
LLaMPS: Large Language Models Placement System
Likhith Bandamudi

TCS Research
likhith.bandamudi1@tcs.com

Ravi Kumar Singh
TCS Research

ravik.singh2@tcs.com

Shruti Kunde
TCS Research

shruti.kunde@tcs.com

Mayank Mishra
TCS Research

mishra.m@tcs.com

Rekha Singhal
TCS Research

rekha.singhal@tcs.com

ABSTRACT
The rapid expansion of Large Language Models (LLMs) presents
significant challenges in efficient deployment for inference tasks,
primarily due to their substantial memory and computational re-
source requirements. Many enterprises possess a variety of comput-
ing resources—servers, VMs, PCs, laptops—that cannot individually
host a complete LLM. Collectively, however, these resources may
be adequate for even the most demanding LLMs.

We introduce LLaMPS, a novel tool, designed to optimally distrib-
ute blocks 1 of LLMs across available computing resources within
an enterprise. LLaMPS leverages the unused capacities of these
machines, allowing for the decentralized hosting of LLMs. This tool
enables users to contribute their machine’s resources to a shared
pool, facilitating others within the network to access and utilize
these resources for inference tasks. At its core, LLaMPS employs a
sophisticated distributed framework to allocate transformer blocks
of LLMs across various servers. In cases where a model is pre-
deployed, users can directly access inference results (GUI and API).
Our tool has undergone extensive testing with several open-source
LLMs, including BLOOM-560m, BLOOM-3b, BLOOM-7b1, Falcon-
40b, and LLaMA-70b. It is currently implemented in a real-world
enterprise network setting, demonstrating its practical applicability
and effectiveness.

CCS CONCEPTS
• Computing methodologies → Distributed AI Tool.

KEYWORDS
LLMs, Distributed Inference, Optimal block placement
ACM Reference Format:
Likhith Bandamudi, Ravi Kumar Singh, Shruti Kunde, Mayank Mishra,
and Rekha Singhal. 2024. LLaMPS: Large Language Models Placement
System. In Companion of the 15th ACM/SPEC International Conference on
Performance Engineering (ICPE ’24 Companion), May 7–11, 2024, London,
United Kingdom. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3629527.3651404
1Large Language models contain multiple transformer blocks which can be distributed
across machines.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3651404

1 INTRODUCTION
Large Language Models (LLMs) have become pervasive and now
play a crucial role in business operations by facilitating customer
interactions and offering recommendations. As the LLMs continue
to grow in complexity, their size expands proportionally (with an
increase in parameters), necessitating increased computational ca-
pacity and memory to ensure optimal functional behavior. This is
a significant challenge for businesses with limited computational
resources, particularly in enterprises where numerous individual
devices/resources may lack the capability to independently host an
entire LLM. However, a viable alternative emerges as businesses

Figure 1: User interface of LLaMPS
consider leveraging the collective capabilities of multiple computers
resembling a collaborative effort to handle substantial workloads.
This approach explores the concept of "leftover" capacity within
large enterprises, where individual devices/resources may not pos-
sess the capability to independently host an LLM. By distributing
the computational load across multiple machines throughout an
enterprise, businesses can effectively utilize their leftover capacity,
enabling the deployment of LLMs in a distributed manner. This
innovative approach introduces new possibilities for inference and
other downstream tasks.

There exist some works in the literature such as Petals, Deep-
Speed, and Zero Inference which facilitate distributed inference.
However, none of them explore the prospect of utilizing leftover
capacity already available in an enterprise to deploy LLMs. Also,
they do not optimally distribute transformer blocks such that the
number of clients served, are maximized; or that multiple LLMs
can be optimally deployed using available capacity. We proposed
the OPA Optimal Placement Algorithm (details in [1]). We have
built a tool, LLaMPS, which facilitates the optimal placement of
transformer blocks on distributed resources in an enterprise-wide
network. LLaMPS utilizes Petals as the underlying distributed frame-
work in its current implementation. However, it is agnostic to the
underlying framework and is not bound by it. LLaMPS has the
following features:

87

https://doi.org/10.1145/3629527.3651404
https://doi.org/10.1145/3629527.3651404
https://doi.org/10.1145/3629527.3651404


ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Likhith Bandamudi, Ravi Kumar Singh, Shruti Kunde, Mayank Mishra, Rekha Singhal

• Leftover resource utilization: Enables collaborative shar-
ing of leftover capacity across multiple devices within the
enterprise.

• Optimal block distribution: Ensures optimal distribution
of transformer blocks on an enterprise-wide scale, using OPA
(optimal placement algorithm).

• Multi-Client and Multi-model support: Supports multi-
ple client requests concurrently. Enables loading of blocks
associated with multiple LLMs on a single resource, thus
optimizing overall resource usage in the enterprise.

• Cost optimization:LLaMPS distributes LLM across multiple
devices, utilizing leftover resources, reducing the need for
expensive hosting.

LLaMPS is a tool that adopts a client-server architecture, de-
veloped in Python, and utilizes the underlying open-source Petals
distributed framework. It has a web-based interface, featuring a
user-friendly Streamlit-built GUI. LLaMPS is adaptable and offers
flexibility to support future alternative distributed frameworks.

Figure 2: LLaMPS Architecture

2 LLAMPS ARCHITECTURE
We now discuss the architecture of LLaMPS depicted in Figure 2.

The user interacts with the LLaMPS tool via the user interface
(Figure 1). The Contributor Module enables the user to share
or contribute leftover capacity of his device with the distributed
network. If the user chooses to contribute, the IP address and server
information (available memory and cores) of the device are provided
to theAdmin. If not, it implies that the user only wishes to perform
an Inference task.

Available ServersModule enables displaying a list of resources
that are available on the network, along with their IP addresses,
available memory, and cores on the UI. This information is then
sent to the admin.

The Block Placement Module then kicks off the OPA (Optimal
block Placement Algorithm) which takes input all info about the
available servers and creates a plan for block placement. The plan
outlines a list of selected servers (from the available servers) and
the distribution of blocks to be loaded on each server for efficient
resource utilization. Additional details of OPA can be found in our
paper [1].

The Deployment Module deploys the blocks on the servers
as per the plan. For example, Blocks (0:12) are loaded on Server 1;
Blocks (12:24) are loaded on Server 2, and so on. Once the blocks

are deployed, the user can start using the deployed model for the
inference task. The user inputs text and initiates the Inference
process.
In the client, a route is formed based on the sequence of blocks
deployed on multiple servers, and the inference runs across these
servers. The inference output from the blocks is then converted
into a human-readable form and the output is then transmitted to
the user interface.

3 USE CASE
Figure 1 depicts the user interface of the LLaMPS tool. The user
will input the model name and the number of parameters of the
model. The number of blocks corresponding to the model will be
automatically displayed. The user may choose to contribute or
share his device’s leftover resources or perform inference without
sharing any resources. Upon clicking the Available Servers button,
the list of available servers will be displayed. The user then clicks
the Optimal Placement Algorithm button which creates a plan for
optimal distribution of blocks. The blocks are deployed by clicking
the Deploy button. Once the deployment is complete, the user can
then perform inference as displayed in the right pane.

Assume that an enterprise has the following list of available
servers s1<155, 8>, s2<113.5, 8>, s3<83.5,2>, s4<83.5,4>, and s5<83.5,8>.
The first value in the tuple represents the available leftover memory
in GBs and the second value represents the number of available
cores. The user wants to deploy the LLama2 70b model, which
comprises 80 transformer blocks. The size of LLaMA2 is approx-
imately 300GB including overheads. No single server within the
enterprise can host the entire LLama2 model. By leveraging the
combined memory capacities of multiple servers, the OPA algo-
rithm of LLaMPS creates a plan for deployment. Servers s1, s2, and
s5 are selected taking into account available memory and cores and
will host transformer blocks 0-34, 35-60, and 61-79 respectively.

During an inference cycle, the client management(step 7a in
Figure 2) tokenizes the input. The tokenized input is then relayed
to server s1, where it traverses the allocated transformer blocks.
The intermediate output is sequentially passed to server s2 and
subsequent servers until it has traversed all the transformer blocks.
The final output from the last server in the sequence is transmitted
back to the client(step 8 in Figure 2), where the required output is
generated.

4 CONCLUSION AND FUTUREWORK
LLaMPS is instrumental in addressing the challenges associated
with deploying LLMs on limited computational resources. It achieves
this by efficiently distributing the computational workload of LLMs
across multiple machines, using the OPA algorithm. OPA not only
optimizes the utilization of residual computing power but also man-
ages the dynamically varying leftover memory and compute re-
sources optimally. We plan to enhance the capability of the LLaMPS
tool by extending it for optimal utilization of enterprise cloud re-
sources when deploying LLMs.

REFERENCES
[1] Ravi Kumar Singh, Likhit Bandamudi, Shruti Kunde, Mayank Mishra, and Rekha

Singhal. 2024. Leftovers for LlaMA. In International Conference on Performance
Engineering(accepted). ICPE.

88


	Abstract
	1 Introduction
	2 LLaMPS Architecture
	3 Use Case
	4 Conclusion and Future Work
	References



