
Developing Index Structures in Persistent Memory
Using Spot-on Optimizations with DRAM
Xingsheng Zhao∗

xingsheng.zhao@mavs.uta.edu
University of Texas at Arlington

Arlington, Texas, USA

Prajwal Challa
vxc5208@mavs.uta.edu

University of Texas at Arlington
Arlington, Texas, USA

Chen Zhong
chen.zhong@mavs.uta.edu

University of Texas at Arlington
Arlington, Texas, USA

Song Jiang
song.jiang@uta.edu

University of Texas at Arlington
Arlington, Texas, USA

ABSTRACT
The emergence of persistent memory (PMem) is greatly impacting
the design of commonly used data structures to obtain the full ben-
efit from the new technology. Compared to the DRAM, PMem’s
larger capacity and lower cost make it an attractive alternative
for hosting large data structures, such as indexes of in-memory
databases, especially for those that require data persistency. How-
ever, simply using existing index structures in the PMem can be
unexpectedly inefficient for three reasons. (1) Index accesses are
composed of small writes and reads. (2) Each small write is required
to come with expensive fence and flush operations. And (3) PMems
usually prefer large accesses for high performance with their inter-
nal block-like access designs despite being byte-addressable. For ex-
ample, Intel Optane DC PMem has a 256-byte access unit (XPLine),
leading to significant read/write amplification for small accesses.

In this work we systematically study a series of techniques, in-
cluding application-managed write-buffering, read-caching, and
out-of-place updates and their synergistic effect on performance
of some representative indexes (hash table, B+ tree, and skip list)
designed for PMems. We then apply the knowledge obtained from
this investigation into the design of a high-performance PMem
index, named Spot-on tree (SPTree), that facilitates applications
to selectively cache read-intensive components of an index and to
buffer written data to index structure, while providing crash consis-
tency and quick recovery upon crash. Compared to the state-of-art
indexes, SPTree provides up to 2X and 4X higher write and read
throughput, respectively.

CCS CONCEPTS
• Information systems→ Data access methods; • Theory of
computation→ Concurrent algorithms; • Hardware→ Non-
volatile memory.

∗now at Google

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0444-4/24/05.
https://doi.org/10.1145/3629526.3645032

KEYWORDS
B-tree, hash table, non-volatile memory

ACM Reference Format:
Xingsheng Zhao, Prajwal Challa, Chen Zhong, and Song Jiang. 2024. Devel-
oping Index Structures in Persistent Memory Using Spot-on Optimizations
with DRAM. In Proceedings of the 15th ACM/SPEC International Conference on
Performance Engineering (ICPE ’24), May 7–11, 2024, London, United Kingdom.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3629526.3645032

1 INTRODUCTION
The memory/storage hierarchy, which consists of multiple levels
including CPU cache, DRAM, and block devices, such as SSDs
and HDDs, has been stabilized for decades. Accordingly, the prin-
cipal management designs for data across its levels, such as set-
associative CPU caches, page-based virtual memory, and block-
based read cache and write-back buffer, are well established by
carefully considering individual devices’ performance characteris-
tics to maximize the hierarchy’s performance. However, with the
emergence of byte-addressable persistent memory (PMem), such as
Intel Optane DC persistent memory [1] and NVDIMM (with flash
storage) [4, 5], a new level/tier was introduced into the hierarchy.
We contend that it is necessary for the DRAM to serve as a cache
level for the PMem to boost its effective performance. And it is a
challenging task for accessing of data structures on the PMem to
be accelerated with an efficient use of DRAM.

1.1 DRAM as a Cache of PMem
Like DRAM, the PMem is a byte-addressable memory device that
can be directly accessed via load and store instructions. However,
its performance gap with the DRAM can be still substantial. As the
Optane PMem has a more consistent performance behavior, we use
it as a representative of PMem hereafter. The performance of the
Optane PMem is lower than that of DRAM by 2-3X or more in terms
of its latency and throughput [12]. In the meantime, the PMem can
have a 5-10x increase of per-module capacity over the DDR4 DRAM
while its per-GB price is 2X-5X cheaper than DRAM. Therefore,
placing the PMem underneath the DRAM in the hierarchy has the
potential of taking advantage of both DRAM’s high performance
and PMem’s larger capacity and lower cost. Indeed, the Optane
PMem has a memory mode in which DRAM acts as a cache for data
accessed on the Pmem. Though few details are known on how Intel

107

https://orcid.org/0009-0002-6011-3341
https://orcid.org/0000-0002-5653-6088
https://orcid.org/0000-0002-4098-6260
https://orcid.org/0000-0002-1681-9008
https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F&data=05%7C02%7Cchen.zhong%40mavs.uta.edu%7C3c6fe06c4069412c0b9b08dc3e2e484a%7C5cdc5b43d7be4caa8173729e3b0a62d9%7C0%7C0%7C638453615704024505%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=PIgZgbNLM9ll2jnsyxOGp45JTFT5zt%2BIP8gjL7zaVHQ%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F&data=05%7C02%7Cchen.zhong%40mavs.uta.edu%7C3c6fe06c4069412c0b9b08dc3e2e484a%7C5cdc5b43d7be4caa8173729e3b0a62d9%7C0%7C0%7C638453615704030319%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=u6qSt2VPDNdsrzHUpNEfXAUNjWCWpPXfCCLop0PZL5s%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F&data=05%7C02%7Cchen.zhong%40mavs.uta.edu%7C3c6fe06c4069412c0b9b08dc3e2e484a%7C5cdc5b43d7be4caa8173729e3b0a62d9%7C0%7C0%7C638453615704030319%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=u6qSt2VPDNdsrzHUpNEfXAUNjWCWpPXfCCLop0PZL5s%3D&reserved=0
https://doi.org/10.1145/3629526.3645032
https://doi.org/10.1145/3629526.3645032

ICPE ’24, May 7–11, 2024, London, United Kingdom Xingsheng Zhao, Prajwal Challa, Chen Zhong, and Song Jiang

CPU’s IMC (IntegratedMemory Controller) enables this transparent
caching, a constraint in the use of the mode highlights the challenge
in the management of this memory level. The constraint is that the
persistent memory has to be treated as a volatile memory, or data in
the memory cannot survive a system restart, though the capability
of retaining data on the PMem is one of its major features that are
attractive to many potential users.

1.2 DRAM as a Write Buffer of PMem
When DRAM is used as PMem’s cache, it not only should be used
as a read cache, but also must be used as a write buffer to enable
the write-back policy for three reasons. First, DRAM is faster than
the PMem by around 2-3X for reads and is around 4-6X for writes.
Second, recent studies have shown that the Optane PMem has an
access unit of 256 bytes to the memory’s media (in comparison,
NVDIMMwith flash has a 0.5∼4KB page-size access unit). Anywrite
smaller than the size leads to a write amplification and reduction of
effective throughput [3]. For example, with 64-byte random writes
the PMem’s throughput is reduced to about 1/4 of its peak one [24].
Third, to ensure crash consistency for written data, an application
may have to frequently use expensive fence and flush instructions
between writes to the PMem, which may significantly degrade
write efficiency. DRAM can be used as a write buffer to coalesce
writes and then flush data in the buffer to the PMem. By doing so
multiple random writes to the PMem may be transformed into one
big sequential write that aligns with PMem’s access granularity so
as to receive high throughput from the PMem. It is tempting to use
the large DRAM space to make up for the PMem’s shortcoming.

However, it is difficult to retain the PMem’s persistence feature
by simply using a DRAM as its cache/buffer. Some fundamental
challenges exist due to some unique characteristics of the DRAM-
PMem layers. Unlike CPU-caches/DRAM layers, the DRAM as a
cache for the PMem presents unique challenges. This is primarily
due to the fact that the CPU cache is much smaller than the DRAM
and can bemanagedwith an affordable cost with hardware supports.
Instead, the gap between sizes of DRAM and the PMem is much less
significant. Furthermore, the CPU cache can be battery/capacitor
protected to keep dirty data in it from being lost upon a power
failure. But the large DRAM cache/buffer is unlikely to have such
a support. This presents a dilemma about the use of DRAM as a
cache/buffer for the PMem. Using DRAM as the PMem’s buffer
enables a large write-back space while simultaneously presents a
risk of losing data due to DRAM’s non-volatile nature.

Long before emergence of the commercially available PMems,
the advantages of non-volatile memory (NVM) have been recog-
nized. Significant efforts have been made to migrate popular in-
DRAM data structures to the NVM with optimizations of their
crash-consistent implementations by efficiently using fence and
flush operations [10, 13, 18, 25]. Among the data structures, indexes,
such as hash table and B+ tree, are the most performance-critical
due to their frequent and on-the-critical-path accesses. In the mean-
time, they are vulnerable to performance loss due to their frequent
use of pointers and accessing of small data. One of their major
use cases is the development of key-value (KV) stores in an NVM
with the objectives of high write throughput, low read latency, low
DRAM footprint, and rapid recovery and restart after a system crash.

An unexploited opportunity in the efforts is to leverage DRAM to
conduct spot-on caching and buffering for individual components
of an index where the performance gap is large. Unlike system-level
caching and buffering services that are indiscriminately covering
the entire DRAM and NVM levels with a fixed space unit (e.g., disk
block), this proposed spot-on approach is customized to the struc-
ture of an index. Therefore, performance-limiting operations, such
as pointer chasing and random writes, in the PMem can be made
efficient with dedicated caches/buffers for individual components
such as inner nodes and leaf nodes in a tree structure.

In this paper, we made several important contributions on the
improvement of major data structures’ performance in the PMem.

• We identify unique issues and opportunities in the efforts
of bridging the performance gap between DRAM and the
PMem in the memory hierarchy.

• We propose and evaluate a comprehensive and complemen-
tary set of techniques to enable DRAM’s spot-on caching
and buffering for the PMem.

• Using the techniques we design and implement a new index
structure, Spot-on Tree (SPTree), that can efficiently leverage
limited DRAM space to reduce read and write amplifications
and the cost for maintaining crash-consistency in the PMem.

• We introduce a unique design of the write-ahead-logging
(WAL) technique to enable instant service resumptions.

• Experiment results show that SPTree can achieve up to more
than 4X throughput and less than 1/5 latency over some of
the state-of-the-art indexes, such as Fast&Fair and PACTree.

2 BACKGROUND AND RELATEDWORK
In this section, we describe the background of Intel Optane Persis-
tent memory, which is selected in this study as the representative
of the PMem technology, and some related works on persistent
indexes to motivate this study.

2.1 The PMem
The Optane Persistent memory can be configured in two different
modes. The first one is named Memory Mode, in which the CPU
considers the Optane as its main memory and uses the entire DRAM
as its cache. While the cache is so large and the caching unit is
page, it would be too expensive and thus infeasible to keep dirty
pages in the DRAM persistent. Therefore, in this mode the Optane
PMem does not provide persistency at all. And the PMem becomes
essentially a larger but slower DRAM. The second mode is the
App-Direct mode. In this mode, the PMem works as a persistent
device. A file system supporting Direct Access (DAX) provides
direct access to the persistent memory, and bypasses the file system
block I/O. In this mode, a program is exposed to the aggregate space
of the DRAM and the PMem as well as their distinct performance
characteristics.

Though the PMem is byte-addressable, the physical media access
granularity is 256 bytes (XPLine) [3, 23, 24]. Any non-contiguous
writes of data smaller than the XPLine size requires a read-modify-
write operation, leading to write amplification and reduced effective
memory bandwidth. To reduce write amplification, the PMem em-
ploys a write-combining buffer to merge adjacent small writes.
However, its size is only 16KB [3, 22]. Writes to memory addresses

108

Developing Index Structures in Persistent Memory
Using Spot-on Optimizations with DRAM ICPE ’24, May 7–11, 2024, London, United Kingdom

with a coverage larger than this scope cannot benefit from the fea-
ture. It is unknown how to flexibly and dynamically set up buffers
in the DRAM to overcome this PMem’s limitation on write perfor-
mance. Similarly, the CPU cache is often not sufficient to improve
its read performance on par with that of DRAM because of the
PMem’s large size and programs’ weak access locality.

2.2 Persistent Indexes
There are mainly two kinds of persistent indexes. One is persistent
hash table, such as CCEH[18], Level hashing[25], and Dash[16].
And the other is persistent range indexes whose keys are sorted
and support range search, including FastFair[10], FP-Tree[9], and
PACTree [13].

Persistent Hash Table. Being aware of higher write cost in
a persistent memory, existing works on development of persis-
tent hash tables mostly focus on reducing number of writes in the
memory, such as PFHT [6], level hashing [25], and CCEH [18]. In
particular, PFHT is a cuckoo hashing variant that limits number of
displacements to only one to reduce memory writes during service
of a write request. Level hashing adopts a two-level hash scheme so
that each key can have three buckets as the candidates for its inser-
tion, which helps reduce key relocations in the table and improve
the load factor. CCEH is an extendable hashing to minimize perfor-
mance impact of rehashing of the entire table. It organizes buckets
into 64KB segments to leverage fast sequential access in a persistent
memory. It then uses the linear probing strategy in its search for
either a key or a bucket with empty slot(s). A successful insertion
requires only one memory write. While these works reduce num-
ber of writes in the memory, each write takes place directly at the
memory’s location determined by the hash table design. While the
locations are spread out in the memory, the performance loss due
to write amplification in the PMem can be significant.

Persistent Range Indexes. There have been some works on
designs of B-trees for persistent memory. FastFair[10] is a lock-
free-read B+-tree that avoids expensive copy-on-write and log-
ging to tolerate transient inconsistency. BzTree[2] relies on the
Persistent Multi-word Compare-And-Swap(PMwCAS) primitive
to implement a lock-free tree. FP-Tree[9] stores inner nodes of
the tree in the DRAM to achieve high performance. However, it
has to scan all nodes on the persistent memory to reconstruct the
inner nodes after a reboot or a crash before resuming its service.
PACTree [13] employs a persistent trie index as its internal nodes
and asynchronously updates the internal nodes using a structural-
modification-operation (SMO) log. In these works, the DRAM is
not leveraged to buffer writes to accommodate the PMem’s block
access unit. Even if reads are accelerated by partitioning an index
structure between the DRAM and the PMem, access of in-PMem
leaf nodes, where a majority of data is stored, is not accelerated.
Furthermore, the in-DRAM sub-structure has to be entirely rebuilt
during a recovery process before new accesses can be resumed. This
compromises a promise made for the persistent memory, which is
the instant service resumption.

3 THE THREE SPOT-ON TECHNIQUES
In this section, we analyze three representative persistent index
data structures and propose a series of techniques leveraging DRAM

to optimize the PMem performance in a spot-on fashion. Three data
structure are CCEH[18] (a persistent hash table), FastFair [10] (a
persistent B-tree) and P-Skiplist (a persistent skiplist) [20], as shown
in Figure 1. The set of techniques are Buffering, Out-of-place-update,
and Caching. They are intended to be applied in a sequence, which is
the Buffered, Out-of-place merging, and then Caching (BOC) design.

While each of the techniques is a well known one and has been
extensively practiced, this work focuses on their customized use on
specific index structures in a spot-on manner. Rather than keeping
and managing the cached/buffered data at one centralized space in
the faster memory, the BOC approach distributes the space to the
carefully selected index components to maximize its utilization. It
doesn’t rely on a replacement algorithm to determine where the
cache space should be allocated. While effectiveness of a replace-
ment algorithm is often limited and the algorithm’s time and space
overhead for managing small pieces of data can be significant, the
BOC approach effectively addresses this issue with its customized
cache space distribution design.

The key BOC takeaways are that, the read-modify-write in a
256-byte XPLine and long latency of random access in the PMem
are the fundamental performance bottleneck for persistent index
data structures. It suggests that a persistent index should (1) buffer
small writes in the DRAM then update them to the PMEM in a batch
manner, and use (2) out-of-place merging to reduce flush&fence,
which is a well-understood performance bottleneck. When there
are frequent pointer chasing accesses in the indexes, one should (3)
cache the search path in the DRAM to minimize the search latency.
This represents a holistic design approach in recognition that any
of the individual techniques could not adequately recoup PMem’s
performance loss due to its performance idiosyncrasies.

3.1 Technique One: Buffering
The PMem differs from the DRAM in several ways. One of them is
that there is a mismatch between CPU cache-line access granular-
ity (64 bytes) and the 3D-Xpoint media’s access granularity (256
bytes) [23]. To overcome this mismatch, it has a write-combining
buffer (16KB) to merge small writes and reduce write amplifica-
tion [23]. Given the small size, it is hard to exploit the locality to
frequently hit the buffer.

For writes in the persistent index data structures, most of them
are small writes, such as insertion of a new record (e.g., a 16-byte
key-value pair), structural modification operations (SMO) in a B+-
tree, which lacks access locality considering the small write buffer
in the PMem. Consequently, most of the small writes result in the
read-modify-write operations within the PMem and leads to high
write amplifications and reduced effective memory bandwidth.

In this study of the spot-on buffering technique, we allocate small
write buffers in the DRAM and assign them individually to selected
components in the index structures (see Figure 1). Specifically, for
CCEH each write buffer is as large as half of the segment size. For
FastFair each leaf node has a write buffer of half of the leaf node
size. P-Skiplist only creates write buffers for nodes whose height is
higher than two in the skip list. And each buffer can store at most
16 KV pairs. The operations in the indexes are not changed except
that writes into the selected components are first admitted to their
respective write buffers. When a buffer becomes full, all key-value

109

ICPE ’24, May 7–11, 2024, London, United Kingdom Xingsheng Zhao, Prajwal Challa, Chen Zhong, and Song Jiang

Buffer

Buffer Buffer Buffer

Buffer Buffer Buffer

BufferBuffer

!"

!"

#"

#"

!"

!"

!"

!"

$"

$"

#"

#"

#"

#"

$"

$"

!%

!%

$&

$&

#&

#&

!&

!&

'()*+',)-./0112(3 45,6//07)*87)963 :;<=9>.9*8

??

??

&&

&&

!!

!!

Search 45

Insert 45

%%

%%

$$

$$

??

??

##

##

@96/A8B6C

</DE/F8

4GA=/8

...

...

...

...

...

...

Figure 1: Adding write buffers to the three selected index data structures

(KV) pairs in it are written to its corresponding index component
in a batch. This is actually a merging of KV pairs in the buffer for a
batched write.

We then run a benchmark to insert 120 million KV pairs (8-
byte key and 8-byte value) into each of the indexes with uniformly
distributed and non-redundant keys. In the experiment we measure
amount of raw data written to the PMem’s media using the ipmctl
tool [11]. Figure 2 shows the amount of the raw data with or without
the write buffers for each of the indexes. It shows that the total
amount of the data written to the PMem is reduced by up to four
times. The reductions are especially higher for CCEH and FastFair
where writes to the last-level nodes are buffered. This observation
demonstrates that spot-on buffering can effectively enable batched
writes and much reduced write amplification by greatly improving
spatial access locality.

3.2 Technique Two: Out-of-place Update
There is a potential issue with adding write buffers to the persistent
indexes. When we write the KV pairs in a buffer to the PMem in an
in-place manner (i.e., updating the index component in place), we
may need to repeatedly add flush&fence within a small contiguous
range of the PMem space (such as a segment in CCEH, or a leaf node
in FastFair) to enforce its crash consistency in case of power failure.
It has been reported that reading a recently flushed cacheline after
fence instructions could experience much higher latency as the
read has to wait the flush to complete [23].

To analyze the effect of flush&fence on the buffer merging, we
implement an out-of-place buffer merge in CCEH and FastFair.
Since P-Skiplist’s KV pairs are stored separately in the linked list
nodes, the insertion has been in the out-of-place manner. So we do
not consider P-Skiplist in this experiment.

In CCEH, when a write buffer of a segment is full, we first copy
the segment from the PMem to the DRAM. We then merge the KV
pairs in the write buffer into the DRAM copy and write it back
to the PMem in a newly allocated space. Finally, we atomically

cceh fastfair skiplist0

20

40

60

80

100 GB
Total Write on PMEM

NoBuffer
WithBuffer

Figure 2: Total amount of raw data written to the PMem’s
media after insertion of 120 million 16-byte key-value pairs
to the three indexes with and without the buffers (with one
thread and without using the WAL log).

change the directory pointer to this new segment. For FastFair, we
employ a similar approach for its leaf nodes. During the merging, a
new leaf node is created to hold all of the KV pairs from both the
old leaf node and write buffer. Then the new leaf replaces the old
leaf by atomically changing the parent pointer and sibling’s left
’next’ pointer. An out-of-place merge is essentially conducted in the
background. Thus, flush&fence operations for individual KV pairs
are avoided. Another benefit of this technique is that the current
buffer and the index component are still available for serving read
requests during the merge.

Figure 3 shows the amount of raw data read from and raw data
written to the PMemmedia with each of the three indexes when 120
million KV pairs are inserted. It also shows the insert throughput.
Different number of threads are used (1, 20, and 40 threads at the
top, middle, and bottom, respectively, of the figure). For a particular
index, the three optimization techniques are incrementally applied.

The figure shows that even when the read and write amounts
remain unchanged, the throughput of CCEH and FastFair with only

110

Developing Index Structures in Persistent Memory
Using Spot-on Optimizations with DRAM ICPE ’24, May 7–11, 2024, London, United Kingdom

0 1 2 3

50

1
Th

re
ad

 GB
cceh

0 1 2 3

100

 GB
fastfair

IO Read IO Write

0 1 2

500

 GB
skiplist

0 1 2 3

50

20
 T

hr
ea

ds

 GB

0 1 2 3

50

100

 GB

0 1 2

250

500

 GB

cce
h

cce
h-B

cce
h-B

O

cce
h-B

OC

25

50

40
 T

hr
ea

ds

 GB

fas
tfa

ir

fas
tfa

ir-B

fas
tfa

ir-B
O

fas
tfa

ir-B
OC

50

100

 GB

ski
plis

t

ski
plis

t-B
O

ski
plis

t-B
OC

250

500

 GB

0.5

1.0

 Mops/s

0.25

0.50

 Mops/s

Throughput

0.2

 Mops/s

10

 Mops/s

5

10

 Mops/s

2.5

5.0

 Mops/s

10

20

 Mops/s

10

 Mops/s

5

 Mops/s

(a) Without WAL

0 1 2 3

50

1
Th

re
ad

 GB
cceh

0 1 2 3

100

 GB
fastfair

IO Read IO Write

0 1 2

500

 GB
skiplist

0 1 2 3

50

20
 T

hr
ea

ds

 GB

0 1 2 3

50

100

 GB

0 1 2

250

500

 GB

cce
h

cce
h-B

cce
h-B

O

cce
h-B

OC

25

50

40
 T

hr
ea

ds

 GB

fas
tfa

ir

fas
tfa

ir-B

fas
tfa

ir-B
O

fas
tfa

ir-B
OC

50

100

 GB

ski
plis

t

ski
plis

t-B
O

ski
plis

t-B
OC

250

500

 GB

0.5

1.0

 Mops/s

0.25

0.50

 Mops/s

Throughput

0.1

0.2

0.3

 Mops/s

5

10

15
 Mops/s

5

 Mops/s

2

4

 Mops/s

10

 Mops/s

5

10

 Mops/s

5

 Mops/s

(b) With WAL
Figure 3: Amount of raw media read/write (denoted as "I/O Read/Write") and throughput for inserting 120 million key-value
pairs (8-byte key and 8-byte value) with and without using a Write-Ahead-Log (WAL) log. For each index, the three techniques
are incrementally added (’B’ for "Buffering", ’O’ for "Out-of-place Update", and ’C’ for "Caching"). For example, "cceh", "cceh-B",
"cceh-BO", and "cceh-BOC" refer to the CCEH index without any optimizations, with Technique 1, with Techniques 1 and 2, and
with Techniques 1, 2, and 3, respectively.

0us 2us 5us 8us
latency

In
se

rt
La

te
nc

y
Di

st
rib

ut
io

n

cceh

0us 5us 10us 15us
latency

fastfair

0us 10us 20us 30us
latency

skiplist

0us 0us 1us 2us

Re
ad

 L
at

en
cy

 D
ist

rib
ut

io
n

0us 2us 4us 0us 10us 20us

Figure 4: Distributions of insert/read latency for an index
without caching (the red area) and with caching (the purple
area).

Buffering ("cceh-B" and "fastfair-B") becomes higher after applying
"Out-of-place Update" ("cceh-BO" and "fastfair-BO"). This improve-
ment is attributed to the removal of the flush&fence overheads.

3.3 Technique Three: Caching
For index data structures whose operations contain many random
reads (in the form of pointer chasing), the performance could be
bottlenecked by slow random reads in the PMem. Read latency
on the Optane PMem is considerably higher than DRAM (about
2X-3X) because reads need to fetch data from the 3D-Xpoint media,
which has longer media latency [3]. Meanwhile, most of the pointer
chasing operations happen in the internal nodes whose total size

may account for only a small portion of the entire data structure
size. So it is worth enabling caching individually for the internal
nodes in the DRAM to boost the lookup performance.

In this experiment study, we cache internal nodes in all three
indexes (directory in CCEH, inner nodes of FastFair, nodes with
height higher than two in P-Skiplist) and measure their insert/read
latency for 120 million insert requests followed by 120 million read
requests.

As shown in Figure 4, caching internal nodes have little effect
on CCEH’s latency as it has only one pointer chasing operation for
each access, which is for locating the segment from the directory.
However, we observe significant latency improvement for FastFair
and P-Skiplist as they need to do intensive pointer chasing (ran-
dom reads) across the internal nodes before finding a target node,
indicating that caching is a necessary optimization for many-level
indexes.

3.4 Put them Together
With all these three techniques available (buffering, out-of-placed
Update, and then caching(BOC)), we apply them to three indexes one
by one and measure the performance improvement after insertion
of 120 million key-value pairs. In the experiment, we experiment
with two cases: one without the WAL log, and another one with
the WAL log. With the log, all data written to the leaf nodes will
also be added to the log in the PMem. Note that writes to the
log are fully sequential and incur little amplification. As shown
in Figure 3, the write buffer not only reduces write amplification
but also read amplification. This is not a surprise since during the
buffer merging, the PMem data to be merged has been cached in

111

ICPE ’24, May 7–11, 2024, London, United Kingdom Xingsheng Zhao, Prajwal Challa, Chen Zhong, and Song Jiang

the DRAM. The cost of reads is amortized via batching. Mean-
while, the benefits of out-of-place update (merging) are consistent
from the single thread execution to the multi-thread execution. The
throughput with the addition of "Out-of-place Update" ("cceh-BO"
and "fastfair-BO") is always higher than that without the optimiza-
tion ("cceh-B" and "fastfair-B", respectively). Finally, caching the
internal nodes not only reduces latency of pointer chasing, but
also removes a large amount of the PMem’s media read ("Read
I/O") during search ("fastfair-BOC", "skiplist-BOC"), significantly
increasing the PMem’s effective memory bandwidth. Furthermore,
the performance advantages remain with the increase of thread
count and with addition of the WAL log.

4 THE DESIGN OF SPTREE
Understanding the benefits of the three spot-on optimization tech-
niques, we propose SPTree (SPot-on Tree), a DRAM-PMem hybrid
persistent tree index that uses spot-on caching and buffering to
address a sequence of issues challenging performance of in-PMem
indexes, including long latency of pointer chasing, write amplifi-
cation due to mismatch between KV pair size and PMem’s media
access unit, and quick recovery after a crash. As shown in Figure 5,
SPTree consists of three layers (the top, middle, and bottom layers).

4.1 The Three Layers in SPTree
The Top Layer. As shown in Figure 5, the top layer caches the
internal nodes of the tree in the DRAM, which is an in-DRAM index
that walks a key to its corresponding middle level node and leaf
node. SPTree uses the DRAM index to address the high latency
issue of pointer chasing in the PMem. That is, all search operations
in the SPTree take place in the DRAM top layer before a target leaf
node in the bottom layer is reached. We modify the ARTree [14]
as the DRAM top-layer. Meanwhile, the index has a PMem backup,
organized as a FastFair B+-tree, for a quick recovery after a reboot
or a system crash. It is updated asynchronously by the background
threads to move the slow updates on the PMem off the critical path.
Each time when a leaf node splits or merges, the new leaf node’s
indexing information is synchronously updated in the DRAM index,
and sent to the background threads and then asynchronously prop-
agated to the in-PMem index. If some of the updates have not yet
been reflected in the PMem index when a system crash happens, we
can still recover the missing information by checking the possible
smallest key(the low ley or ’lkey’) and the largest key(high key
or ’hkey’) in the leaf nodes. More details on the recovery are in
Section 4.6. Note that updates to the in-PMem index are much less
frequent than those to the leaf nodes.

TheMiddle Layer. Themiddle layer consists ofMnodes (middle-
layer nodes) in the DRAM. Each leaf node in the PMem has its
corresponding Mnode in the DRAM. The Mnode records the range
of keys in the leaf node (the smallest key (lkey) ... largest key(hkey)).
This key range serves the purpose similar to that of the version
number that allows non-blocking reads during a write. When a
search reaches to an Mnode, the search key is checked against
its key range. If the search key does not belong to this Mnode,
it indicates that concurrent insertion or deletion operations have
caused splitting or merging of Mnodes (and also leaf nodes), and
we need to go back to the top layer for a retry.

async

PMEM Top LayerDRAM Top Layer

PMEM Bottom Layer

DRAM Middle Layer
Mnode

Bnode Bnode Bnode

Mnode Mnode
Mnode (middle layer node)

Write Ahead Log

Bnode (bottom layer node)

lkey

lkey

hkey version

hkey

bloom filter

Lnode

prev_ptr type size data

Lnode …

next bitmap cur_ver tags kv pairs
64 entries

seqssort_ver

write bufferL_ptr

Figure 5: The SPTree tree structure

An Mnode also stores a Bloom filter which remembers all the
keys in its leaf node. Each insert updates the Bloom filter in its
corresponding Mnode. The Bloom filter is used to filter out most
of the point queries for non-existing keys before they reach the
in-PMem leaf nodes. An Mnode can also be configured with a write
buffer, which buffers all the newly inserted KV pairs (up to 14) to
reduce write amplification. Once a buffer is full, all the KV pairs in
the buffer will be merged to the leaf node.

The Bottom Layer. The bottom layer stores the leaf nodes, or
Bnodes (bottom layer nodes), in the PMem. All Bnodes are orga-
nized as a singly linked-list. Each Bnode can store up to 64 KV
pairs. The leaf node groups fingerprints (hash values) of its keys
as key tags in an array for a quick preliminary search by using
SIMD instruction (_mm_cmpeq_epi8_mask). Meanwhile, it applies a
two-phase insertion approach to reduce the use of flush and fence
instructions. In the first phase, KV pairs and their tags are batch
written to the Bnode followed by a flush&fence. Only in the second
phase will they be validated by setting the bitmap in the node fol-
lowed with another flush&fence. In this way, only two flush&fence
operations are needed for multiple insertions. In this way, SPTree
minimizes the use of flush&fence to improve efficiency.

4.2 Concurrency Control
SPTree relies on Optimistic Lock Coupling [15] for concur-
rency control. An optimistic lock consists of a lock and a version
counter (packed into 8 bytes). For writers, the optimistic lock pro-
vides exclusive access that allows only one writer at a time. Upon an
unlock, the lock is released and the version number is incremented
by one atomically. For readers, they do not acquire the lock. In-
stead, they wait until the write lock is freed. Then they compare the
version number before and after reading the value. If the reading
changes, they will retry until a consistent reading is reached. Both
of the DRAM top layer and the middle layer use the optimistic lock.

4.3 Search Operation
Search for a given key is the most frequently used operation on
the index. It is not only used to service a read request, but also
has to be employed at the beginning of the execution of every
insert/update/delete/lookup/scan operation. A search operation
first traverses the DRAM top layer to look for the largest key that
is smaller or equal to the search key. This largest key is the lkey

112

Developing Index Structures in Persistent Memory
Using Spot-on Optimizations with DRAM ICPE ’24, May 7–11, 2024, London, United Kingdom

in an Mnode. Then the search key is compared with the hkey in
the Mnode to ensure the search key is in the key range of this
Mnode. If it is in the range, the search continues to the Bnode in the
PMem. Otherwise, the search travels in the middle layer, which is
a doubly linked list, to locate the target Mnode. During the search
operation, the PMem top layer is not accessed because it is only
used for recovery.

4.4 Insert/Update/Delete/Lookup/Scan
Insert. The thread servicing an insert request first searches the
DRAM top layer to locate an Mnode whose key range includes the
inserted key. Then the write lock is acquired on the Mnode. If the
Mnode has a write buffer, the KV pair is inserted into the write
buffer, and also appended to a write ahead log (WAL) for an after-
crash recovery. Otherwise, the thread inserts the KV pair directly
into the corresponding Bnode on the PMem. In the first case, if the
write buffer is full, SPTree writes all the KV pairs in a batch to the
Bnode, and clears the write buffer. SPTree uses a two-phase inser-
tion in the batch write operation. (1) All the KV pairs and their tags
are written to the Bnode followed by a flush&fence. (2) The bitmap
indicating valid pairs is set and the version (cur_ver) advances by
one. Meanwhile, a split is conducted if necessary. Finally, the Bloom
filter in the Mnode is updated for the inserted key.

Update.Update is similar to insert during its search for the target
Mnode. After a target Mnode is found, the Bloom filter is checked
to see if the key exists. If not, it returns immediately. Otherwise,
it acquires the write lock. If there is a write buffer with the target
Mnode, it tries to update the KV in the buffer, and write the new
value to the WAL if the update is a success. Otherwise, we check
the corresponding Bnode for the update.

Delete. For delete, after the thread reaches a target Mnode, it
checks the Bloom filter first to avoid unnecessary access to the
PMem. If the Bloom filter returns true, and the target Mnode has a
write buffer, it removes the delete key in it if it exists in the buffer.
Additionally, it adds a DELETE tombstone record in the write buffer.
The DELETE tombstone is also written to the WAL log to record
this deletion. In this case, the key will be physically deleted later
during a compaction when a KV pairs in the write buffer are written
back. Note that this tombstone is necessary to prevent follow-up
reads for this key from mistakenly returning the deleted KV pair
from the corresponding Bnode instead of a "none". If the Mnode
doesn’t have a write buffer, it will immediately try to remove the
key from the Bnode.

Lookup. Lookup operation in SPTree is a lock-free read. By
applying the optimistic lock, the thread checks the version in the
target Mnode before and after the read. If the two versions match,
it means no inserts take place during the read and it can return the
value safely. Otherwise, the lookup will start over.

Scan. Scan operation first looks for the target Mnode whose
’lkey’ is equal to or smaller than the lower bound of the scan range
and whose ’hkey’ is larger than the lower bound. It then checks
whether a reconstruction of the sequence array (’seqs’) is required
by comparing ’cur_ver’ and ’sort_ver’. If ’cur_ver’ is larger
than ’sort_ver’, it means new inserts happen after the last recon-
struction of the ’seqs’, it then acquires the write lock and sorts
the keys in the Bnode and stores them in the ascending order in

Algorithm 1: Scan
1 Function Scan(𝑠𝑡𝑎𝑟𝑡_𝑘𝑒𝑦, 𝑟𝑒𝑠𝑢𝑙𝑡_𝑠𝑖𝑧𝑒, 𝑟𝑒𝑠𝑢𝑙𝑡𝑠):

/* Find mnode that has lkey <= start_key <= hkey */
2 mnode = LocateMNode(start_key)
3 bnode = mnode.bnode
4 while Output results array not full do
5 ReadLockGuard(bnode)
6 if mnode write buffer is not empty then
7 WriteLockGuard(bnode)
8 Flush write buffer;
9 if bnode.cur_ver > bnode.sort_ver then
10 WriteLockGuard(bnode)
11 Sort(bnode)
12 bnode.sort_ver = bnode.cur_ver
13 Collect keys falling in scan range
14 bnode = bnode.next

the ’seqs’ array. Meanwhile, it sets ’sort_ver’ to ’cur_ver’ to
indicate this Bnode is ready for scan. When there are keys stored in
the Mnode write buffer, a batch write of the KV pairs is triggered
before scanning. During the scan of a Bnode, the keys that fall in the
scan range are collected in a buffer. Then the values of ’cur_ver’
before and after the scan are compared. If they are equal, those
buffered KV pairs are appended in the output array. Otherwise, it
retries the scan in this Bnode. Scan continues to the sibling Bnode
until the output array is full or the key is out of scan range. The
operation’s pseudocode description is at Algorithm 1.

4.5 Split and Merge
When a Bnode (leaf node) is full, SPTree conducts a split, which
creates a new Bnode along with its new Mnode. Then a [lkey,
Mnode pointer] mapping is inserted to the DRAM top layer while
a [lkey, Bnode pointer] is sent to the background thread to asyn-
chronously update the PMem top layer. A split operation involves
four steps. (1) The writer first acquires the lock for the current
Bnode and its next sibling. (2) It then allocates a new Bnode, moves
the right half of the KV pairs from the full node to the new Bnode,
and sets the ’next’ pointer in the full node pointing to the new
node. These three operations are atomically conducted using the
leak-free PMem allocator (such as Intel PMDK’s pmemobj_alloc())
to prevent memory leak. (3) Then ’bitmap’ and ’hkey’ in the full
Bnode are modified to remove the split-out keys. And (4) finally,
the mapping information is updated in the DRAM top layer and
propagated to the PMem top layer.

When a delete operation detects that keys in two adjacent nodes
become fewer than half of a node’s capacity, a merge operation is
triggered. (1) The thread first acquires the two nodes’ write locks. (2)
Then it shifts the KV pairs in the right Bnode to the left Bnode using
the two-phase insertion (set the KV pairs first, then the bitmap). (3)
Next it modifies the left Bnode’s hkey as the right Bnode’s hkey,
marks the right Bnode as deleted in its ’cur_ver’ and drops the
Bnode. (4) Finally, it updates the mapping in the top layer.

4.6 Recovery and Crash Consistency
Since SPTree uses the DRAM top layer and the DRAM middle layer
to provide service, these two layers need to be reconstructed after a
reboot or a power failure. In a normal reboot, all the updates in the

113

ICPE ’24, May 7–11, 2024, London, United Kingdom Xingsheng Zhao, Prajwal Challa, Chen Zhong, and Song Jiang

DRAM top layer have been propagated to the PMem top layer. And
the PMem top layer stores the pointers to the Bnodes in the PMem.
During a recovery, SPTree can quickly collect all the pointers to
the Bnodes by scanning the PMem top layer, which is only around
2% of entire index size. Then it rebuilds the Bnode’s Mnode and the
DRAM top layer simultaneously.

If this recovery is after an unexpected crash, we need to fix the in-
complete state. If a crash happens before a split’s Step (2) completes,
SPTree can recover to the state before the split (guaranteed by the
leak-free allocator). If the crash happens after Step 2 and before
Step 3, then a dummy leaf node is linked to the bottom layer. An ex-
ample incomplete status looks like this: [split node, lkey..10,
hkey..100] -> [dummy node, lkey..50, hkey..100] -> [next
node, lkey..100, hkey..200]... . The dummy node will have a
’lkey’ lower than its previous node’s ’hkey’. If we find a dummy
node during the recovery, we fix it by dropping the dummy node. If
the crash happens during Step (3) (’hkey’ is set and the ’bitmap’
has not been set), then the split node will have keys that do not
belong to it. This can be fixed by ignoring those out-of-range keys
during the next split. If the crash happens before Step (4) completes,
we only need to fix the missing mappings in the top layer. We can
identify the missing mappings by comparing the adjacent Mnode’s
’lkey’ and ’hkey’ after a non-crash recovery. An Mnode’s ’hkey’
is designed to be the same as its next sibling’s ’lkey’. If not, we
scan the linked list from the current Mnode’s Bnode to recover the
missing Mnodes.

If a crash happens before a merge’s Step (2) competes, SPTree
can recover to the state before the merge because the shifted KV
pairs have not been exposed by the bitmap. If the crash happens
before Step (3), the shifted KV pairs can be filtered out using the
’hkey’. If the crash is after setting the ’hkey’ and before drop-
ping the right node in Step (3), an example incomplete status
looks like this: [merge-left node, lkey..10, hkey..100] ->
[’merge-right node, lkey..50, hkey..100] -> [’next node,
lkey..100, hkey..200]. The merge-right node has an ’lkey’
lower than merge-left node’s ’hkey’. We fix this by dropping the
merge-right node during the recovery. If the crash happens before
Step (4), the dummy mapping will point to a deleted Bnode. We
then delete this mapping during the recovery.

Regarding data consistency in Bnodes, all the KV pairs that have
not completed the second phase (setting the bitmap) will not be
exposed. So any partially updated pairs will not be visible.

If an Mnode has its write buffer, the KV pairs in the buffer can
be recovered by replaying the WAL log. However, any KV pairs
in its corresponding Bnode cannot be used to serve look requests
until all of the lost pairs in the write buffer are recovered from the
log. These pairs are scattered in the log. It would be too slow to
resume the service of requests if one had to wait for the scan of the
entire log to be completed.

4.7 Instant Service Resumption with a
Structured WAL

The WAL approach has been widely used for preventing data loss
in systems such as LevelDB [8, 19], RocksDB [7, 21], and Kanga-
roo [17]. Existing use of the technique is simplistic: data in new
inserts, updates, and deletes that are sent to the in-DRAM data

Buffer
Mnode

Buffer
Mnode

Buffer
Mnode

Buffer
Mnode。。。

Data Type Size NextChecksum

…

PTR
Head Pointers Table

BID
1

N

…

Size Tail

Log Meta … …
PMem

DRAM

update head ptrs

Figure 6: The structured WAL log.

structures are also appended at the tail of a log in the persistent
storage. This approach enables efficient I/O by writing data sequen-
tially. However, the side effect is that the data are not well organized
and a particular data cannot be efficiently located for quick access.
Maintenance of a separate index for the log is way too expensive
to be practical. This is especially problematic with the persistent
memory as an instant restart is often expected.

To this end, SPTree proposes a structured WAL log that allows
keys to be searched and retrieved from the log without a time-
consuming sequential scan. This technique enables (almost) instant
resumption access to the SPTree index before a full recovery is
completed.

In the design, the conventional WAL log is enhanced by organiz-
ing linked lists, each consisting of KV pairs that belong to the same
write buffer, in the log. As shown in Figure 6, each record in the
log contains a ’next’ pointer, which is the offset of the record in
the log about the KV pair that belongs to the same the buffer and
has been appended to the log immediately prior to this one. SPTree
maintains a table of head pointers in the DRAM, each pointing
to the most recently appended record in the log that belongs to a
buffer. Each time a buffer’s KV pair is appended, the buffer’s current
head pointer becomes its ’next’ pointer and the ’head’ pointer is
updated to the new pair. In this way, without introducing additional
writes to the log, the WAL log becomes a structured one containing
multiple linked lists. After a crash, SPTree can immediately service
a read request by following the corresponding buffer’s head pointer
and searching on the linked list.

To maintain the structured log for high access efficiency, there
are two issues to address. The first one is about placement of head
pointers. For efficiency, the table of head pointers must be in the
DRAM. In the meantime, it must survive a system crash. To this
end, SPTree periodically checkpoints the table to the PMem along
with the offset of the WAL’s current tail. This offset represents the
checkpoint position, indicating that the checkpointed table is up
to date until this position. After a crash, the table is reloaded into
the DRAM. And SPTree only needs to scan the log from its tail to
the checkpoint position to find out all newer header pointers and
update the in-DRAM table. Each record contains a 8-byte checksum
to determine if it is a valid one. Accordingly, we can identify the
log’s tail.

The second issue is about size of the log. Once KV pairs in a buffer
have been merged into the in-Pmem Bnode, their corresponding
records in the log become obsolete and can be removed from the
log as well as the linked lists. Otherwise, they would make the log
and search on the log unnecessarily long. Therefore, SPTree needs
to identify the true end record in a linked list and flag it. To this end,

114

Developing Index Structures in Persistent Memory
Using Spot-on Optimizations with DRAM ICPE ’24, May 7–11, 2024, London, United Kingdom

0 10 20 30 40
Number of Threads

5

10

Th
ro

ug
hp

ut
 (M

op
s/

s)
fastfair
pactree

sptree
sptree-B

(a) Insert

0 10 20 30 40
Number of Threads

5
10
15
20
25

Th
ro

ug
hp

ut
 (M

op
s/

s)

fastfair
pactree

sptree
sptree-B

(b) Positive Read

0 10 20 30 40
Number of Threads

20

40

Th
ro

ug
hp

ut
 (M

op
s/

s)

fastfair
pactree

sptree
sptree-B

(c) Negative Read

0 10 20 30 40
Number of Threads

2

4

6

Th
ro

ug
hp

ut
 (M

op
s/

s)

fastfair
pactree

sptree
sptree-B

(d) Scan

0 10 20 30 40
Number of Threads

50

100

150

200

Pm
em

 I/
O

(G
B)

fastfair
pactree

sptree
sptree-B

(e) Insert

0 10 20 30 40
Number of Threads

50

100

Pm
em

 I/
O

(G
B)

fastfair
pactree

sptree
sptree-B

(f) Positive Read

0 10 20 30 40
Number of Threads

50

100

150

200

Pm
em

 I/
O

(G
B)

fastfair
pactree

sptree
sptree-B

(g) Negative Read

0 10 20 30 40
Number of Threads

200

400

Pm
em

 I/
O

(G
B)

fastfair
pactree

sptree
sptree-B

(h) Scan

0 10 20 30 40
Number of Threads

2.5
5.0
7.5
10.0
12.5
15.0

Pm
em

 B
an

dw
id

th
 (G

B/
s) fastfair

pactree
sptree
sptree-B

(i) Insert

0 10 20 30 40
Number of Threads

5

10

15

Pm
em

 B
an

dw
id

th
 (G

B/
s) fastfair

pactree
sptree
sptree-B

(j) Positive Read

0 10 20 30 40
Number of Threads

5

10

15

Pm
em

 B
an

dw
id

th
 (G

B/
s) fastfair

pactree
sptree
sptree-B

(k) negative read

0 10 20 30 40
Number of Threads

5
10
15
20
25

Pm
em

 B
an

dw
id

th
 (G

B/
s) fastfair
pactree

sptree
sptree-B

(l) Scan

Figure 7: Throughput, PMem I/O volume, and PMem bandwidth with different types of requests.

after persisting a buffer’s KV pairs to the BNode, SPTree writes a
special record to the WAL flagged (at the ’Type’ field shown in
Figure 6) as the end of the buffer’s linked list. A key search in the
list will stop at the end record. Furthermore, to know the offset in
the WAL log beyond which all records in the log can be collected as
garbage, SPTree keeps track of the oldest end record, whose up-to-
date offset is maintained in the PMem. When a space reclamation
via on-log garbage collection is required, all records from this offset
to the head of the log can be removed.

Thanks to the linked lists in the WAL, access to the SPTree index
can instantly become available. In the meantime, a background
thread scans the log to recover the write buffers. When the buffers
are fully restored, access to the log for reading KV pairs is no longer
required.

5 EVALUATION
In this section, we experimentally evaluate SPTree by comparing it
with several state-of-the-art B+-Tree for persistent memory, includ-
ing FastFair [10] and PACTree [13]. As a sorted index that supports

range search, we do not compare SPTree with the hash-based in-
dexes, such as CCEH.

5.1 Experiment Setup
In the experiments, we use 16-byte KV pairs. All the threads in
an experiment are pinned to one socket using numactl. SPTree’s
DRAM footprint is about 12% of the total size of the PMem bottom
layer when the write buffers are not used. If all of the Mnodes in the
SPTree have been assigned with write buffers (denoted sptree-B),
the DRAM footprint is about 33% of the PMem bottom layer. All
the experiments are run on a server with an Intel Xeon Gold 6230
20-core processor, 64GB DRAM and 6 × 128GB Intel Optane DC.

5.2 The Throughput
To evaluate the performance of the trees, we conduct extensive
experiments, including insertions of new KV pairs (Insert), reading
keys in the indexes (Positive Read), reading keys not in the indexes
(Negative Read), and range queries (Scan). Experiment results are
shown in Figure 7. In each experiment, different number of threads

115

ICPE ’24, May 7–11, 2024, London, United Kingdom Xingsheng Zhao, Prajwal Challa, Chen Zhong, and Song Jiang
Fa

st
&F

ai
r Median:

2.86us

Insert
Median:
1.60us

Positive Read
Median:
2.31us

Negative Read

Pa
ct

re
e Median:

3.06us
Median:
1.67us

Median:
1.38us

SP
Tr

ee

Median:
2.30us

Median:
1.17us

Median:
0.45us

2us 5us 8us

SP
Tr

ee
-B Median:

0.69us

2us 4us 6us

Median:
1.13us

2us 4us 6us

Median:
0.46us

Figure 8: Latency comparison

(from 1 to 40 threads) are used. For Insert each thread sends 120
millions/number-of-threads requests. For Positive Read andNegative
Read, and Scan each thread sends 10 million requests. Figure 7
reports throughput of the trees (number of requests serviced per
second) and the corresponding raw PMemmedia access amount (I/O
volume) . The I/O volume represents all read/write data amount on
the Optane PMem’s media, including amplified I/O due to existence
of its 256B access unit. It is measured with ipmwatch, available in
the Intel VTune Amplifier tool. It also shows the PMem’s bandwidth,
which is the raw I/O volume per second.

Insert. As shown in Figure 7a, SPTree consistently outperforms
the others for insert performance. This is mainly because in the
other two trees the pointer chasing in the internal nodes causes
large read amplifications, resulting in reduced effective memory
bandwidth. As shown in Figures 7e and 7i, though the bandwidth
of FastFair and PACTree during the insertion is equal to or even
higher than that of SPTree, their high I/O bandwidth actually results
in the lower throughput. When the write buffers are enabled for
SPTree (sptree-B), the total I/O volume is reduced by 3X. This is
mainly because of the reduced write amplification as well as the
read amplification as explained in Section 3.4.

Positive Read. We see up to 25% throughput improvement
for SPTree over the others. This advantage mainly comes from
the reduced I/O during search in the internal nodes. As shown in
Figure 7f, SPTree’s I/O volume is only about 1/3 of the others. When
write buffers are used, we see slightly performance improvements
over the one without buffers. This is because the write buffers also
function as read caches for Positive Read. Hence, a small portion
of the request does not reach the Bnodes in the PMem. That’s why
I/O volume of sptree-B is smaller, as shown in Figure 7f.

Negative Read. SPTree has up to 4X throughput improvement
compared with the other two trees, as shown in Figure 7c. This
is because it caches the existing keys in the Mnodes’ Bloom filter,
which filters out most of the unnecessary PMem accesses during
the negative read. As shown in Figures 7g and 7k, there is almost
no PMem I/O and we barely read from the PMem. All the saved
bandwidth can be used to service other requests.

Scan. Both SPTree and PACTree use an indirection array for
sorting keys in the leaf node. This strategy comes with a cost of
higher read amplification compared with the physically sorted KV
pairs in FastFair. As shown in Figure 7h, SPTree and PACTree have
higher I/O volume during the Scan. However, thanks to the low

0m 50m 100m 150m 200m 250m
Recovered Keys

0.0

0.5

1.0

Re
co

ve
ry

 T
im

e(
s)

Figure 9: Recovery time to rebuild the DRAM top and middle
layers.

0 0.5 1 1.5
Log Size (GB)

0.0

0.3

0.6

0.9

Se
rv

ice
 R

es
um

e
Ti

m
e

(s
ec

)

Conventional WAL
Structured WAL

(a)

0 0.5 1 1.5 2
Time (Secs)

0

10

20

Se
rv

ed
 R

eq
ue

st
s (

M
) Conventional WAL

Structured WAL

(b)

Figure 10: (a) Service resumption time for varying size of
records in the log. (b) Number of lookup requests served
within a certain time period right after a restart with a log
of 1.8GB.

overhead of the DRAM top layer, SPTree’s scan performance is only
10% lower than FastFair, while PACTree is 30% lower.

5.3 The Latency
In this section, we evaluate the read/write latency of the three trees.
We use 20 threads to write 120 million KV pairs. Each thread sends
4 million read requests.

As shown in Figure 8, SPTree always has the lowest latency
among the trees in all of the workloads (Insert, Positive Read,
and Negative Read). By caching the internal nodes in the DRAM,
the random pointer chasing cost in the PMem is greatly reduced.
Meanwhile, using the Bloom filters also helps SPTree to avoid the
access to the PMem for non-existing keys. In the experiment, after
120 million KV pairs are inserted, the false positive rate is around
5%. It is worth noting that when write buffers are used, the insert
latency for SPTree (SPTree-B) reduces by 3X compared with the
one without using write buffer, which is at the cost of DRAM for
only around the 30% of the PMem footprint.

5.4 Recovery
If the write buffers for SPTree are not used, SPTree can start servic-
ing the requests without the DRAM top and middle layers as the
PMem top layer can be used. In the meantime, it rebuilds the DRAM
layers in the background and then puts it into service. As shown in
Figure 9, the time to rebuild the DRAM top and middle layers are

116

Developing Index Structures in Persistent Memory
Using Spot-on Optimizations with DRAM ICPE ’24, May 7–11, 2024, London, United Kingdom

negligible (1 second for 250 million keys) because it simultaneously
rebuilds the DRAM layers based on the PMem top layer.

If the write buffers are used and an unexpected crash takes place,
the structured WAL log is employed to quickly resume request
service. Figure 10a shows the time it takes to resume its service (for
the first lookup request to be served after a crash) with different size
of the log (from the oldest end record to the log tail). As shown, using
the structural log, SPTree reduces the resumption time to almost
0, much smaller than that using the regular WAL log. Figure 10b
shows the number of lookup requests that can be served within
a given period of time right after a restart on a log of 1.8GB. As
shown, without the structured WAL log no requests can be served
until after about 1.4 seconds from the restart. While instant-on
resumption is expected for any persistent memory, only SPTree
makes it possible with its unique structured WAL design.

6 CONCLUSIONS
In this paper, we propose to use the spot-on DRAM caching and
buffering techniques to efficiently address the performance issues
at the critical places in an index structure where performance
is compromised due to the PMem’s performance characteristics.
We systematically studied the benefits of the techniques to un-
derstand their individual and combined impacts on optimization
of in-PMem index structures. Empowered by this understanding,
we further introduce SPTree, a persistent ordered tree designed
for high-performance systems. Adopting a holistic approach, SP-
Tree leverages the techniques in its design supported by a novel
structured WAL log to deliver the instant-on user experience. Ex-
periments show that SPTree minimizes the PMem I/O traffic and
achieves 2X to 4X improvement of access performance over the
state-of-the-art PMem tree index designs in terms of both through-
put and latency.

The source code of the SPTree is available at https://github.com/
hansonzhao007/buflog.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback.
This work was partially supported by the US National Science
Foundation under grant CCF-2313146.

REFERENCES
[1] [n. d.]. Intel Optane Persistent Memory. https://www.intel.com/content/www/us/

en/products/docs/memory-storage/optane-persistent-memory/overview.html.
[2] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. 2018.

Bztree: A High-Performance Latch-Free Range Index for Non-Volatile Memory.
Proc. VLDB Endow. 11, 5 (jan 2018), 553–565. https://doi.org/10.1145/3164135.
3164147

[3] Hanyeoreum Bae, Miryeong Kwon, Donghyun Gouk, Sanghyun Han, Sungjoon
Koh, Changrim Lee, Dongchul Park, and Myoungsoo Jung. 2021. Empirical Guide
to Use of Persistent Memory for Large-Scale In-Memory Graph Analysis. In 39th
IEEE International Conference on Computer Design, ICCD 2021, Storrs, CT, USA,
October 24-27, 2021. IEEE, 316–320. https://doi.org/10.1109/ICCD53106.2021.
00057

[4] Renhai Chen, Zili Shao, and Tao Li. 2016. Bridging the I/O performance gap
for big data workloads: A new NVDIMM-based approach. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–12. https:
//doi.org/10.1109/MICRO.2016.7783712

[5] Renhai Chen, Zili Shao, Duo Liu, Zhiyong Feng, and Tao Li. 2019. Towards
Efficient NVDIMM-Based Heterogeneous Storage Hierarchy Management for
Big Data Workloads. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (Columbus, OH, USA) (MICRO ’52). Association

for Computing Machinery, New York, NY, USA, 849–860. https://doi.org/10.
1145/3352460.3358266

[6] Biplob Debnath, Alireza Haghdoost, Asim Kadav, Mohammed G. Khatib, and
Cristian Ungureanu. 2015. Revisiting Hash Table Design for Phase Change
Memory. In Proceedings of the 3rd Workshop on Interactions of NVM/FLASH
with Operating Systems and Workloads (Monterey, California) (INFLOW ’15).
Association for Computing Machinery, New York, NY, USA, Article 1, 9 pages.
https://doi.org/10.1145/2819001.2819002

[7] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Savor,
and Michael Strum. 2017. Optimizing Space Amplification in RocksDB. In 8th
Biennial Conference on Innovative Data Systems Research, CIDR 2017, Chaminade,
CA, USA, January 8-11, 2017, Online Proceedings. www.cidrdb.org. http://cidrdb.
org/cidr2017/papers/p82-dong-cidr17.pdf

[8] S. Ghemawat and J. Dean. 2011. LevelDB. https://github.com/google/leveldb
[9] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without

candidate generation. ACM sigmod record 29, 2 (2000), 1–12.
[10] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam. 2018.

Endurable Transient Inconsistency in Byte-Addressable Persistent B+-Tree. In
16th USENIX Conference on File and Storage Technologies (FAST 18). USENIX As-
sociation, Oakland, CA, 187–200. https://www.usenix.org/conference/fast18/
presentation/hwang

[11] intel. [n. d.]. ipmctl. https://github.com/intel/ipmctlïż¿.
[12] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman

Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al.
2019. Basic performance measurements of the intel optane DC persistent memory
module. arXiv preprint arXiv:1903.05714 (2019).

[13] Wook-Hee Kim, R Madhava Krishnan, Xinwei Fu, Sanidhya Kashyap, and Chang-
woo Min. 2021. PACTree: A high performance persistent range index using
PAC guidelines. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles. 424–439.

[14] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix
tree: ARTful indexing for main-memory databases. In 29th IEEE International
Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013,
Christian S. Jensen, Christopher M. Jermaine, and Xiaofang Zhou (Eds.). IEEE
Computer Society, 38–49. https://doi.org/10.1109/ICDE.2013.6544812

[15] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016.
The ART of Practical Synchronization. In Proceedings of the 12th International
Workshop on Data Management on New Hardware (San Francisco, California)
(DaMoN ’16). Association for Computing Machinery, New York, NY, USA, Article
3, 8 pages. https://doi.org/10.1145/2933349.2933352

[16] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: Scalable
hashing on persistent memory. arXiv preprint arXiv:2003.07302 (2020).

[17] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng Yang, Sathya
Gunasekar, Jimmy Lu, Daniel S. Berger, Nathan Beckmann, and Gregory R.
Ganger. 2021. Kangaroo: Caching Billions of Tiny Objects on Flash. In SOSP ’21:
ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event /
Koblenz, Germany, October 26-29, 2021, Robbert van Renesse and Nickolai Zel-
dovich (Eds.). ACM, 243–262. https://doi.org/10.1145/3477132.3483568

[18] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H Noh, and Beomseok Nam.
2019. {Write-Optimized} Dynamic Hashing for Persistent Memory. In 17th
USENIX Conference on File and Storage Technologies (FAST 19). 31–44.

[19] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996.
The Log-Structured Merge-Tree (LSM-Tree). Acta Informatica 33, 4 (1996), 351–
385. https://doi.org/10.1007/s002360050048

[20] William W. Pugh. 1990. Skip Lists: A Probabilistic Alternative to Balanced Trees.
Commun. ACM 33, 6 (1990), 668–676. https://doi.org/10.1145/78973.78977

[21] Facebook RocksDB Team. 2021. A Persistent Key-value Store for Fast Storage
Environments. http://rocksdb.org

[22] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swanson, and
Jishen Zhao. 2021. Characterizing and Modeling Nonvolatile Memory Systems.
IEEE Micro 41, 3 (2021), 63–70. https://doi.org/10.1109/MM.2021.3065305

[23] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang. 2022. Char-
acterizing the Performance of Intel Optane Persistent Memory: A Close Look at
Its on-DIMM Buffering. In Proceedings of the Seventeenth European Conference on
Computer Systems (Rennes, France) (EuroSys ’22). Association for Computing Ma-
chinery, New York, NY, USA, 488–505. https://doi.org/10.1145/3492321.3519556

[24] Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong Jiang. 2021.
ChameleonDB: a key-value store for optane persistent memory. In EuroSys ’21:
Sixteenth European Conference on Computer Systems, Online Event, United King-
dom, April 26-28, 2021, Antonio Barbalace, Pramod Bhatotia, Lorenzo Alvisi, and
Cristian Cadar (Eds.). ACM, 194–209. https://doi.org/10.1145/3447786.3456237

[25] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-Optimized and High-Performance
Hashing Index Scheme for Persistent Memory. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18). USENIX Association,
Carlsbad, CA, 461–476. https://www.usenix.org/conference/osdi18/presentation/
zuo

117

https://github.com/hansonzhao007/buflog
https://github.com/hansonzhao007/buflog
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://doi.org/10.1145/3164135.3164147
https://doi.org/10.1145/3164135.3164147
https://doi.org/10.1109/ICCD53106.2021.00057
https://doi.org/10.1109/ICCD53106.2021.00057
https://doi.org/10.1109/MICRO.2016.7783712
https://doi.org/10.1109/MICRO.2016.7783712
https://doi.org/10.1145/3352460.3358266
https://doi.org/10.1145/3352460.3358266
https://doi.org/10.1145/2819001.2819002
http://cidrdb.org/cidr2017/papers/p82-dong-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p82-dong-cidr17.pdf
https://github.com/google/leveldb
https://www.usenix.org/conference/fast18/presentation/hwang
https://www.usenix.org/conference/fast18/presentation/hwang
https://github.com/intel/ipmctl
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1145/2933349.2933352
https://doi.org/10.1145/3477132.3483568
https://doi.org/10.1007/s002360050048
https://doi.org/10.1145/78973.78977
http://rocksdb.org
https://doi.org/10.1109/MM.2021.3065305
https://doi.org/10.1145/3492321.3519556
https://doi.org/10.1145/3447786.3456237
https://www.usenix.org/conference/osdi18/presentation/zuo
https://www.usenix.org/conference/osdi18/presentation/zuo

	Abstract
	1 Introduction
	1.1 DRAM as a Cache of PMem
	1.2 DRAM as a Write Buffer of PMem

	2 Background and Related Work
	2.1 The PMem
	2.2 Persistent Indexes

	3 The Three Spot-on Techniques
	3.1 Technique One: Buffering
	3.2 Technique Two: Out-of-place Update
	3.3 Technique Three: Caching
	3.4 Put them Together

	4 The Design of SPTree
	4.1 The Three Layers in SPTree
	4.2 Concurrency Control
	4.3 Search Operation
	4.4 Insert/Update/Delete/Lookup/Scan
	4.5 Split and Merge
	4.6 Recovery and Crash Consistency
	4.7 Instant Service Resumption with a Structured WAL

	5 Evaluation
	5.1 Experiment Setup
	5.2 The Throughput
	5.3 The Latency
	5.4 Recovery

	6 Conclusions
	References

