
Into the Fire: Delving into Kubernetes Performance and Scale
with Kube-burner

Sai Sindhur Malleni
Red Hat, Inc.

Bengaluru, India
smalleni@redhat.com

Raul Sevilla Canavate
Red Hat, Inc.
Madrid, Spain

rsevilla@redhat.com

Vishnu Challa
Red Hat, Inc.

Raleigh, US, NC
vchalla@redhat.com

ABSTRACT
This paper introduces Kube-burner1, an open-source tool for orches-
trating performance and scalability testing of Kubernetes2, with
the ability to operate seamlessly across different distributions. We
discuss its importance in the cloud native landscape, features and
capabilities and delve into its architecture and usage. Additionally,
we also present a case study on performance benchmarking using
Kube-burner and subsequent analysis to demonstrate its value.

KEYWORDS
kubernetes, benchmark, workload, pods, containers, metrics, per-
formance testing, scale testing, openshift
ACM Reference Format:
Sai Sindhur Malleni, Raul Sevilla Canavate, and Vishnu Challa. 2024. Into
the Fire: Delving into Kubernetes Performance and Scale with Kube-burner.
In Companion of the 15th ACM/SPEC International Conference on Performance
Engineering (ICPE ’24 Companion), May 7–11, 2024, London, United Kingdom.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3629527.3651405

1 INTRODUCTION
Microservices deployed as containers have become the prominent
way of building and delivering software [3]. This rise in adoption of
container technologies as well as microservices based architectures
has elevated the importance of container orchestration engines
like Kubernetes in empowering modern application development
and delivery. In that sense, Kubernetes serves as the fundamental
building block of cloud native infrastructure.

As cloud native is all about building, deploying and managing
applications at scale, the performance and scale of the underlying
Kubernetes platform is of essence. Kube-burner, with its versatile
capabilities in scaling, creating, deleting, and patching Kubernetes
resources as per user defined scenarios, along with its ability to col-
lect and index metrics from the monitoring system and benchmark
results plays a crucial role in illuminating the previously obscure
aspects of Kubernetes performance. Furthermore, its custom mea-
surements and alerting features notify users when Key Performance
Indicators (KPIs) indicate that Service Level Objectives (SLOs) have
been breached, adding an extra layer of insight.
1https://github.com/kube-burner/kube-burner
2https://kubernetes.io

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3651405

2 ARCHITECTURE
Kube-burner is a CLI based tool written in Golang3 that provides
three major classes of functionality: benchmark orchestration
- creating, deleting and patching Kubernetes resources at scale;
measurements - detailed metrics obtained with the help of the
Kubernetes API, among others, such as how long it takes for a
pod to go from scheduling to ready (also known as podLatency)
and observability - the ability to collect metrics about the Ku-
bernetes platform under load by scraping a user defined set of
metrics from the Prometheus4 monitoring stack and index them
along with the benchmark results into a long term storage like
the local File system of the host from which kube-burner is run or
an Elasticsearch5/OpenSearch6 endpoint for subsequent retrieval,
visualization and comparison. Kube-burner is also capable of ex-
tracting certain metadata that defines the configuration of the Ku-
bernetes platform and appending that to the benchmark result data
to facilitate regression testing and comparisons between different
configurations such as Container Storage Interface (CSI) and Con-
tainer Network Interface (CNI) plugins or different distributions of
Kubernetes that have very nuanced differences as has been done
in some past work [1] [2] albeit using different tools. The resource
creation, deletion and patching functionality is implemented us-
ing client-go, while the Prometheus and Elasticsearch/OpenSearch
clients as well as the metadata collection is implemented as part of
a common library called go-commons that is imported as a module.
The objects created by Kube-burner are rendered using the default
Golang’s template library.

3 BENCHMARK ORCHESTRATION
Kube-burner is available as a binary that can run on Linux, Win-
dows or Darwin based systems across a wide range of CPU ar-
chitectures including x86_64 and arm64. Kube-burner in its most
common usage is invoked by passing a YAML based configuration
file to the executable on the CLI. The configuration file contains
certain global configuration options such as the endpoints of the
Elasticsearch/OpenSearch indexer followed by a list of jobs, with
each job having its own set of supported parameters. Each job
could create, delete or patch objects at a rate defined by the QPS
and Burst parameters within the job. An example job would be
one that creates several deployment objects per namespace across
several namespaces (determined by the jobIterations parameter) and
through each deployment creates multiple pods.

Ready-made benchmarks that mimic production workloads are
also available txo users to run directly instead of defining their
3https://go.dev
4https://prometheus.io
5https://www.elastic.co
6https://opensearch.org

89

https://doi.org/10.1145/3629527.3651405
https://github.com/kube-burner/kube-burner
https://kubernetes.io
https://doi.org/10.1145/3629527.3651405
https://go.dev
https://prometheus.io
https://www.elastic.co
https://opensearch.org


ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Sai Sindhur Malleni, Raul Sevilla Canavate, and Vishnu Challa

Figure 1: Kube-burner workflow

configuration file, providing a trade-off between flexibility and ease
of use.

4 OBSERVABILITY
Performing a benchmark using Kube-burner is relatively simple.
However, it is sometimes necessary to analyze and be able to re-
act to some KPIs in order to validate a benchmark. That is why
Kube-burner ships metric-collection and alerting systems based on
Prometheus expressions. As stated earlier, Kube-burner is capable of
connecting to the Prometheus stack running on the Kubernetes plat-
form and extracting metrics pertaining to the platform’s response
to the benchmark load. The extracted metrics are then indexed to
the configured indexer, either the local File system on the host run-
ning kube-burner or an Elasticsearch/OpenSearch endpoint for long
term storage, retrieval and further integration with tools capable
of graphing data such as Grafana7. The metrics collection feature
is configured through a file referenced by the metrics-profile flag,
which can point to a local path or URL of a YAML-formatted file con-
taining a list of the Prometheus expressions that Kube-burner will
perform one by one after all the jobs are finished. Kube-burner also
includes an alerting feature that is capable of evaluating Prometheus
expressions in order to fire and index alerts based on user-specified
Prometheus expressions. These alerts could be used to indicate
anomalies found in certain Key Performance Indicators.

5 MEASUREMENTS
Not all of the data that is capable of providing insights into the
performance of the platform during the course of a benchmark run
and facilitating debugging once a potential bottleneck has been
found can be obtained from the Prometheus stack running on the
Kubernetes cluster. For example, there are no readily available
metrics in Prometheus to quantify the performance of the platform
in terms of the time taken to schedule and run pods during periods
of heavy churn on the cluster. Furthermore, there is a need to be
able to gather Golang profiling data correlating to the benchmark
run from the Kubernetes infrastructure pods such as the API server
or etcd. Pprof is another supported custom measurement in Kube-
burner which helps the user gather profiling information to further
assist advanced debugging. In total, Kube-burner supports three
custom measurements during a benchmark run: podLatency - for
measuring the time it takes for pods to go from scheduling to ready
and further reporting quantiles across the entire set of pods created
7https://grafana.com

as part of the benchmark, vmiLatency - similar to podLatency
but for virtual machine instances running on Kubernetes through
KubeVirt and pprof - for collecting Golang profiling information
from Kubernetes infrastructure pods as well as user applications.

6 CASE STUDY
As part of continuous testing we undertake at Red Hat to estab-
lish the performance and scale leadership of OpenShift (Red Hat’s
enterprise grade Kubernetes distribution), we use Kube-burner ex-
tensively to quantify the performance of every release. A relevant
recent use case of Kube-burner has been its role in validating the
performance and scalability requirements of a CNI plugin in Open-
Shift (OVNKubernetes) before transitioning to General Availability
(GA) and replacing the previous one (OpenShiftSDN) as the default.
Workloads and metrics provided by Kube-burner were crucial to
detect the different bottlenecks this plugin had. For example, one of
these metrics, podLatency, , can provide deep insights into several
aspects of a CNI plugin’s performance, scalability and efficiency.
We used the 99th percentile from the quantiles reported by the
podLatency metric to summarize the time taken for the different
pod lifecycle stages, starting from their creation and ending up in
a ready status, which includes the network setup of the pods. All
of this was done during a benchmark that spins up thousands of
pods across the cluster. As can be seen from the figure below, the
4.14 release of OpenShift showed improved scalability by being
performant at larger cluster sizes.

Figure 2: Measurements from Kube-burner graphed to quan-
tify performance improvements compared to previous re-
lease

REFERENCES
[1] Heiko Koziolek and Nafise Eskandani. 2023. Lightweight kubernetes distri-

butions: a performance comparison of microk8s, k3s, k0s, and microshift. In
ACM/SPEC International Conference on Performance Engineering (ICPE ’23),
Coimbra, Portugal. ACM, New York, NY, USA. https://doi.org/10.1145/3578244.3
583737.

[2] Foutse Khomh Mohab Aly and Soumaya Yacout. 2018. Kubernetes or openshift?
which technology best suits eclipse hono iot deployments. In 11th Conference
on Service-Oriented Computing and Applications (SOCA). IEEE, 113–120. https:
//doi.org/10.1109/SOCA.2018.00024.

[3] Olaf Zimmermann. 2017. Microservices tenets. Computer Science-Research and
Development, 32, 3-4, (July 2017), 301–310. https://doi.org/10.1007/s00450-016-0
337-0.

90

https://grafana.com
https://doi.org/10.1145/3578244.3583737
https://doi.org/10.1145/3578244.3583737
https://doi.org/10.1109/SOCA.2018.00024
https://doi.org/10.1109/SOCA.2018.00024
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0

	Abstract
	1 Introduction
	2 Architecture
	3 Benchmark Orchestration
	4 Observability
	5 Measurements
	6 Case Study



