Network Analysis of Microservices: A Case Study on Alibaba
Production Clusters

Ghazal Khodabandeh

Brock University
St. Catharines, Ontario, Canada
gkhodobandeh@brocku.ca

ABSTRACT

Having an observation of the microservices connections complexi-
ties within a service is essential for system management and opti-
mization. In this study, we analyzed a dataset of microservice traces
from Alibaba’s production clusters, segmenting call graphs based
on services. Using a community detection model, we uncovered the
connections between microservices within each service by finding
collaborative patterns and dependencies. Expanding our analysis,
we identified similarities among service graphs using clustering
techniques. These findings provide detailed insights for system op-
timization and decision-making, offering a roadmap for using the
constructed runtime microservices network behavior to improve
overall system efficiency and performance.

CCS CONCEPTS

« Computing methodologies — Classification and regression
trees; « Applied computing — Service-oriented architectures.

KEYWORDS
Service, Microservice, Community Detection, Graph.

ACM Reference Format:

Ghazal Khodabandeh, Alireza Ezaz, and Naser Ezzati-Jivan. 2024. Network
Analysis of Microservices: A Case Study on Alibaba Production Clusters . In
Companion of the 15th ACM/SPEC International Conference on Performance
Engineering (ICPE "24 Companion), May 7-11, 2024, London, United Kingdom.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3629527.3651842

1 INTRODUCTION

On the topic of microservices architecture, challenges come from
the relationships microservices and services have with each other.
A service is a self-contained unit of functionality within a software
system. Microservices inside a service have relations with each
other to make that service function. Also, services can communicate
with each other through well-defined interfaces. This will cause
complexities in deployment, scaling, and monitoring in a multi-
service framework. Each microservice has distinct functions for
user handling, business logic, and backend operations. This format
of application is different and more complicated than the monolithic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE 24 Companion, May 7-11, 2024, London, United Kingdom

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05...$15.00
https://doi.org/10.1145/3629527.3651842

Alireza Ezaz
Brock University
St. Catharines, Ontario, Canada
sezaz@brocku.ca

67

Naser Ezzati-Jivan
Brock University
St. Catharines, Ontario, Canada
nezzatijivan@brocku.ca

application architecture[2]. To address these challenges we should
have a deep and wide insight into this kind of system.

Despite extensive research on microservices [2, 7, 11], the appli-
cation of social network analysis in large-scale industrial settings is
uncommon. This oversight is significant in environments needing
detailed analysis of microservices interactions. Our study addresses
this gap by exploring these interactions within a major industrial
context, aiming to enhance system performance and reliability
through novel insights and methodologies.

To highlight the dynamics within microservices relationships,
our study relies on a dataset containing over 260 million records of
call requests across twenty thousand distinct microservices. Col-
lected from Alibaba’s production clusters within a one-hour time
frame!, these records span a network of ten thousand bare-metal
nodes [9]. This dataset serves as raw data for our study to find the
relations of microservices categorization within individual services
and extracting similarities between service’s call graphs.

Our theoretical framework draws on social network analysis
(SNA) to examine microservices architectures, utilizing methods
to analyze relationships among interacting units and understand
the complex web of service interactions. By employing community
detection algorithms, and graph similarity techniques, we identify
closely interconnected groups of microservices and categorize the
relationships between different services. This approach allows us
to uncover patterns of collaboration and dependency within mi-
croservices networks, offering insights into system optimization
and performance enhancement in industrial contexts.

The main contribution of this paper is the application of social
network analysis techniques to analyze the complex interactions
within microservices architectures at an industrial scale. We employ
community detection algorithms and graph similarity measures
to reveal patterns of microservice interconnections. This method
enhances our understanding of microservices dynamics, offering a
framework for improving system design, performance, and fault
tolerance. Our research provides actionable insights for system
managers and developers, aiming to improve software architectures’
resilience and efficiency in real-world applications.

2 RELATED WORKS AND BACKGROUND

Exploring the architecture of services and microservices, along with
discovering patterns and new observations, can help in different
aspects of system application. Studies [3, 10] have explored the
structural complexities of microservices, employing graph-based
techniques to map the complex web of service interactions. Gaidels
et al. [6] emphasizes the significance of employing graph-based

Uhttps://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-
v2022

https://orcid.org/0009-0001-4587-1876
https://orcid.org/0009-0001-4156-2750
https://orcid.org/0000-0003-1435-6297
https://doi.org/10.1145/3629527.3651842
https://doi.org/10.1145/3629527.3651842
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2022
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-microservices-v2022

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

techniques in system analysis. Similarly, S. Luo’s examination of the
same dataset [8] indicates that identifying similarities within service
call graphs can offer valuable insights into the characterization of
microservice dependencies and their runtime performance.

These investigations underscore the potential of network analy-
sis in identifying performance bottlenecks and optimizing service
orchestration. Furthermore, study [5] highlights the significance of
community detection in uncovering latent patterns within microser-
vices networks, suggesting that such methodologies can facilitate a
deeper understanding of service dependencies and interactions.

Community detection, a fundamental challenge in network anal-
ysis, involves categorizing nodes into distinct groups based on
connections, typically focusing on structural aspects [4]. The Lou-
vain method is an algorithm for identifying aggregate connected
groups of nodes within a graph. Its primary strength lies in its
ability to reveal the underlying modular structure within a net-
work, emphasizing that nodes within the same module share more
connections with each other than with nodes outside the module.

Building upon these foundations, our research introduces a novel
approach by integrating community detection with clustering algo-
rithms to analyze microservices at an industrial scale. Our study
leverages the Louvain method for community detection and the
K-means algorithm for clustering, aiming to provide actionable
insights into microservices categorization and the optimization of
service call graphs.

Raw Data

.. [Find Optmal 'K Using) ___, ("~ Apply K-means | ____(TFind Sirniar Servi
L4[]) () -)|

Figure 1: Our system design diagram

Community
Detection

---» [Findnginebest | ..., (ChooseLowain | ____ (Generate Communiy
Method Method Classes

3 METHODOLOGY

In this section, we explain our methodology, outlined through three
sequential steps as depicted in Figure 1. The main idea is to analyze
the relationships among microservices within a singular service
architecture by applying the community detection methods as well
as analysing the similarities by clustering service graphs, which is
the graphs of the microservices inside a unique service.

We start this process by making an accurate dataset for our
methodology. This initial phase involves the gathering and prepa-
ration of data, ensuring its preparation and conducting subsequent
analysis. In the second step, we apply a community detection al-
gorithm to the prepared data. This critical phase plays a key role
in categorizing each microservice within a given service into its
designated community class, exposing the interconnections. The
algorithm identifies patterns and relationships, providing a struc-
tured framework for understanding the complex web of associations
among microservices.

68

Ghazal Khodabandeh, Alireza Ezaz, and Naser Ezzati-Jivan.

In the last step, we apply a method that involves an examination
of similarities within various service graphs. To find these simi-
larities, we use a clustering method on different service graphs to
group them. By analyzing these clusters, we gain insights into the
dynamics of different services. Having the results of the second
and third steps together can give us an internal observation of the
whole system.

3.1 Network Construction

In the present investigation, the Alibaba production clusters data
was employed; however, it is necessary to apply preprocessing to
construct the network we needed for the rest of our methodology.
Our investigation centered on a 1-hour snapshot of this dataset,
consisting of over 260 million records and involving more than
28,000 microservices. As depicted in Figurel, this stage includes
three sub-steps: preprocessing, filtering, and generating call graphs.
Within this phase, the raw data serves as input, and the resulting
output consists of graph datasets suitable for the application of
community detection and graph similarity methods.

In the preprocessing step, we reduced the unnecessary attributes
in the raw data and kept just three columns, focusing on the specific
data points crucial for our analysis. We will do this reduction due
to the efficiency we will gain from our method with this modified
dataset as it would make the methods functioning faster and eas-
ier. The resulting dataset included um’ and dm’ representing the
‘upper microservice’ and ’down-stream microservice’ in the call
request, serving as the foundation for constructing call graph nodes
and edges. The ’service’ attribute was also retained, providing valu-
able information for generating the call graph of each service. Rows
containing attributes with unacceptable values were omitted.

Following the preprocessing phase, we organize datasets for each
service independently by implementing data filtering based on the
’service’ attribute. Considering the vast size of our dataset, we opted
to focus on a representative sample of all services. As services with a
higher number of call requests have a more complex and interesting
call graph, we applied a filter to include only service call graphs
with a minimum of 50 call requests and randomly selected 300 of
them for further analysis.

Following the filtering step, we obtained 300 dataframes, each
representing a call graph for a unique service. Within these service
datasets, individual rows contain the names of two microservices,
with one calling the other on a specific service. Each microservice
is treated as a node in the call graph, and if two nodes are present
in a single row, a connection is established, resulting in an edge
between the corresponding microservice nodes in the call graph.
These output datasets facilitate an analysis of the interconnections
and dependencies within each service.

3.2 Community Detection

Utilizing the provided call graph dataset, the subsequent step in-
volves creating community classes and assigning each microservice
of a service to the appropriate community class. Community detec-
tion methods are mainly designed to recognize groups or commu-
nities within a network, focusing on the patterns of connections
between nodes. In our case, the goal is to demonstrate the rela-
tionships between nodes based on their services, we applied the

Network Analysis of Microservices: A Case Study on Alibaba Production Clusters

s 51511

s . g 14;
- ~ 25891
.
-

Figure 2: Community classes on a service call graph

community detection method to each service dataset. This process
facilitated the identification and categorization of microservices
into distinct community classes.

As shown in Table 1, different community detection methods
were available for application. To identify the most suitable ap-
proach for our dataset, we conducted an evaluation using a sam-
ple exceeding 13 million records from the main dataset. The four
methods employed for evaluation included the Greedy Modularity
method, the Louvain method, the Info-map method, and the Label-
propagation method. The assessment was based on key metrics,
namely the Coverage, Modularity score, and Silhouette score. Cov-
erage measures the comprehensiveness of community detection
methods. In this study, all of the chosen methods have a coverage
metric of 1. Modularity score measures the quality of identified com-
munity structure. The Silhouette Score, on the other hand, evaluates
the cohesion and separation of clusters. These metrics collectively
enable an evaluation of the efficacy and quality of community de-
tection algorithms in network analysis. The detailed results of this
evaluation are presented in Table 1.

Methods Silhouette Score Modularity Score
Greedy Modularity 0.65 0.60
Louvain 0.71 0.67
Info-map 0.58 0.61
Label-propagation 0.63 0.58

Table 1: Evaluation scores for different methods.

As evident in Table 1, the Louvain method has a better perfor-
mance compared to the other methods under consideration. The
Louvain method serves as a robust technique for detecting commu-
nities or clusters in complex networks. Its primary goal is revealing
the underlying modular structure within a network, emphasizing
that nodes within the same module share more connections with
each other than with nodes outside the module. As microservices
architectures often involve numerous interconnected components,
the Louvain method’s scalability becomes crucial in handling large-
scale networks. Recognized as an enhanced version of the Greedy
Modularity algorithm, the Louvain method utilizes a random seed
as the foundation for its calculations. To ensure consistent results
across different code iterations, we opted to fix the random seed
value. To determine the optimal random seed, we systematically
varied the seed value from 0 to 1000, selecting the value that yielded

69

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

the highest Modularity score based on our evaluation criteria. This
approach ensured stability and reliability in our community detec-
tion results.

To achieve the final results, we applied the Louvain algorithm
to the refined dataset obtained in the previous step. The output
consists of community classes for each service graph, and Figure
2 displays graphical representations for one selected service call
graph. In this plot, nodes represent microservices, and the color
of each node signifies its assigned community class. In this pic-
ture, nodes in close proximity often share the same community
class, reflecting the method’s ability to capture patterns in net-
work connections. The color-coded representation facilitates the
clear identification of distinct community classes within each ser-
vice graph. Furthermore, the number of callings between nodes
emerges as an essential factor influencing node assignments, pro-
viding insights into complex network dynamics and inter-service
dependencies captured by the Louvain method.

3.3 Graph Similarity

Building on the previous steps about how microservices relate
to each other inside a service, exploring similar service graphs
can provide another viewpoint into the entire system. We applied
the K-means method to a bunch of service datasets to pinpoint
service graphs with similar characteristics. The K-means algorithm
uses distinctive features from each graph and then organizes them
into 'k’ clusters based on these features. This approach helps the
categorization of service graphs, providing a deep understanding of
the system’s diverse patterns and structures. K-Means can handle
large datasets and is computationally efficient, making it scalable for
systems with a significant number of services. Also, microservices
communication patterns may not follow a strict shape, and K-Means
can be robust in identifying clusters with irregular shapes. So, in
general, this method brings us well to our intended goals for this
study.

Within this study, our approach involves clustering graphs based
on their structure. Specifically, we extract nodes and edges from
each graph, considering them as features important for the clus-
tering process. An additional challenge is in determining the most
suitable value for 'k’ in this dataset. To address this, we employed
the Elbow method [1], which involves testing various values of 'k’
within the K-means method and plotting the distribution. Analyzing
the plot obtained from the Elbow method, we identified a distinct
bend or "elbow," and based on this observation, we determined that
setting 'k’ to 5 yielded optimal results for our dataset.

Following the execution of K-means on the dataset, we obtained
5 clusters, each including a certain number of graphs. Due to space
constraints, we present four out of the five clusters identified in
our analysis in Figure 3. To assess the effectiveness of this method,
we utilized the Silhouette score. The Silhouette score obtained for
our method was 0.6141, indicating a desirable performance for this
type of clustering.

As the conclusion of our efforts, the final results yield a series of
graphs, providing enhanced insights into the diverse services within
the system and their respective structures. In Figure 3, services are
organized into distinct clusters based on their overall structure. As
a sample, graphs ’3a’ and *3b’ form one cluster, 3¢’ and ’3d’ another,

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

() (b)

(e

()

Ghazal Khodabandeh, Alireza Ezaz, and Naser Ezzati-Jivan.

(&

Figure 3: Similarity Clusters on Service Graphs

’3e’ and *3f" a third, and ’3g’ and ’3h’ constitute a fourth cluster.
This analysis contributes to a deeper understanding of the actual
runtime configurations present in the system’s services. The source
codes of the implementations are available from our anonymized
GitHub repository 2.

4 DISCUSSION

Upon applying community detection to the randomly selected 300
services, we observed instances where certain services contained
only two microservices. In these cases, both microservices would
be assigned to the same community class. However, as the service
graph complexity increased, there would be more microservices
and community classes, and finding a strong connection among
microservices within the same class would be worth more. As you
can observe in Figure 3, more complex graphs, will cause a height-
ened frequency of calls and more direct communication between
microservices within a class. By identifying these relationships, we
can pinpoint areas of latency or bottlenecks in the system. In case
of issues, detecting the faulty microservice and its collaborators
becomes more feasible. Additionally, this knowledge enables ef-
fective isolation of issues, preventing them from affecting other
parts of the system. A clear understanding of how different mi-
croservices interact during development and debugging is essential.
Developers require insights into data flow, dependencies, and com-
munication protocols between microservices to write effective code
and troubleshoot efficiently.

In this study, we pursued the identification of similar service
graphs based on their microservice connections. This approach
provides several advantages for system management and decision-
making. One such benefit is evident in resource allocation and

Zhttps://github.com/ghazalkhb/ICPE2024_DataChallenge

70

scaling, where similar services often exhibit comparable patterns in
resource usage and demand. Efficient resource allocation becomes
possible by recognizing these similarities. Performance benchmark-
ing is another advantage, allowing for comparisons of microservice
relations and performance metrics among similar services. This
benchmarking process helps us continually improve and make ser-
vices work better in the whole system. Importantly, this perspective
enhances decision-making by highlighting the similarities among
services, playing a critical role in strategic considerations for the
system’s development.

5 CONCLUSIONS AND FUTURE WORK

We conducted an analysis of the relationships and communications
among microservices within a service, as well as the similarities
between different services. This achievement was realized through
the application of community detection on microservices within
a service, followed by clustering the resulting service graphs. The
outcomes of this investigation provide numerous advantages for
system performance and management.

While the current study focused on existing attributes, the inclu-
sion of additional attributes for each node or service could further
enhance our insights. Future works could involve incorporating
response times for each connection, offering a more delicate un-
derstanding of the system’s dynamics. Furthermore, scaling up
the study to a larger dataset would provide a broader observa-
tion of system functionality. Another avenue for exploration is the
examination of additional methods for community detection and
clustering algorithms or even the combination of multiple methods.
Integrating machine learning techniques to predict future dynamic
network behaviors and community formations represents another
promising direction.

https://github.com/ghazalkhb/ICPE2024_DataChallenge

Network Analysis of Microservices: A Case Study on Alibaba Production Clusters

REFERENCES

[1] PurnimaBholowalia and Arvind Kumar. 2014. EBK-means: A clustering technique

[2

(5

[

=

based on elbow method and k-means in WSN. International Journal of Computer
Applications 105, 9 (2014).

Grzegorz Blinowski, Anna Ojdowska, and Adam Przybytek. 2022. Monolithic
vs. Microservice Architecture: A Performance and Scalability Evaluation. IEEE
Access 10 (2022), 20357-20374. https://doi.org/10.1109/ACCESS.2022.3152803
Alvaro Brandén, Marc Solé, Alberto Huélamo, David Solans, Maria S Pérez,
and Victor Muntés-Mulero. 2020. Graph-based root cause analysis for service-
oriented and microservice architectures. Journal of Systems and Software 159
(2020), 110432.

Petr Chunaev. 2020. Community detection in node-attributed social networks: a
survey. Computer Science Review 37 (2020), 100286.

Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu, Minghua Ma, Xiaomin
Wu, Meng Zhang, Qingjun Chen, Xin Gao, Xuedong Gao, et al. 2023. Trace-
Diag: Adaptive, Interpretable, and Efficient Root Cause Analysis on Large-Scale
Microservice Systems. In Proceedings of the 31st ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering.
1762-1773.

Edgars Gaidels and Marite Kirikova. 2020. Service dependency graph analysis
in microservice architecture. In Perspectives in Business Informatics Research:

71

[10

[11

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

19th International Conference on Business Informatics Research, BIR 2020, Vienna,
Austria, September 21-23, 2020, Proceedings 19. Springer, 128-139.

Shanshan Li, He Zhang, Zijia Jia, Chenxing Zhong, Cheng Zhang, Zhihao Shan,
Jinfeng Shen, and Muhammad Ali Babar. 2021. Understanding and addressing
quality attributes of microservices architecture: A Systematic literature review.
Information and Software Technology 131 (2021), 106449. https://doi.org/10.1016/
j.infsof.2020.106449

Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang,
Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing microservice de-
pendency and performance: Alibaba trace analysis. In Proceedings of the ACM
Symposium on Cloud Computing. 412-426.

Shutian Luo, Huanle Xu, Kejiang Ye, Guoyao Xu, Liping Zhang, Guodong Yang,
and Chengzhong Xu. 2022. The power of prediction: microservice auto scaling
via workload learning. In Proceedings of the 13th Symposium on Cloud Computing
(San Francisco, California) (SoCC °22). Association for Computing Machinery,
New York, NY, USA, 355-369. https://doi.org/10.1145/3542929.3563477

Vinay Raj and Ravichandra Sadam. 2021. Evaluation of SOA-based web services
and microservices architecture using complexity metrics. SN Computer Science 2
(2021), 1-10.

Victor Velepucha and Pamela Flores. 2023. A survey on microservices architecture:
Principles, patterns and migration challenges. IEEE Access (2023).

https://doi.org/10.1109/ACCESS.2022.3152803
https://doi.org/10.1016/j.infsof.2020.106449
https://doi.org/10.1016/j.infsof.2020.106449
https://doi.org/10.1145/3542929.3563477

	Abstract
	1 Introduction
	2 related works and background
	3 Methodology
	3.1 Network Construction
	3.2 Community Detection
	3.3 Graph Similarity

	4 Discussion
	5 Conclusions and Future Work
	References

