstantOps ✓ ✓ ✓ 0.970 0.980 0.980
AnoFusion ✓ ✓ ✓ 0.795 0.945 0.857

JLT ✓ ✓ ✓ 0.461 0.940 0.618

RQ2: We showed that by constructing a dependency
graph based on traces to depict the service interac-
tions of the faulty service using GNN and GRU to
incorporate temporal aspects, InstantOps achieves
higher precision, recall and F1 score than the state-
of-the-art methods.

6.3.3 RQ3: How does InstantOps perform root cause analysis as
compared to other neural network algorithms? To assess the effi-

ciency of InstantOps in root cause localization at the node level,

we used two metrics: MFR (Mean First Rank) and MAR (Mean Aver-

age Rank) described earlier on three datasets: MicroSS, Train Ticket,

and QoTD as shown in Table 5.

As can be seen from the table, InstantOps achieves an MFR

score of 1.49 and a MAR score of 1.51 on the QoTD dataset. On the

MicroSS dataset, InstantOps achieves a score of 1.51 for both MFR

andMAR. On the Train Ticket dataset, InstantOps achieves a score
of 1.06 for both MAR and MFR. We also observed that the combina-

tion of GNN and LSTM exhibited similar strong performance. For

the QoTD dataset, GNN+LSTM achieved a score of 1.51 for both

MAR and MFR. On the MicroSS dataset, GNN+LSTM achieved a

score of 1.06 for MAR and a score of 1.07 for MFR. On the Train

Ticket dataset, GNN+LSTM achieved a score of 1.6 for both MAR

and MFR.

Table 5: Effectiveness of failure type determination at the
node level

Algorithm

QoTD MicroSS Train Ticket

MAR MFR MAR MFR MAR MFR

InstantOps 1.51 1.49 1.06 1.06 1.06 1.06
GNN+LSTM 1.51 1.51 1.06 1.07 1.06 1.06

GNN 1.51 1.51 1.59 1.59 1.06 1.19

GTN 1.67 1.62 1.15 1.24 1.47 1.47

GTN+LSTM 1.89 1.89 1.18 1.11 1.37 1.47

GTN+GRU 1.89 1.56 1.06 1.14 1.90 1.95

RQ3: We showed by localizing the root causes at the
node level, the InstantOps approach performs better
in terms of MAR and MFR in comparison to other
neural network algorithms in its effectiveness of de-
termining failure type at the node level on three
datasets: QoTD, MicroSS and Train Ticket.

6.3.4 RQ4: How does InstantOps perform in terms of root cause
node localization compared to existing methods? In this experiment,

we compare InstantOps with seven algorithms. Microscope and

MEPFL are microservice anomaly detection approaches where Mi-

croscope collects network and SLO metrics to infer root causes

during SLO violations while MEPFL predicts latent errors and

faulty microservices by integrating trace logs and injecting faults.

TraceAnomaly, an unsupervised approach, learns trace patterns

to detect abnormal traces and localise root causes. MonitorRank

127

ICPE ’24, May 7–11, 2024, London, UK Raphael Rouf et al.

employs Random Walk, which combines historical and real-time

metrics for root cause ranking in service-oriented web architectures.

RCSF, designed for enterprise systems, analyses performance logs

and dependency models to identify fault propagation sequences.

InstantOps is designed to fuse features such as resource utiliza-

tion, events and logs and construct graph neural network based on

the interations among the nodes in microservice. and it localize the

faulty node that corresponds to system failure.

Table 6 provides a quantitative comparison of InstantOps with

seven algorithms such as TraceRCA [16], MicroScope [17], MEPFL

(RF) [38], TraceAnomaly[20], Random-Walk [31], and RCSF [30]

benchmarked against other methods sourced from [16]. The metrics

𝐴@1, 𝐴@2, and 𝐴@3 are utilized as evaluative standards.

As is evident from the table, InstantOps demonstrates a high

degree of effectiveness. With an 𝐴@1 score of 0.92, it surpasses

the majority of the algorithms in the list and maintains consistent

performance across 𝐴@2 and 𝐴@3. This consistent high perfor-

mance across metrics suggests the reliability and robustness of the

InstantOps algorithm.

Algorithms such as Random Walk and RCSF, although displaying

commendable values in 𝐴@2 and 𝐴@3, have relatively lower 𝐴@1

values. This difference could indicate potential variability in their

performance across different stages or conditions.

Conversely, TraceAnomaly and MicroScope consistently per-

form worse, further delineating the performance gap between these

methods and InstantOps.

Table 6: Comparison of root cause localization on faults of
different levels on A

Algorithm A@1 A@2 A@3

InstantOps 0.92 0.95 0.98
TraceRCA 0.83 0.93 0.97

MicroScope 0.56 0.62 0.7

MEPFL (RF) 0.94 0.97 0.97

Random Walk 0.51 0.86 0.94

RCSF 0.52 0.86 0.93

TraceAnomaly 0.49 0.59 0.63

RQ4: We showed by localizing the root causes at the
node level, InstantOps outperforms in terms of the
evaluative standards A@1, A@2 and A@3 in compar-
ison to other existing methods in root cause localiza-
tion on faults of different levels on A, demonstrating
higher effectiveness than existing methods.

7 THREATS TO VALIDITY
In our research, we’ve identified several threats to validity that

warrant careful consideration. The first threat pertains to the accu-

racy of failure labeling within our microservices study. Specifically,

while examining the ’Quote of the Day’ (QoTD) application, we

established a performance baseline with JMeter and subsequently

annotated failure events using Chaos Mesh for fault injection. This

process was supplemented by observations of microservice crashes

in OpenShift clusters. Nevertheless, any potential mislabeling or

misinterpretation of these events could compromise the integrity

of our findings.

Further complicating our validity is the diversity of our data

sources. We’ve utilized three datasets, including two open-source

ones, to support the generalizability of our results. However, the

variance in size and scope between our experimental data and the

real-world complexity of microservice operations could limit the

applicability of our conclusions.

Another significant validity threat arises from the granularity

of our data collection. By capturing a wide array of metrics—from

resource usage to node interactions—on a one-minute interval, we

assume that this level of granularity is sufficient for predicting

imminent system failures. Yet, there is a risk that more nuanced

or granular data could yield different insights, which means our

current approach may overlook certain subtleties.

Lastly, the scope of our datasets, which are smaller in comparison

to those used in extensive industrial microservice systems, could

undermine the scalability of our algorithm. While we believe our

algorithm should function effectively even with coarser-grained

datasets, the true test of its applicability will come when it is applied

to the larger and more complex datasets that we plan to obtain from

our clients in future work. This step is crucial for us to validate

the efficiency of our model and ensure that it can withstand the

demands of a full-scale industrial environment.

8 CONCLUSION
In this work, we proposed InstantOps, an approach that takes

in multi-modal data to construct a graph using traces with logs

and metric data as node attributes. Through this, we use our multi-

modal system failure prediction approach and capture temporal

and spatial aspects to precisely and effectively predict failures and

determine the root causes of failures at the node level. In addition

to using our in-house data set: QoTD, we used two open source

datasets: MicroSS and Train-Ticket. In our experimental studies, we

have shown how InstantOps can identify and localize the faulty

node in microservice which can facilitate the root cause analysis of

the system failure. We believe that the use of a Graph Neural Net-

work to construct topology and interaction among the nodes and

incorporating temporal information using the GRUmodel improves

the prediction of system failure. We aim to evolve InstantOps into
an online learning system capable of updating its models in real

time. This continuous learning approach would allow for immediate

adjustments based on the latest system behavior, thereby enhancing

predictive accuracy over time.

9 ACKNOWLEDGMENT
We would like to thank IBM Center for Advanced Studies and

Ontario ORF-RE for their support.

128

InstantOps: A Joint Approach to System Failure Prediction and Root Cause Identification in Microservices Cloud-Native Applications ICPE ’24, May 7–11, 2024, London, UK

REFERENCES
[1] Rafiul Ahad, Eric Chan, and Adriano Santos. 2015. Toward autonomic cloud:

Automatic anomaly detection and resolution. In 2015 International Conference on
Cloud and Autonomic Computing. IEEE, 200–203.

[2] Vilde Christiansen, Moutaz Haddara, andMarius Langseth. 2022. Factors affecting

cloud ERP adoption decisions in organizations. Procedia Computer Science 196
(2022), 255–262.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[4] Ying Fu, Meng Yan, Jian Xu, Jianguo Li, Zhongxin Liu, Xiaohong Zhang, and Dan

Yang. 2022. Investigating and improving log parsing in practice. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1566–1577.

[5] Sahil Garg, Kuljeet Kaur, Neeraj Kumar, Shalini Batra, and Mohammad S Obaidat.

2018. HyClass: Hybrid classification model for anomaly detection in cloud

environment. (2018).

[6] Sahil Garg, Kuljeet Kaur, Neeraj Kumar, Georges Kaddoum, Albert Y Zomaya, and

Rajiv Ranjan. 2019. A hybrid deep learning-based model for anomaly detection in

cloud datacenter networks. IEEE Transactions on Network and Service Management
16, 3 (2019), 924–935.

[7] L Girish and Sridhar KN Rao. 2021. Anomaly detection in cloud environment

using artificial intelligence techniques. Computing (2021), 1–14.

[8] Pranjal Gupta, Harshit Kumar, Debanjana Kar, Karan Bhukar, Pooja Aggarwal,

and Prateeti Mohapatra. 2023. Learning Representations on Logs for AIOps.

In 2023 IEEE 16th International Conference on Cloud Computing (CLOUD). IEEE,
155–166.

[9] Tanja Hagemann and Katerina Katsarou. 2020. A systematic review on anomaly

detection for cloud computing environments. In 2020 3rd Artificial Intelligence
and Cloud Computing Conference. 83–96.

[10] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain: An online

log parsing approach with fixed depth tree. In 2017 IEEE international conference
on web services (ICWS). IEEE, 33–40.

[11] Jordan Hochenbaum, Owen S Vallis, and Arun Kejariwal. 2017. Automatic anom-

aly detection in the cloud via statistical learning. arXiv preprint arXiv:1704.07706
(2017).

[12] Mohammad S Islam, William Pourmajidi, Lei Zhang, John Steinbacher, Tony

Erwin, and Andriy Miranskyy. 2021. Anomaly detection in a large-scale cloud

platform. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 150–159.

[13] Abul Khayer, Nusrat Jahan, Md Nahin Hossain, and Md Yahin Hossain. 2021.

The adoption of cloud computing in small and medium enterprises: a developing

country perspective. VINE Journal of Information and Knowledge Management
Systems 51, 1 (2021), 64–91.

[14] Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, and Michael R Lyu. 2023.

Eadro: An End-to-End Troubleshooting Framework for Microservices on Multi-

Source Data. arXiv preprint arXiv:2302.05092 (2023).
[15] Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, Yongqiang Yang, and

Michael R Lyu. 2023. Heterogeneous anomaly detection for software systems via

semi-supervised cross-modal attention. arXiv preprint arXiv:2302.06914 (2023).
[16] Zeyan Li, Junjie Chen, Rui Jiao, Nengwen Zhao, Zhijun Wang, Shuwei Zhang,

Yanjun Wu, Long Jiang, Leiqin Yan, Zikai Wang, et al. 2021. Practical root cause

localization for microservice systems via trace analysis. In 2021 IEEE/ACM 29th
International Symposium on Quality of Service (IWQOS). IEEE, 1–10.

[17] JinJin Lin, Pengfei Chen, and Zibin Zheng. 2018. Microscope: Pinpoint per-

formance issues with causal graphs in micro-service environments. In Service-
Oriented Computing: 16th International Conference, ICSOC 2018, Hangzhou, China,
November 12-15, 2018, Proceedings, Vol. 16. Springer, 3–20.

[18] Marin Litoiu, Ian Watts, and Joe Wigglesworth. 2021. The 13th cascon work-

shop on cloud computing: engineering aiops. In Proceedings of the 31st Annual
International Conference on Computer Science and Software Engineering. 280–281.

[19] Dapeng Liu, Youjian Zhao, Haowen Xu, Yongqian Sun, Dan Pei, Jiao Luo, Xi-

aowei Jing, and Mei Feng. 2015. Opprentice: Towards practical and automatic

anomaly detection through machine learning. In Proceedings of the 2015 internet
measurement conference. 211–224.

[20] Ping Liu, Haowen Xu, Qianyu Ouyang, Rui Jiao, Zhekang Chen, Shenglin Zhang,

Jiahai Yang, Linlin Mo, Jice Zeng, Wenman Xue, et al. 2020. Unsupervised

detection of microservice trace anomalies through service-level deep bayesian

networks. In 2020 IEEE 31st International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 48–58.

[21] Meng Ma, Weilan Lin, Disheng Pan, and Ping Wang. 2020. Self-adaptive root

cause diagnosis for large-scale microservice architecture. IEEE Transactions on
Services Computing 15, 3 (2020), 1399–1410.

[22] Minghua Ma, Shenglin Zhang, Junjie Chen, Jim Xu, Haozhe Li, Yongliang Lin,

Xiaohui Nie, Bo Zhou, YongWang, Dan Pei, et al. 2021. Jump-Startingmultivariate

time series anomaly detection for online service systems. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21). 413–426.

[23] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao

Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, et al. 2019. Loganomaly: Unsupervised

detection of sequential and quantitative anomalies in unstructured logs. In IJCAI,
Vol. 19. 4739–4745.

[24] JoydeepMukherjee, Alexandru Baluta, Marin Litoiu, and Diwakar Krishnamurthy.

2020. RAD: Detecting performance anomalies in cloud-based web services. In

2020 IEEE 13th International Conference on Cloud Computing (CLOUD). IEEE,
493–501.

[25] N Pandeeswari and Ganesh Kumar. 2016. Anomaly detection system in cloud

environment using fuzzy clustering based ANN. Mobile Networks and Applications
21 (2016), 494–505.

[26] Daniel Pop. 2016. Machine learning and cloud computing: Survey of distributed

and saas solutions. arXiv preprint arXiv:1603.08767 (2016).

[27] Y Rouf, J Mukherjee, and M Litoiu. 2023. Towards a Robust On-line Performance

Model Identification for Change Impact Prediction. In 2023 IEEE/ACM 18th Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).
Melbourne, Australia, 68–78. https://doi.org/10.1109/SEAMS59076.2023.00018

[28] Jacopo Soldani and Antonio Brogi. 2022. Anomaly detection and failure root cause

analysis in (micro)service-based cloud applications: A survey. ACM Computing
Surveys (CSUR) 55, 3 (2022), 1–39.

[29] Arthur Vervaet. 2021. MoniLog: An Automated Log-Based Anomaly Detection

System for Cloud Computing Infrastructures. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 2739–2743.

[30] Kui Wang, Carol Fung, Chao Ding, Polo Pei, Shaohan Huang, Zhongzhi Luan,

and Depei Qian. 2015. A methodology for root-cause analysis in component

based systems. In 2015 IEEE 23rd International Symposium on Quality of Service
(IWQoS). IEEE, 243–248.

[31] Ping Wang, Jingmin Xu, Meng Ma, Weilan Lin, Disheng Pan, Yuan Wang, and

Pengfei Chen. 2018. Cloudranger: Root cause identification for cloud native

systems. In 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID). IEEE, 492–502.

[32] Guangba Yu, Pengfei Chen, Hongyang Chen, Zijie Guan, Zicheng Huang, Linxiao

Jing, Tianjun Weng, Xinmeng Sun, and Xiaoyun Li. 2021. Microrank: End-to-

end latency issue localization with extended spectrum analysis in microservice

environments. In Proceedings of the Web Conference 2021. 3087–3098.
[33] Hongwei Zhang, Yuanqing Xia, Tijin Yan, and Guiyang Liu. 2021. Unsupervised

anomaly detection in multivariate time series through transformer-based varia-

tional autoencoder. In 2021 33rd Chinese Control and Decision Conference (CCDC).
IEEE, 281–286.

[34] Shenglin Zhang, Pengxiang Jin, Zihan Lin, Yongqian Sun, Bicheng Zhang, Sibo

Xia, Zhengdan Li, Zhenyu Zhong, Minghua Ma, Wa Jin, et al. 2023. Robust

Failure Diagnosis of Microservice System through Multimodal Data. arXiv
preprint arXiv:2302.10512 (2023).

[35] Xu Zhang, Qingwei Lin, Yong Xu, Si Qin, Hongyu Zhang, Bo Qiao, Yingnong

Dang, Xinsheng Yang, Qian Cheng, Murali Chintalapati, et al. 2019. Cross-dataset

Time Series Anomaly Detection for Cloud Systems. In USENIX Annual Technical
Conference. 1063–1076.

[36] Chenyu Zhao, Minghua Ma, Zhenyu Zhong, Shenglin Zhang, Zhiyuan Tan,

Xiao Xiong, LuLu Yu, Jiayi Feng, Yongqian Sun, Yuzhi Zhang, et al. 2023. Ro-

bust Multi-Modal Failure Detection for Microservice Systems. In arXiv preprint
arXiv:2305.18985.

[37] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding. 2018.

Fault analysis and debugging of microservice systems: Industrial survey, bench-

mark system, and empirical study. IEEE Transactions on Software Engineering 47,

2 (2018), 243–260.

[38] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin Xiang, and

Chuan He. 2019. Latent error prediction and fault localization for microservice

applications by learning from system trace logs. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 683–694.

129

https://doi.org/10.1109/SEAMS59076.2023.00018

	Abstract
	1 Introduction
	2 Motivation:
	3 Related Works
	4 Methodology
	4.1 Data Preprocessing and Graph Construction
	4.2 Log Parsing
	4.3 GNN Model Formulation
	4.4 Graph Neural Network Model Development

	5 Temporal Failure Prediction and Root Cause Analysis
	5.1 Temporal Failure Prediction
	5.2 Root Cause Analysis

	6 Evaluation
	6.1 Datasets
	6.2 Evaluation Metrics
	6.3 Results and Discussions

	7 Threats to Validity
	8 Conclusion
	9 ACKNOWLEDGMENT
	References

