Enhancing the Performance of Deep Learning Model Based
Object Detection using Parallel Processing (Work In Progress
Paper)

Omar Imran
Carleton University
Ottawa, ON, Canada
omarimran@cmail.carleton.ca

ABSTRACT

The need for accelerated object detection is paramount for safety
critical applications such as autonomous vehicles. This paper fo-
cuses on leveraging parallel processing techniques for enhancing
the performance of object detection. Specifically, this research engi-
neers system performance by timely detection of common objects
encountered by vehicles, such as other automobiles, pedestrians,
and bicycles. Deploying popular pretrained deep learning models
like the You Only Look Once (YOLO) model within the Apache
Spark framework, the potential enhancements in detection speed
achieved through parallel processing are investigated. The capabil-
ity of the system to efficiently handle large datasets and distribute
time-critical applications across multiple nodes is explored to im-
prove both latency and scalability. The one-factor-at-a-time method
is used to assess the impact of different system and workload pa-
rameters on performance. Of particular interest is the impact of
Spark data partitioning on performance, especially for driving sce-
narios where the number of objects are changing rapidly. A novel
data partitioning technique that uses the principles of entropy is
utilized. The overall performance objective of this research will be
to improve speed for object detection in cars which can improve
safety in time critical events such as sudden braking or turning.

CCS CONCEPTS

« Computing methodologies — Massively parallel algorithms;
Object detection.

KEYWORDS

Parallel Processing, Object Detection, Deep Learning, Apache Spark,
Video Processing

ACM Reference Format:

Omar Imran, Shikharesh Majumdar, and Sreeraman Rajan. 2024. Enhancing
the Performance of Deep Learning Model Based Object Detection using
Parallel Processing (Work In Progress Paper). In Companion of the 15th
ACM/SPEC International Conference on Performance Engineering (ICPE °24

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE 24 Companion, May 7-11, 2024, London, United Kingdom

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05

https://doi.org/10.1145/3629527.3651427

Shikharesh Majumdar

Carleton University
Ottawa, ON, Canada
majumdar@sce.carleton.ca

Sreeraman Rajan

Carleton University

Ottawa, ON, Canada
sreeramanr@sce.carleton.ca

Companion), May 7-11, 2024, London, United Kingdom. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3629527.3651427

1 INTRODUCTION

Timely detection of objects is crucial in safety critical applications
such as autonomous vehicles and has become an important subject
of research due to increase of accidents happening with autonomous
vehicles such as self driving cars [10, 21, 23]. Particularly, the in-
cident when a Tesla in autopilot mode failed to stop at a red light
and crashed it into another car killing two people questioned the
safety of autonomous vehicles [24]. Object detection is crucial for
ensuring the safety of autonomous vehicles and other safety critical
applications, such as the detection of objects by Unmanned Aerial
Vehicles [32]. The focus of this paper is to use parallel processing
to improve object detection.

This work in progress paper specifically concentrates on the
identification of objects like pedestrians, traffic lights, and trucks
encountered by moving vehicles. The research will utilize the MIT
DriveSeg dataset, featuring video frames captured by a camera
mounted on a moving vehicle [6]. These video frames capture vari-
ous driving environments including rural roads, busy highways, and
city streets, enabling the simulation of diverse scenarios encoun-
tered by vehicles in daily life. Then, using the You Only Look Once
Version 3 (YOLOvV3) pretrained deep learning model and the Apache
Spark parallel computing framework, object detection on the frames
will be carried out in parallel. This research will utilize Amazon
Web Services (AWS) cloud servers to create scalable Spark clusters
which will facilitate in the deployment of the proof-of-concept
prototype used in the different experiments. The experiments will
use the one-factor-at-a-time approach [27] to systematically alter
various system parameters, including the number of worker nodes
and the average number of objects in each scenario, to assess their
individual impact. This paper will also explore the effect of data
partitioning strategies on performance when evenly distributing
dynamically changing frames across the various nodes. The pa-
per will introduce a unique method for estimating workload and
allocating frames across partitions using frame entropy.

The contributions of this paper include:

e A frame entropy based novel technique for workload esti-
mation and frame allocation across the different nodes in a
parallel processing platform such as Spark.

o A proof-of-concept prototype deployed on Spark for ana-
lyzing the performance of the concurrent object detection
techniques discussed in the paper. This includes combining
the YOLOV3 pretrained deep learning model with Apache

https://doi.org/10.1145/3629527.3651427
https://doi.org/10.1145/3629527.3651427

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

Spark’s distributed computing framework thus enabling the
performance engineering of deep learning based object de-
tection on parallel platforms.

e Initial insights into the impact of different system and work-
load parameters on the performance of the object detection
techniques.

Further contributions to the state of the art are expected from
continuation of the research as discussed in Section 6.

Previous research done has shown a 60% performance increase
when deploying deep learning models on Spark clusters, suggesting
the potential of parallel programming in object detection tasks
[20]. The YOLOv3 model has been vastly used in the literature for
object detection for applications such as the detection of unmanned
aerial vehicles [11]. Furthermore, research has been done in the
literature as well on different partitioning algorithms in Spark. They
analyzed different partitioning approaches for a textual dataframe
and concluded that Spark’s standard random Hash Partitioning
could be optimized further with custom partitioning strategies [22].
This further indicates that the choice of partitioning algorithm could
also play a significant role in other applications such as enhancing
performance in video processing. Notably, while most research
papers emphasize the quantity of data points in partitioning studies,
this paper uniquely concentrates on the specific content within each
partition to estimate workload.

This paper is organized as follows. Section 2 gives a background
on the methodologies used in this research. Section 3 gives an
overview on the design of the system and the experiments. Section
4 goes over the experimental results. Section 5 concludes the paper
and Section 6 gives a summary of the steps for further work.

2 BACKGROUND

This section will provide a background on the different topics used
in this paper.

2.1 Apache Spark

Apache Spark can be used to efficiently distribute workloads and
data across a cluster of machines or nodes and is used for distribut-
ing the processing of the video frames. This distributed computing
framework specializes in parallel task execution, enabling fast pro-
cessing and analysis of big data tasks such as video processing
[18, 30]. Its in-memory computing capability reduces disk access,
significantly boosting processing speeds compared to alternatives
such as the Hadoop Distributed File System [31]. Spark supports
multiple programming languages and offers various libraries for
data processing tasks, such as PySpark.

2.1.1 Partitioning . A key component of Apache Spark concerns
partitioning which is fundamental in determining the processing
speed of the job at hand. Partitioning involves splitting up the data
and tasks into smaller partitions that will ultimately be processed
in parallel across the various nodes [22]. Ensuring a balanced dis-
tribution of tasks across partitions is critical to prevent any single
node from becoming a bottleneck due to an excessive workload
compared to others.

In this paper, the frames will be split up into different partitions
that will be distributed across the various nodes. Traditional ap-
proaches typically divide data into partitions of equal size, basing

Imran, Majumdar and Rajan

the division on the quantity of data [8], which can be useful for
tabular or time series data. However, in this research, information
from each data point (i.e., the video frames) will be leveraged to
dynamically create the partitions and better split up the workload.

2.2 Dataset

In this paper, the MIT DriveSeg dataset, which contains images
of different driving scenarios that were acquired using a camera
mounted on top of a car during the daylight was utilized. The dataset
contains 20,100 video frames from 68 different driving scenarios [6].
The different scenarios depict different situations such as driving
through a busy downtown street with a large number of potential
objects or driving on a rural road with very few objects. The images
have annotations for the different objects that have been labeled
using semi-automated methods [7]. Some annotations may not
be accurate because of semi-automatic labeling. Therefore, the
annotations and labels have not been used in this paper.

2.3 Object Detection Techniques

As mentioned in Section 2.2, the annotations that came with the
MIT DriveSeg dataset, were shown not to be accurate due to the use
of semi-automated methods which provided the segmentation of
the images. Therefore, in this work, object detection of the driving
scenarios is done through the utilization of bounding boxes. A
bounding box is a rectangular frame that can be used to identify
objects within a given video frame [17].

2.3.1 YOLO Pretrained Model. The YOLOv3 model was used to
eliminate the need to train a deep learning model from scratch. The
use of YOLOV3 resulted in saving time by eliminating the need
for precise labels and allowing for the implementation of transfer
learning.

YOLO models are typically trained and optimized on a large
dataset such as the Common Objects in Context (COCO) dataset
[16]. Then, the model’s weights can be further optimized or reused
in other smaller datasets for object detection. YOLOv3 has shown
improved metrics such as mean Average Precision (mAP) and also
better processing speed when compared with other YOLO and
pretrained models [16]. Additionally, YOLOv3 has been effective in
maintaining a balance between detection speed and accuracy [13].
The YOLOv3 model has 80 possible classes of objects that can be
detected within each image [12]. YOLOVS3 is capable of detecting
various objects that can be encountered in a driving scenario, such
as cars, traffic lights, buses, trucks, street signs, pedestrians, and
more. Each object found in the image can be represented using a
bounding box.

2.3.2 Entropy . As mentioned in Section 2.1.1, one of the objec-
tives of this research is to dynamically create partitions based on
the estimated workload. A frame that has an abundant number of
objects will take longer to process compared to a frame that has
fewer objects. Therefore, there is a need to swiftly estimate the
workload so that it can be split up into balanced partitions.

L
Entropy = — Zpi log, (pi) (1)

i=1

Enhancing the Performance of Deep Learning Model Based Object Detection using Parallel

Processing (Work In Progress Paper)

(b) Frame with high entropy

Figure 1: Two different driving scenarios illustrating low and
high entropy.

Entropy can be used to determine the uncertainty or complexity
in an image. Entropy can also be mathematically defined as the
probability of occurrence p; at gray level i where L is the maxi-
mum pixel value [5, 19, 26]. Overall, equation 1 is computing the
uncertainty in each pixel of the frame. Furthermore, local entropy
can be used for images to examine the variance in images given a
window or a neighbourhood [26]. In Figure 1, there are two frames
from the MIT DriveSeg shown with their entropy overlaid on top
of each other. Pixels that are brighter have a higher local entropy
and vice versa. Homogeneous and less complex images (see Figure
1a) have a lower entropy when compared to heterogeneous and
more complex images (see Figure 1b). Therefore, entropy can serve
as a quick indicator of the number of objects in a frame, under the
assumption that more complex images typically contain a greater
number of objects, and simpler ones contain fewer.

3 PROPOSED APPROACH

This section will provide the overall approach used in devising the
proposed technique and a description of how the proof-of-concept
(POC) was implemented.

3.1 System Design

This system POC for the proposed technique was hosted on Ama-
zon Web Services (AWS). AWS is a cloud platform which provides
scalable computing and storage services [3]. AWS offers an ideal
platform for rapidly deploying different resources which can have
varying hardware specifications like the number of cores.

The MIT DriveSeg dataset was first uploaded to a Simple Storage
Service (S3) bucket which is a durable and scalable data storage
tool in AWS [4]. After the data was uploaded, a Spark cluster was
created. AWS provides a service known as Elastic Map Reduce
(EMR) which can be used to create and manage a Spark cluster with
a main node and multiple worker nodes. EMR uses the Hadoop

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

Yet Another Resource Negotiator (YARN) manager to organize the
different nodes. The main node requests different resources such
as memory or CPU cores from the YARN manager which then
distributes the tasks among the worker nodes [4].

Each node in the cluster represents an AWS Elastic Cloud Com-
puting (EC2) instance which is a cloud server containing various
libraries including Python and Spark [4]. Additionally, PySpark, the
Python library for Apache Spark, is installed on every node in the
cluster, serving as the main library for the program in this paper.
EC2 instances can be scaled up to include varying number of nodes
which have varying numbers of cores. For the POC, the m5 family
of EC2 instances which can have anywhere from 2 to 96 cores and
from 8 to 384 GB of memory for each node were used [2].

Figure 2 gives an illustration of the system and can be described
with the following steps.

(1) The EMR cluster will read from the S3 bucket containing
frames from a driving scenario.

(2) The main node will load in the YOLOv3 model with weights
trained on the COCO dataset using TensorFlow, a Python
deep learning library which can be used to create and load
neural network models [14].

(3) The YOLOv3 model is broadcast in the main node. In Spark,
memory-intensive variables can be broadcast to provide a
read-only version on the main node instead of replicating
them across all worker nodes [29].

(4) The tasks and frames are submitted to the main node. The
frames are split into partitions based on the chosen parti-
tioning algorithm that are outlined in Table 1.

(5) The YARN manager performs task scheduling with the worker
nodes.

(6) The worker nodes concurrently detect the objects in their
assigned frames using the YOLOv3 model.

(7) The bounding box detections are sent back to the main node.

(8) Once all worker nodes are done with their tasks, the results
are stored in a S3 bucket.

3.2 Experimental Design

The experiments used the one-factor-at-a-time approach where all
the factors in the experiment are set to their default values while
one factor was varied at a time [27]. The processing time required by
the worker nodes to complete all of the detections is the measured
metric for evaluating performance. The measurement of processing
time is the duration from the moment the frames are dispatched to
the worker nodes until the completion of all detections. The one-
factor-at-a-time approach helps in identifying the key factors that
impact the processing time. The different factors and their values
are shown in Table 1, with the default value shown in bold. The
selection of each factor will be further explained in this section.

3.2.1 Distribution Framework. The distribution framework is a
simple factor that will compare whether the use of distributed
computing is useful for the problem. Using no distribution will
mean running the program on a single node and with no parallelism
which will be compared to running it using multiple nodes on
Apache Spark.

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

Imran, Majumdar and Rajan

QOutput

Ty
Worker Node 1
n Frames Based on

—> Main Node
Input
n Frames Based on R
g™ Partitioning Algorithm Spork =
r Amazon|
Ecz
Detected Objects for Frames \ J

SEaEKS

Partitioning Algorithm are "Y
Spark
Amazon|
Detectad Objects for Frames Ec2

YN
Worker Node 2

Amazon|
E

Worker Node n

n Frames Based on
Partitioning Algorithm

Detected Objects for Frames

Amazon EMR

Figure 2: Overall system design for object detection.

3.2.2 Number of Objects . The number of objects within the sce-
nario will be compared to evaluate whether this led to a difference
in processing time. The hypothesis that needs to be verified is that
as the average number of objects in a scenario increases, it would
increase the overall workload for the system. For example, a driving
scenario in a busy urban street, would require a lengthier duration
for object detections, unlike a sparsely populated rural road with
few objects.

3.2.3 Number of Worker Nodes . The number of worker nodes will
be varied to analyze the impact of parallelism on performance.

3.24 Number of CPU Cores. Similar to Section 3.2.3, the number of
CPU cores within each worker node will be changed to investigate
the impact of core parallelism on performance.

3.2.5 Total Number of Frames . The total number of frames in a
video being processed will be varied to assess concomitant changes
in throughput. System throughput is defined as the number of
frames processed per second [27].

3.2.6 Partitioning Algorithm . As mentioned in Section 2.1.1, one of
the important objectives of this paper is to experiment with different
partitioning algorithms. The number of partitions in Spark can be
set manually. In most cases, setting the number of partitions to the
number of total cores has been observed to yield good results [9].

For experimenting with this parameter, two different video sce-
narios were combined; one scenario concerning a busy street with
a lot of objects and the other concerning a rural road with fewer
objects. The combined video is meant to replicate a scenario where
the number of objects varies throughout the video. For this case,
partition splits should be based on the estimated workload in each
partition and not based on the number of frames. One partition
could have frames from the scenario that has numerous objects
meaning it could become the performance bottleneck for the overall
system. This is because as mentioned in Section 3.2.2, as the number
of objects increase in a frame, the overall processing time for the
frame is expected to increase.

10

The four partitioning algorithms are experimented with include
the following.

(i) Video-based: In Video-based partitioning, each partition
split will have frames from the same video scenario.
Spark-based: In Spark-based partitioning, the partitions will
be assigned frames using the default Spark settings. Spark’s
default partitioning mechanism uses Hash Partitioning [9].
For this, a hash function is used to randomly assign the frame
to a partition. However due to its randomness, it could result
in a skewed data distribution as some partitions may contain
larger portions of the data while some partitions could be
empty [25, 28].

Object-based: In Object-based partitioning, each partition
will have an equal number of frames from each video. There-
fore, this implies that each partition should contain roughly
an equal number of objects, based on the assumption that ev-
ery frame from the each scenario possesses a similar quantity
of objects. To estimate the workload, one random frame was
sampled from each scenario with the assumption that frames
with higher number of objects will have a higher workload
and vice versa. To minimize overheads, the YOLOv3 model
was deployed on this one frame to estimate whether there is
a high or low number of objects within the whole scenario.
A threshold of 7 objects was established through experimen-
tation, categorizing a frame with 7 or more objects as an
indicator of high workload and and as an indicator of low
workload otherwise.

Entropy-based: As mentioned in Section 2.3.2, entropy can
be used to estimate the workload resulting from a given
frame, using the observation that frames with more objects
will generally have a larger entropy value than those that do
not. Therefore, similar, to Object-based partitioning, Entropy-
based partitioning can be used to estimate the workload
based on the contents of the frames. One of the benefits
of using Entropy-based partitioning is its fast computation

(i)

(iii)

~

(iv

Enhancing the Performance of Deep Learning Model Based Object Detection using Parallel

Processing (Work In Progress Paper)

speed, meaning it can be applied for all the frames. In con-
trast, Object-based partitioning can only be applied to one
frame since it requires running the YOLOv3 model to get
an estimate of the number of objects, which requires signifi-
cantly more computation power compared to calculating the
entropy of a frame. Additionally, to minimize system over-
heads, it is necessary to select a simple metric like entropy
for estimating workload. Entropy-based partitioning is pre-
sented in Algorithm 1. First, in Algorithm 1, the videos and
their frames are loaded into a variable known as df as shown
in lines 1 to 4. Then the entropy of each frame is found on
line 5. From lines 6 to 12, the frames are classified as having a
low or high number of objects based on if they have a low or
high entropy. The threshold value, found experimentally, will
distinguish whether a frame has more or less objects. Once
the groups are made, each partition will contain an equal
number of LESS OBJECTS and MORE_OBJECTS frames, as
shown in lines 13 and 14.

Algorithm 1 High Level Algorithm for Partitioning Frames Based
on Entropy

1: for video in videos do

2 files = files.append(load_video(video))
3: end for

4. df = spark.read.format("binaryFile”).load(files)
s: df [’entropy”] = getEntropy(df|[”frames”])
6: for row in df do

7: if row[”entropy”] < THRESHOLD then
8: row|[”group”] = LESS_OBJECTS

9: else

10: row|[”group”] = MORE_OBJECTS

11 end if

12: end for

—_
w

. partitions = df.rdd.getNumPartitions()
. df = partitionFrames(df, partitions)

—_
'S

4 EXPERIMENTAL RESULTS

The results for the experiments will be summarized. Each exper-
iment was executed 10 times to calculate a mean and a standard
deviation for the processing time.

Table 1: System and Workload Parameters.

Factor Value

Distribution Framework (None, Apache Spark)

Number of Objects (1-2, 7-8, 12-13)
Number of Worker Nodes (1,2,3,4)
Number of CPU Cores in Worker Nodes | (4, 8, 16, 32)

Number of Total Frames (150, 300, 900, 2700)

Partitioning Algorithm (Video, Spark,

Object, Entropy

1

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

Figure 3 shows that using Spark results in 50% decrease in pro-
cessing time, compared with using no distribution framework. This
establishes that using distributed computing is proven to be benefi-
cial for the given problem.

Figure 4 depicts that as the number of objects increase in the
frames, the processing time increases. This means that the workload
in the system is related to the average number of objects in each
scenario. This observation is important as it forms a necessary cri-
terion for differentiating between various partitioning algorithms.

Figure 5 show that as the computation power increases, the pro-
cessing times decreases. As the number of worker nodes increases,
the performance improves. Similar results were found when in-
creasing the number of cores.

Figure 6 shows that as the number of frames increase, the system
throughput also increases. This is an expected result because as the
size of the dataset increases, the throughput is expected to increase
as the impact on overall performance of fixed overheads due to
Spark, decreases with a larger dataset [1, 15].

Figure 7 shows the comparative performance of the different par-
titioning algorithms for two different scenarios, one on a busy street
with a large number of objects and one on a rural street with no
objects. By combining these scenarios a simulated dynamic video
is created where the number of objects are varying from one frame
to another. As shown, the worst performance was achieved by the
Video-based algorithm where each partition contains frames from
only one scenario which leads to uneven workload distribution. In
Video-based partitioning, certain partitions may turn into bottle-
necks due to the allocation of frames from scenarios with higher
workloads. Spark’s default partitioning algorithm was the second
worst in terms of performance. As described in Section 3.2.6, Spark’s
default partitioning algorithm relies on a random Hash partitioner
which may lead to a skewed data distribution. The randomness in
results can be seen as the standard deviation after 10 runs of the
algorithm is high, compared to the other algorithms analyzed in
this research. This implies that relying on Spark’s default algorithm
for data distribution in a dynamic video scenario may not always
give effective results. Object-based partitioning produced the best
results in Figure 7. However, as mentioned in Section 3.2.6, using
a single frame from each video to assess workload may lead to
inaccuracies in dynamic scenarios and may not be a good choice
to use for workload partitioning. If the video has varying number
of objects, then it is not sufficient to use one frame to estimate the
workload. Entropy-based partitioning produced comparable per-
formance results as Object-based. The entropy for each frame was
computed, making this approach the most accurate partitioning
algorithm as it is frame-specific. Furthermore, as shown in Figure
7, Entropy-based partitioning achieved an improvement of ~13%
in processing time when compared to Spark’s default partitioning
algorithm.

As mentioned in Section 3.2.6, for Entropy-based partitioning
a threshold parameter needs to be set so that the workload of
the frame can be classified. To experimentally find the threshold
value, three scenarios that had a large number of objects and three
scenarios that had a few objects were analyzed to calculate the
entropy of each frame (see Figure 8). Each bin in the histogram is
the number of frames that correspond to the energy value captured
in the x-axis. As shown in the figure, there is a clear difference

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

between the two groupings. From these results, the threshold value
used in Algorithm 1was set at 2.5 X 10°, since this is the value that

can differentiate a high workload frame from a low workload frame.

Processing Time (s)

None (TensorFlow Native) Spark

Type of Distribution Framework Used

Figure 3: Processing time for object detection versus distri-
bution framework.

120

100

Processing Time (s)
a
g

12 78

Average Number of Objects

12-13

Figure 4: Processing time for object detection versus average
number of objects in each frame.

100
80
60
40
20
o

1 2 3 a

Number of Worker Nodes

Processing Time (s)

Figure 5: Processing time for object detection versus number

of worker nodes.
o I I I I
150 300 900 2700

Number of Frames

~ w » RN

Throughput (Frames Processed per Second)

Figure 6: Throughput versus total number of frames being
processed.

12

Imran, Majumdar and Rajan

5 CONCLUSIONS

This paper demonstrated how parallel processing techniques de-
ployed on Apache Spark can be used to improve performance of the
deep learning based YOLOv3 model for detecting objects in videos.
First it was shown that using parallel processing is significantly
faster than using only TensorFlow with no parallel programming.
The results showed that as the number of objects in the videos
increased, the processing time also increased, this demonstrating
the correlation between the workload intensity and the number
of objects in the scenarios. As the computation power is increased
by adding more worker nodes or CPU cores, the performance im-
proved as well. Throughput was also found to be related to the
size of the videos. Different partitioning algorithms for dynamic
workload distribution were studied. The Entropy-based partition-
ing algorithm showed improved performance in processing the
detections when compared to Spark’s random partitioning.

6 FUTURE WORK

The preliminary results presented in this research open up several
items for future work which will include the following:

(i) The investigation of longer videos is one of the important
components of future work. For the initial work presented
in this pilot project, each video was 300 frames long. In the
results, it was shown that as the size of the dataset increases,
parallel processing becomes more beneficial. Therefore, ex-
perimentation with larger videos, that give rise to larger
datasets, need to be carried out. Furthermore, longer videos

140
120
100
60
20
20
o

Video Based Spark Default Object Based

Partition Algorithm

Processing Time (s)
o
&

Entropy Based

Figure 7: Processing time for detection for different parti-
tioning algorithm.

80 4 - 3 1-2 Objects

[7-8 Objects
70 1

60 4

50 4

40

Frame Count

30 4

20

10 4

15 25

Energy Detected

3.0 35

Figure 8: Distribution of entropy grouped by number of ob-
jects.

Enhancing the Performance of Deep Learning Model Based Object Detection using Parallel

Processing (Work In Progress Paper)

(iii)

that have dynamically changing scenes need to be used to
further confirm the usefulness of Entropy-based partitioning.
The removal of redundant frames is expected to improve
system performance. In this paper, every single frame in the
video was used for detection; however, many of these frames
have overlapping information. Performance would improve
by sampling a fixed number of frames once a substantial
change has taken place. Algorithms for identifying redun-
dant frames will be investigated. Improving the latency of
object detection will also be useful for real time applications.
Incorporating the use of other deep learning models will be
another direction for future work. In this paper, the YOLOv3
model was used for object detection but there are newer
versions of YOLO models, the performance of which can
be compared with the results from this research. Other pre-
trained models such as EfficientNet will also be investigated.
Computing the accuracy of object detections would be in-
cluded in future work. In this research, the accuracy of the
bounding boxes were not computed. Metrics like mean Aver-
age Precision (mAP) and Jaccard index are used to determine
the accuracy of the bounding box. Analysis of the potential
trade-offs between speed and accuracy will be performed.
Future work will also look to distribute pixels from individual
frames among the different nodes using parallel processing.
The use of Graphical Processing Units (GPUs) will be used in
future work to study its impact in performance, given their
proven ability to speed up processing times in deep learning
applications [27].

(ii)

ACKNOWLEDGMENTS

This research was funded by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

REFERENCES

[1] Nasim Ahmed, Andre LC Barczak, Teo Susnjak, and Mohammed A Rashid. 2020.

A comprehensive performance analysis of Apache Hadoop and Apache Spark
for large scale data sets using HiBench. Journal of Big Data 7, 1 (2020), 1-18.

] AWS. [n.d.]. Amazon EC2 M5 Instances. https://aws.amazon.com/ec2/instance-

types/m5/

] Ignacio Bermudez, Stefano Traverso, Marco Mellia, and Maurizio Munafo. 2013.

Exploring the cloud from passive measurements: The Amazon AWS case. In 2013
Proceedings IEEE INFOCOM. IEEE, 230-234.

] Lin Chen, Rui Li, Yige Liu, Ruixuan Zhang, and Diane Myung-kyung Wood-

bridge. 2017. Machine learning-based product recommendation using Apache
Spark. In 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Ad-
vanced & Trusted Computed, Scalable Computing & Communications, Cloud
& Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 1-6.

] Sandipan Dey. 2018. Hands-On Image Processing with Python: Expert techniques

for advanced image analysis and effective interpretation of image data. Packt
Publishing Ltd.

] Li Ding, Michael Glazer, Jack Terwilliger, Bryan Reimer, and Lex Fridman. 2020.

MIT DriveSeg (Semi-auto) Dataset. https://doi.org/10.21227/nb3n-kk46

] Li Ding, Jack Terwilliger, Rini Sherony, Bryan Reimer, and Lex Fridman. 2020.

MIT DriveSeg (Semi-auto) Dataset: Large-scale Semi-automated Annotation of
Semantic Driving Scenes. Massachusetts Institute of Technology AgeLab Technical
Report 2 (2020).

] J Geetha and N. G. Harshit. 2019. Implementation and Performance Comparison

of Partitioning Techniques in Apache Spark. In 2019 10th International Conference
on Computing, Communication and Networking Technologies ICCCNT). 1-5. https:
//doi.org/10.1109/ICCCNT45670.2019.8944759

] Anastasios Gounaris, Georgia Kougka, Ruben Tous, Carlos Tripiana Montes, and

Jordi Torres. 2017. Dynamic Configuration of Partitioning in Spark Applications.
IEEE Transactions on Parallel and Distributed Systems 28, 7 (2017), 1891-1904.
https://doi.org/10.1109/TPDS.2017.2647939

13

(10]

[11

[12

=
&

[14

(15]

[18

[19

[20

[21

~
£,

[23

[24

[25]

I
&

[27

[28

[29

[31

[32

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

Edward Helmore. 2022. Tesla behind eight-vehicle crash was in “full self-driving”
mode, says driver. https://www.theguardian.com/technology/2022/dec/22/tesla-
crash-full-self-driving-mode-san-francisco

Bowen Li, Nat Shineman, Jayson Boubin, and Christopher Stewart. 2021. Compar-
ison of Object Detectors for Fully Autonomous Aerial Systems Performance. In
Companion of the ACM/SPEC International Conference on Performance Engineering
(Virtual Event, France) (ICPE "21). Association for Computing Machinery, New
York, NY, USA, 165-166. https://doi.org/10.1145/3447545.3451170

Tao Li, Yitao Ma, and Tetsuo Endoh. 2020. A Systematic Study of Tiny YOLO3
Inference: Toward Compact Brainware Processor With Less Memory and Logic
Gate. IEEE Access 8 (2020), 142931-142955. https://doi.org/10.1109/ACCESS.2020.
3013934

Ignacio Martinez-Alpiste, Gelayol Golcarenarenji, Qi Wang, and Jose Maria
Alcaraz-Calero. 2021. A dynamic discarding technique to increase speed and
preserve accuracy for YOLOv3. Neural Computing and Applications 33, 16 (2021),
9961-9973.

Bo Pang, Erik Nijkamp, and Ying Nian Wu. 2020. Deep learning with tensorflow:
A review. Journal of Educational and Behavioral Statistics 45, 2 (2020), 227-248.
Md Armanur Rahman,] Hossen, and C Venkataseshaiah. 2018. SMBSP: a self-
tuning approach using machine learning to improve performance of spark in big
data processing. In 2018 7th International Conference on Computer and Communi-
cation Engineering (ICCCE). IEEE, 274-279.

Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement.
arXiv:1804.02767 [cs.CV]

Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid,
and Silvio Savarese. 2019. Generalized intersection over union: A metric and a
loss for bounding box regression. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 658—666.

Sajad Sameti, Mea Wang, and Diwakar Krishnamurthy. 2018. Stride: Distributed
video transcoding in spark. In 2018 IEEE 37th International Performance Computing
and Communications Conference (IPCCC). IEEE, 1-8.

scikit image. [n.d.]. Entropy. https://scikit-image.org/docs/stable/auto_
examples/filters/plot_entropy.html

Arindrajit Seal and Arindam Mukherjee. 2019. Real Time Accident Prediction and
Related Congestion Control Using Spark Streaming in an AWS EMR cluster. In
2019 SoutheastCon. 1-7. https://doi.org/10.1109/SoutheastCon42311.2019.9020661
David Shepardson. 2023. GM’s cruise recalling 950 driverless cars after pedestrian
dragged in ... https://www.reuters.com/business/autos-transportation/gms-
cruise-recall-950-driverless-cars-after-accident-involving-pedestrian-2023-
11-08/

Tinku Singh, Shivam Gupta, Manish Kumar, et al. 2023. Performance analysis
and deployment of partitioning strategies in apache spark. Procedia Computer
Science 218 (2023), 594-603.

Lauren Smiley. 2023. The legal saga of Uber’s fatal self-driving car crash is
over. https://www.wired.com/story/ubers-fatal-self-driving-car-crash-saga-
over-operator-avoids-prison/

Hayley Smith and Russ Mitchell. 2022. A Tesla on autopilot
killed two people in Gardena. is the driver guilty of manslaughter?
https://www.latimes.com/california/story/2022-01-19/a-tesla-on-autopilot-
killed-two-people-in-gardena-is- the- driver- guilty- of-manslaughter

H. S. Sreeyuktha and J. Geetha Reddy. 2019. Partitioning in Apache Spark. In
Innovations in Computer Science and Engineering, H. S. Saini, Rishi Sayal, Aliseri
Govardhan, and Rajkumar Buyya (Eds.). Springer Singapore, Singapore, 493-498.
Badri Narayan Subudhi, Pradipta Kumar Nanda, and Ashish Ghosh. 2011. Entropy
based region selection for moving object detection. Pattern recognition letters 32,
15 (2011), 2097-2108.

Azhar Talha Syed and Shikharesh Majumdar. 2022. Parallel Processing Techniques
for Analyzing Large Video Files: a Deep Learning Based Approach. In 2022 IEEE
Intl Conf on Parallel and Distributed Processing with Applications, Big Data and
Cloud Computing, Sustainable Computing and Communications, Social Computing
and Networking (ISPA/BDCloud/SocialCom/SustainCom). 270-279. https://doi.
0rg/10.1109/ISPA-BDCloud-Social Com- SustainCom57177.2022.00041

Zhuo Tang, Wei Lv, Kenli Li, and Keqin Li. 2018. An intermediate data partition al-
gorithm for skew mitigation in spark computing environment. IEEE Transactions
on Cloud Computing 9, 2 (2018), 461-474.

Isaac Triguero, Mikel Galar, D Merino, Jesus Maillo, Humberto Bustince, and
Francisco Herrera. 2016. Evolutionary undersampling for extremely imbalanced
big data classification under apache spark. In 2016 IEEE congress on evolutionary
computation (CEC). IEEE, 640-647.

Md Azher Uddin, Aftab Alam, Nguyen Anh Tu, Md Siyamul Islam, and Young-
Koo Lee. 2019. SIAT: A distributed video analytics framework for intelligent
video surveillance. Symmetry 11, 7 (2019), 911.

Ankush Verma, Ashik Hussain Mansuri, and Neelesh Jain. 2016. Big data manage-
ment processing with Hadoop MapReduce and spark technology: A comparison.
In 2016 symposium on colossal data analysis and networking (CDAN). IEEE, 1-4.
Haijun Zhang, Mingshan Sun, Qun Li, Linlin Liu, Ming Liu, and Yuzhu Ji. 2021.
An empirical study of multi-scale object detection in high resolution UAV images.
Neurocomputing 421 (2021), 173-182.

https://aws.amazon.com/ec2/instance-types/m5/
https://aws.amazon.com/ec2/instance-types/m5/
https://doi.org/10.21227/nb3n-kk46
https://doi.org/10.1109/ICCCNT45670.2019.8944759
https://doi.org/10.1109/ICCCNT45670.2019.8944759
https://doi.org/10.1109/TPDS.2017.2647939
https://www.theguardian.com/technology/2022/dec/22/tesla-crash-full-self-driving-mode-san-francisco
https://www.theguardian.com/technology/2022/dec/22/tesla-crash-full-self-driving-mode-san-francisco
https://doi.org/10.1145/3447545.3451170
https://doi.org/10.1109/ACCESS.2020.3013934
https://doi.org/10.1109/ACCESS.2020.3013934
https://arxiv.org/abs/1804.02767
https://scikit-image.org/docs/stable/auto_examples/filters/plot_entropy.html
https://scikit-image.org/docs/stable/auto_examples/filters/plot_entropy.html
https://doi.org/10.1109/SoutheastCon42311.2019.9020661
https://www.reuters.com/business/autos-transportation/gms-cruise-recall-950-driverless-cars-after-accident-involving-pedestrian-2023-11-08/
https://www.reuters.com/business/autos-transportation/gms-cruise-recall-950-driverless-cars-after-accident-involving-pedestrian-2023-11-08/
https://www.reuters.com/business/autos-transportation/gms-cruise-recall-950-driverless-cars-after-accident-involving-pedestrian-2023-11-08/
https://www.wired.com/story/ubers-fatal-self-driving-car-crash-saga-over-operator-avoids-prison/
https://www.wired.com/story/ubers-fatal-self-driving-car-crash-saga-over-operator-avoids-prison/
https://www.latimes.com/california/story/2022-01-19/a-tesla-on-autopilot-killed-two-people-in-gardena-is-the-driver-guilty-of-manslaughter
https://www.latimes.com/california/story/2022-01-19/a-tesla-on-autopilot-killed-two-people-in-gardena-is-the-driver-guilty-of-manslaughter
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom57177.2022.00041
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom57177.2022.00041

	Abstract
	1 Introduction
	2 Background
	2.1 Apache Spark
	2.2 Dataset
	2.3 Object Detection Techniques

	3 Proposed Approach
	3.1 System Design
	3.2 Experimental Design

	4 Experimental Results
	5 Conclusions
	6 Future Work
	Acknowledgments
	References

