
Analyzing Performance Variability in Alibaba’s Microservice
Architecture: A Critical-Path-Based Perspective

Alireza Ezaz
Brock University

St. Catharines, Ontario, Canada
sezaz@brocku.ca

Ghazal Khodabandeh
Brock University

St. Catharines, Ontario, Canada
gkhodobandeh@brocku.ca

Naser Ezzati-Jivan
Brock University

St. Catharines, Ontario, Canada
nezzatijivan@brocku.ca

ABSTRACT
In large-scale microservice architectures, such as those utilized by
Alibaba, identifying and addressing performance bottlenecks is a
significant challenge due to the complicated interactions between
thousands of services. To navigate this challenge, we have devel-
oped a critical-path-based technique aimed at analyzing microser-
vice interactions within these complex systems. This technique
facilitates the identification of critical nodes where service requests
experience the longest delays. Our contribution is the discovery
of performance variability in service interactions’ response times
within these critical paths, and pinpointing specific interactions
within the system that show a high degree of performance vari-
ability. This improves the ability to detect service performance
issues and their root causes allowing for dynamic adjustment in
data collection detail, and targets critical interactions for adaptive
monitoring.

CCS CONCEPTS
• General and reference→ Performance; • Software and its
engineering→ Software maintenance tools; •Applied computing
→ Service-oriented architectures.

KEYWORDS
Microservice Architecture, Performance Bottlenecks, Critical Path,
Response Time Variability, Adaptive Tracing
ACM Reference Format:
Alireza Ezaz, Ghazal Khodabandeh, and Naser Ezzati-Jivan. 2024. Analyzing
Performance Variability in Alibaba’s Microservice Architecture: A Critical-
Path-Based Perspective. In Companion of the 15th ACM/SPEC International
Conference on Performance Engineering (ICPE ’24 Companion), May 7–11,
2024, London, United Kingdom. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3629527.3651845

1 INTRODUCTION
Distributed tracing is crucial for tracking how applications perform
across a system, ensuring that operations are smooth and reliable.
Unlike tools that focus on individual components, distributed trac-
ing monitors entire requests as they traverse various parts of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05. . . $15.00
https://doi.org/10.1145/3629527.3651845

system architecture, from a user’s click to data storage in a database
[9]. This monitoring plays an important role in identifying where
issues begin, spotting any behavior that does not align with the ex-
pected operation of the system, detecting deviations in performance
and finally enhancing the system’s overall effectiveness.

However, the challenge intensifies when managing large-scale
microservice-based applications like those at Alibaba, Uber, and
Amazon, where thousands of services are constantly interacting.
The complexity of these systems increases by complicated depen-
dencies among services, the large number of monitoring metrics
(e.g., Netflix exposes 2 million metrics and Uber exposes 500 mil-
lion metrics [10]), and frequent updates, all alongside the extensive
data produced by distributed tracing [11]. These factors make it
particularly difficult to diagnose performance issues and pinpoint
their root causes. To effectively manage these challenges, accurate
detection of performance issues and clever analysis are essential.

Recent studies such as [6, 7, 12] have highlighted advancements
in microservices monitoring and analysis, employing scalable, real-
time frameworks and delving into microservice dependencies and
performance. These contributions emphasize the utility of machine
learning in predicting usage patterns and the importance of un-
derstanding microservice dependencies for improved performance
analysis. However, a critical gap remains in the analysis of perfor-
mance variability across microservices as those approaches often
overlook the insights that can be gained from this analysis across
different system components.

This is where we take performance variation analysis into ac-
count. By looking at how performance values fluctuate, we can find
patterns or issues that point to the root of the problems. Consider
a scenario in which a single microservice is involved in handling
(a part of) three requests within a span of three minutes, but its
latency varies significantly for each request. The first request is
processed in just 1 millisecond, the second takes longer, at 30 mil-
liseconds, and the third request experiences a substantial delay,
requiring 500 milliseconds to complete. Such a notable difference in
the service time of the same microservice, known as performance
variability, if persistent across numerous interactions, is a red flag
that indicates a potential problem warranting further investigation.

Building on this idea, our contribution is conducting a deeper
analysis of the concept of performance variability in a large-scale
microservice architecture. In our proposed technique, we begin
with extracting critical paths from the trace dataset. A critical path
is defined as a sequence of service interactions where requests
experience the longest delays. After extracting critical paths from
the requests, we group them into categories based on how similar
they are to each other. For each group of requests sharing the same
critical path, our technique focuses on extracting microservice

82

https://orcid.org/0009-0001-4156-2750
https://orcid.org/0009-0001-4587-1876
https://orcid.org/0000-0003-1435-6297
https://doi.org/10.1145/3629527.3651845
https://doi.org/10.1145/3629527.3651845
https://doi.org/10.1145/3629527.3651845

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Alireza Ezaz, Ghazal Khodabandeh and Naser Ezzati-Jivan.

interactions within these paths. It involves collecting response
times for each interaction from the caller (upper) microservice to
the callee (downstream) service over fixed time intervals. Then
we calculate average response times and their variance for these
interactions. By examining the collected data, our technique aims to
identify abnormally high or low response time variations. This step
is crucial for pinpointing specific microservices that deviate from
expected performance norms, suggesting potential areas of concern.
Such analysis uncovers deeper issues, from resource constraints to
inefficient microservice executions, offering a refined approach to
diagnosing and optimizing microservice issues.

2 RELATEDWORK
Past efforts introduce various frameworks and techniques for mon-
itoring microservice architecture and analysis of dependencies by
creating call graphs and evaluating them for anomaly detection,
root cause analysis, and further system optimization. However,
they often overlook the insights that can be gained from perfor-
mance variability analysis. Luo et al. [6] present a comprehensive
study of large-scale microservice deployments in AliBaba’s pro-
duction clusters, focusing on the structural properties of microser-
vice call graphs and call dependencies. It also offers an in-depth
characterization of microservice runtime performance, providing
insights into scheduling and resource management. Barham et al.
[3] introduce Magpie, a tool designed to model and analyze system
workloads by capturing resource consumption and control paths of
requests in a system. It features an approach for detailed workload
characterization without requiring modifications to the system,
enabling accurate performance analysis and debugging. Similarly,
Thalheim et al. [10] designed Sieve to derive actionable insights
from monitored metrics in distributed systems. Sieve features a
metrics reduction framework and a metrics dependency extractor,
which together help in filtering out unimportant metrics and infer-
ring metrics dependencies, thereby enhancing the management of
microservices-based applications analysis. Other studies combine
machine learning techniques with their designed frameworks to
find interesting results in microservice systems. chen et al. [4] in-
troduce a deep learning approach to automate fault diagnosis with
high precision, to detect faults, and identify root causes effectively.
In another study, Janecek et al. [5] introduced a framework for
detecting performance anomalies in software systems through the
analysis of system-level trace data by employing critical path anal-
ysis and machine learning clustering. Nevertheless, these studies
focus on anomaly detection and system monitoring, bypassing an
in-depth exploration of performance variability and its implications
for system optimization.

3 METHODOLOGY
Building upon the foundational work of Ates et al. [2] and Samba-
sivan et al. [8], our methodology leverages the premise that perfor-
mance variation is indicative of unknown system behaviors and that
requests following similar workflows are expected to yield similar
runtime footprints. Our study utilizes data from Alibaba’s produc-
tion clusters1 [1], focusing specifically on the first one hour of the

1https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-
v2022

dataset. This initial period encompasses traces across nearly twenty
thousand microservices, offering a concise yet significant observa-
tion window. The data includes service IDs within the call graph,
performance metrics such as response time, and the relationships
between upstream (caller) and downstream (callee) microservices,
preparing the basis for our analysis.

Our proposed methodology, as shown in Fig 1, involves data pre-
processing, critical path extraction, performance variation analysis
within the critical paths, and visualization tools. Our developed tool
and scripts used in this methodology are available online at 2. In
the subsequent sections, we will elaborate on each step separately.

3.1 Data Collection and Preprocessing
As shown in stage (1) of Fig 1, our method begins with the extraction
and preprocessing of the trace data. The preprocessing phase is
important for ensuring data integrity and usability. The following
steps outline our preprocessing approach:

(1) Dataset Cleaning: We cleaned the dataset by removing
entries with invalid or non-numeric values for response
times.

(2) Invalid Trace ID Removal: We identified and excluded
records associated with invalid response time values by iso-
lating unique trace IDs corresponding to these records.

(3) Null Value Handling: Further cleaning involved discarding
records containing any empty fields.

(4) Unnecessary Features Removal: We also removed un-
necessary features to focus the dataset on essential metrics
relevant to our study such as timestamp, trace ID, um (upper
microservice), dm (downstream microservice), rt (response
time of dm to um).

3.2 Critical Path Extraction
Following the preprocessing of Alibaba’s microservice interaction
data, our methodology advances to stage (2) in Fig 1; extraction of
critical paths. The extraction process is detailed as follows:

(1) Critical Path Identification:
At this stage, we identify each request in AliBaba’s trace
dataset by filtering unique trace IDs. For each request, records
are sorted by timestamp to establish the sequence of inter-
actions. The ’endtime’ for each interaction is calculated by
adding its response time to its timestamp. The interaction
with the longest ’endtime’ signifies the end of the critical
path. Tracing back from this endpoint, the sequence of ser-
vices involved in the critical path, from upstream to down-
stream, is determined.

(2) Grouping Requests Based on Critical Path Similarity:
Under the assumption that requests with similar workflows
should yield similar performance metrics [2], our designed
technique groups requests sharing an exact similar critical
path.

By focusing on these critical paths extracted , we aim to identify
the key areas where performance optimization efforts should be
concentrated.

2https://github.com/Alireza-Ezaz/Analyzing-Performance-Variability-in-Alibaba-s-
Microservice-Architecture

83

https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2022
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2022
https://github.com/Alireza-Ezaz/Analyzing-Performance-Variability-in-Alibaba-s-Microservice-Architecture
https://github.com/Alireza-Ezaz/Analyzing-Performance-Variability-in-Alibaba-s-Microservice-Architecture

Analyzing Performance Variability in Alibaba’s Microservice Architecture: A Critical-Path-Based Perspective ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Figure 1: The Architecture of Our Proposed Technique

3.3 Performance Variation Analysis
Moving on to stage (3) in Fig 1, we investigate the performance
variation within each group of requests with the same critical path.
We then focus on how each specific microservice involved in the
path, exhibit variability in its response times.

3.3.1 Collecting Average Response Time and Standard deviation for
each critical interaction. For groups of requests following the same
critical path, our method records the response times of each mi-
crosservice interaction within these paths. This is done over twenty
3-minutes intervals creating a 1-hour observation window. After
collecting these response times, it calculates the average response
times and standard deviations, for each of the interactions, aiming
to further localize the performance issue into a specific critical
interaction in the next step.

3.3.2 Performance Variation Analysis and Localizing the Sources
of Variation. As the core of our contribution, We analyze the vari-
ability in response times for each interaction within the extracted
critical paths. Having the average and standard deviation for each
interaction from the previous step, the average provides a baseline
of expected performance, while the standard deviation reveals the
extent of variability, offering insights into the consistency of the
corresponding microservice’s response. This dual metric approach
enables a more granular understanding of performance variations,
uncovering more details about microservice interactions. High vari-
ability (a large standard deviation compared to the average response
time) suggests potential areas of concern, signaling that the per-
formance of certain interactions (critical interactions) within the
critical path is inconsistent and the problem can be localized to
those specific critical interactions. This inconsistencymay be indica-
tive of deeper issues such as network latency, resource contention,
or issues in service dependencies, which could adversely affect the
overall system performance.

3.4 Visualization and Insight Generation
For further analysis in stage (4) of Fig 1, we plot the average re-
sponse times and standard deviations across predetermined three-
minute intervals, highlighting interactions that exhibit significant
variability. These plots are helpful in pinpointing areas of instabil-
ity, suggesting where further optimization and investigation are

necessary. For each interaction characterized by high variability
(our criteria for ’high’—selects interactions where the standard de-
viation exceeds ten times the mean response time), we generate
dual-axis plots that represent the average response times against
the occurrence counts over the intervals. At the end, we generate a
report summarizing insights, including the number of unique traces
examined, the variety of critical paths identified, and interactions
with notable performance variability. This summary, alongside de-
tailed statistics and visualizations, is compiled into user-friendly
formats, ensuring that the insights are accessible to stakeholders
involved in system development and optimization.

4 ANALYSIS AND DISCUSSION
Our investigation into the performance variation within Alibaba’s
microservice architecture led to the extraction of 91,704 unique crit-
ical paths from a 1-hour interval dataset of 40,062,862 requests, each
distinguished by a unique trace ID. Of these, 1,891 microservice in-
teractions within critical paths exhibited a noticeably high variance
in performance. Our analysis has unfolded insightful patterns of
response time variability. Delving into the data, we have presented
twelve selected plots in Fig 2, each uncovering a critical interaction
within the corresponding critical path. Our analysis is based on
interactions grouped into four general patterns, characterized by
abnormal fluctuations within at least one three-minute interval in
an hour.

The analysis of data through our technique is visually repre-
sented in Fig 2, where the x-axis segments the observation window
into 3-minute intervals. Green bars graphically depict the aver-
age response time per interval, with numerical standard deviation
values indicated above, offering a clear view of performance fluctu-
ations. The blue line complements this by illustrating interaction
counts, and black error bars extend from each green bar to represent
the range of response time variability, providing an overview of the
interaction’s performance variability. The presence of error bars
extending into negative values does not imply negative response
times; they simply show that the lower range of variability falls
below the mean due to the subtraction of the standard deviation
from the average. Interaction counts should be interpreted with
reference to the right y-axis, and average response times should be
related to the left y-axis.

84

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Alireza Ezaz, Ghazal Khodabandeh and Naser Ezzati-Jivan.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2: Performance Variability Analysis for Different Critical Interactions within Corresponding Critical Paths

Among the patterns observed, one notable scenario in Figures 2a,
2b, 2c, and 2d showcased some periods where the interaction count,
average response time, and the variation in response time were
simultaneously high. This indicates a potential overload scenario,
suggesting the system was handling a higher volume of requests

Conversely, we also identified intervals like the first 30 min-
utes of Fig 2e where, despite a high number of interactions, the
average response time and standard deviations remained stable,
hinting at the system’s ability to efficiently manage load without
compromising on performance consistency.

Another pattern such as 36-39 minute interval in Fig 2a, 45-48
minute interval in Fig 2e, 0-3 minute interval in Fig 2f, 30-33 minute
interval in Fig 2g, and 0-3 minute interval in Fig 2h, highlighted
through our analysis was the occurrence of intervals where an
increase in the average response time was accompanied by sub-
stantial variability, despite a lower interaction count compared to
peak periods. This indicates that factors other than the volume of
interactions, such as resource allocation or network issues, could
be impacting performance.

Furthermore, we observed a critical interaction in 45-48 minute
interval in Fig 2i where the average response time either decreased
or remained low, yet the variability in response times increased.
This suggests a growing inconsistency in how requests are pro-
cessed, with some being completed swiftly while others face delays,
leading to an unpredictable performance landscape.

In Figures 2j, 2k, and 2l we see a combination of the above scenar-
ios of system performance previously discussed, each highlighting
different ways that performance can vary under various conditions.

Its analysis emphasizes the complex nature of performance issues,
showing how different factors can impact the system’s effective-
ness and dependability. By analyzing these figures, we get a deeper
insight into the system’s behavior, which helps identify specific
areas (critical interactions) that could benefit from optimization or
further detailed study.

Overall, our results indicate that our approach provides a tar-
geted method for monitoring and diagnosing the system’s behavior
and directs developers toward potential points of optimization,
thereby mitigating system failures or inefficiencies. It also identifies
critical interactions with high performance variation as prime can-
didates that can be considered for adaptive tracing and monitoring.

5 CONCLUSIONS AND FUTUREWORK
We analyzed performance variations within Alibaba’s microservice
architecture, focusing on identifying critical paths and analyzing
response time variability. Our findings emphasize the complexity
of managing performance in microservice architectures and the
importance of continuous monitoring and analysis to identify and
address bottlenecks.

Future work will extend this analysis by incorporating additional
performance metrics such as CPU and memory utilization, apply-
ing machine learning algorithms to predict potential performance
bottlenecks, and enhancing trace grouping techniques to efficiently
manage and analyze large datasets. These efforts aim to improve the
understanding and management of system performance, leading to
more robust and efficient microservice architectures.

85

Analyzing Performance Variability in Alibaba’s Microservice Architecture: A Critical-Path-Based Perspective ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

REFERENCES
[1] Alibaba Group. 2022. Alibaba Cluster Data - Cluster Trace of Mi-

croservices. https://github.com/alibaba/clusterdata/tree/master/cluster-trace-
microservices-v2022. Accessed: YYYY-MM-DD.

[2] Emre Ates, Lily Sturmann, Mert Toslali, Orran Krieger, Richard Megginson,
Ayse K Coskun, and Raja R Sambasivan. 2019. An automated, cross-layer in-
strumentation framework for diagnosing performance problems in distributed
applications. In Proceedings of the ACM Symposium on Cloud Computing. 165–170.

[3] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. 2004. Using
Magpie for request extraction and workload modelling.. In OSDI, Vol. 4. 18–18.

[4] Hao Chen, Kegang Wei, An Li, Tao Wang, and Wenbo Zhang. 2021. Trace-based
intelligent fault diagnosis for microservices with deep learning. In 2021 IEEE
45th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE,
884–893.

[5] Madeline Janecek, Naser Ezzati-Jivan, and Seyed Vahid Azhari. 2021. Container
workload characterization through host system tracing. In 2021 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 9–19.

[6] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang,
Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing microservice de-
pendency and performance: Alibaba trace analysis. In Proceedings of the ACM

Symposium on Cloud Computing. 412–426.
[7] Barakat Saman. 2017. Monitoring and analysis of microservices performance.

Journal of Computer Science and Control Systems 10, 1 (2017), 19.
[8] Raja R Sambasivan and Gregory R Ganger. 2012. Automated diagnosis without

predictability is a recipe for failure. In 4th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 12).

[9] Yuri Shkuro. 2019. Mastering Distributed Tracing: Analyzing performance in
microservices and complex systems. Packt Publishing Ltd.

[10] Jörg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod Bhatotia,
Ruichuan Chen, Bimal Viswanath, Lei Jiao, and Christof Fetzer. 2017. Sieve:
Actionable insights from monitored metrics in distributed systems. In Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference. 14–27.

[11] Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. 2020. Microrca: Root cause
localization of performance issues in microservices. In NOMS 2020-2020 IEEE/IFIP
Network Operations and Management Symposium. IEEE, 1–9.

[12] Cathy H Zhang and M Omair Shafiq. 2022. A Real-time, Scalable Monitoring and
User Analytics Solution for Microservices-based Software Applications. In 2022
IEEE International Conference on Big Data (Big Data). IEEE, 6125–6134.

86

https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2022
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2022

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data Collection and Preprocessing
	3.2 Critical Path Extraction
	3.3 Performance Variation Analysis
	3.4 Visualization and Insight Generation

	4 Analysis and Discussion
	5 Conclusions and Future Work
	References

