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ABSTRACT
Microservices offer the benefits of scalable flexibility and rapid
deployment, making them a preferred architecture in today’s IT
industry. However, their dynamic nature increases their susceptibil-
ity to failures, highlighting the need for effective troubleshooting
strategies. Current methods for pinpointing issues in microser-
vices often depend on impractical supervision or rest on unrealistic
assumptions. We propose a novel approach using graph unsuper-
vised neural networks and critical path analysis to address these
limitations. Our experiments on four open-source microservice
benchmarks show significant results, with top-1 accuracy rang-
ing from 86.4% to 96%, over 6% enhancement compared to existing
methods. Moreover, our approach reduces training time by 5.6 times
compared to similar works on the same datasets.

CCS CONCEPTS
• Software and its engineering → Software defect analysis; •
Computer systems organization → Reliability.
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1 INTRODUCTION
Microservice architecture is becoming increasingly popular among
various systems architectures due to its fast delivery, scalability,
and independence. However, managing quality in microservice
applications remains a significant challenge [5, 6, 10]. This challenge
involves the need to set suitable alert thresholds and filters to alert
developers to issues promptly, without overwhelming them with
extraneous data [6]. Hassan et al. [5] and Jamshidi et al.[6] advocate
that machine learning could significantly mitigate these challenges.
As a result, numerous trace-based methods employing machine
learning techniques have been developed to quickly identify and
address issues as they emerge [8, 10, 12]. However, these methods
face challenges, primarily due to idealistic assumptions or relying
on supervision methods, reducing their effectiveness and practical
applicability [10].

Numerous studies [8, 14, 16, 19] have employed supervised ma-
chine learning models for anomaly detection and predicting root
causes in microservices. These approaches heavily depend on la-
belled datasets, which can be costly to acquire [7]. Furthermore,
they require comprehensive coverage of all possible fault types to
accurately differentiate between anomaly propagation paths. Yet,
some of these studies do not incorporate request types or fault
types in their approach, and they may also lack this information,
e.g., [16].

Although certain studies [11, 12, 16] overlook the variability in
anomaly propagation patterns, other researchworks [10, 14] empha-
sise the crucial importance of considering this variability to enhance
anomaly detection and analysis. For example, FIRM [14] emphasizes
how latency anomalies may propagate differently across scenar-
ios, even for identical request types. To investigate variations of
anomaly propagation paths, FIRM [14] proposes studying critical
paths in request executions. It employs a supervised classification
approach, which still makes it rely on labelled datasets including
both normal and abnormal requests of different execution paths.
Moreover, FIRM [14] assumes that the longest service on a critical
path contributes most to the total latency. However, our experi-
ments show that this assumption does not always hold because
individual services can show a wide variance in latency, even under
normal conditions.
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Addressing the need for distinguishing between anomaly prop-
agation paths as well as breaking the need for having a labelled
dataset, Li et al.[10] propose a trace analysis approach based on
studying historical data of service invocations. Although Li et al.
study[10] outperforms other unsupervised methods, it may not
be optimal for microservice systems handling extensive requests
involving numerous services. The issue arises from their method
requiring feature selection for each service invocation within a
real-time window, which can result in significant time consump-
tion. Additionally, the effectiveness of Li et al.’s approach[10] might
be compromised in scenarios with a scarce number of normal or
abnormal traces, or when the test window includes a limited range
of request types.

To overcome these limitations, we developed an unsupervised
method that integrates the analysis of critical paths for enhanced
culprit prioritization. Our approach starts with establishing a base-
line model using the application of graph neural networks (GNN),
which learns the expected latency distributions across all services
and their interdependencies, effectively mirroring the system’s
anticipated behaviour. This model is then used for anomaly detec-
tion at the granularity of individual requests. To narrow down the
context of latency propagation and identify culprits, we study ab-
normal requests against normal requests, sharing the same critical
path. Our method involves clustering historical requests based on
their critical paths, thereby creating distinct profiles for each path.
Within these profiles, we detail vectors for each service that capture
the service’s distribution within the critical path. By comparing the
observed latency of services in abnormal paths to their standard
distributions outlined in the profiles, we effectively isolate and iden-
tify the culprits. Services exhibiting greater deviation from their
expected distribution are ranked as more suspicious culprits.

To enhance the efficiency of our method compared to existing
approaches, We design our GNN model with the assumption that
the service invocations graph is static. By this assumption, we ef-
fectively reduce the complexity associated with dynamic network
models, leading to increased efficiency. To prevent missing any
update in service invocations, we propose periodic evolutionary
updates as an alternative to ensure the model stays in sync with any
changes. Additionally, we integrate a feature sampling technique
from services across various layers in our GNNmodel. This strategy
ensures the capture of critical information from services within
the GNN, maintaining the model’s scalability and efficiency, partic-
ularly when dealing with extensive service invocation or service
dependency graphs.

Our experiments conducted on four benchmark systems in dif-
ferent sizes and complexity demonstrate that our approach has an
accuracy of 86.4%-96% and outperforms similar methods [16] by
over 6% while also enhancing the training time by a factor of 5.6.
Our main contributions can be summarized as follows:

• Proposing an unsupervised GNN model, eliminating the
requirement for labelled datasets which can be expensive to
obtain in practice.

• Integration of our latency detection methodology with criti-
cal path analysis, refining the focus on potential culprits and
enhancing the efficiency of culprit prediction.

• Refinement of the GNNmodel to tackle scalability challenges
inherent in large service invocations or service dependency
graphs, as well as improving time efficiency during both
training and testing phases.

2 BACKGROUND SUMMARY
Critical Path Analysis involves identifying the longest duration
path in a request’s journey through a distributed system, which can
be complex due to mixed synchronous and asynchronous commu-
nications. Distributed tracing helps trace these paths by collecting
detailed request flow data [1, 14].

Culprit Identification focuses on pinpointing the service or
component causing latency anomalies. While ’culprit’ refers to the
direct cause of performance slowdowns, ’root cause’ delves into the
underlying issue. This work prioritizes culprit ranking in abnormal
request paths as a step towards root cause analysis [9].

3 METHOD DESIGN
Our approach introduces an end-to-end latency anomaly detection
and culprit ranking framework, which comprises three primary
phases: I) Data Preparation, II) Anomaly Detection, and III) Culprit
Ranking, as detailed in the subsequent subsections.

3.1 Data Preparation
Our approach takes two main inputs: historical data representing
the expected behaviour of the system and interdependencies be-
tween services. This data is collected from telemetry data provided
by any distributed traces monitoring tool. We ensure our data en-
compasses a wide range of requests, each with a unique execution
path. Each request is collected as a trace that can be defined by a
feature vector that details the latency of services (spans) involved
in the request:

𝑉𝑅0 = [𝑙1, 𝑙2, ..., 𝑙𝑛], (1)

Here, n is the number of services in request 𝑅0 and 𝑙 is the latency
value for each service. The historical data comprises numerous
such feature vectors. To ensure consistency across the data, we
normalize all latency values. Then, we determine the critical path
for each request using the method outlined in the literature [14],
and accordingly cluster the data based on critical paths. For each
cluster, we create a profile that encapsulates the distribution of
latencies, including mean and standard deviation, for each service
within the critical path. Such a standardized approach allows for a
comprehensive comparison of service performance across various
service paths.

Figure 1 presents latency distributions for a service (10-contact)
in a ticket-booking benchmark [20]. On the left, it shows the la-
tency distribution across all requests in historical data, while on the
right, latency distributions across different critical paths are shown.
The distribution of data across clusters facilitates a more accurate
discernment of patterns. Such clarity is especially beneficial for data
lacking obvious service relationships or evident request clustering
patterns, as observed in our experiments about the dataset used
in this study, where no clustering algorithm, such as k-means or
hierarchical clustering, yields meaningful clusters. This limitation
makes some existing methods [13, 18] inappropriate for such data.
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Figure 1: The latency distribution of a service across all exe-
cution paths (left) compared to within critical paths (right).

The second input that our approach takes is interdependencies
between services such as service invocations, as we believe that
these interdependencies primarily govern the propagation of be-
haviour across the services. This data can be inferred from depen-
dency graphs provided by distributed trace tools or by studying the
microservice system itself.

3.2 Anomaly detection
Utilizing the advanced pattern recognition capabilities of deep
graph neural networks (GNNs) for structured data analysis, we
use a GNN model to establish a baseline for anomaly detection.
Our model is constructed based on interdependencies patterns and
distribution of latencies, collected from historical data. First, we
generate a directed acyclic graph G= (V,E) from service interde-
pendencies, where V represents the set of nodes corresponding to
services and E represents the set of edges representing service invo-
cations. The direction of each edge specifies the propagation path of
behaviour through services. Each node is associated with a feature
array that encapsulates the corresponding latency values from all
request feature vectors (𝑉𝑅 vectors) in historical data. To enhance
the efficiency of our model compared to existing works [8, 16], we
consider the following considerations.

Firstly, we initially assume a static structure for the directed
acyclic graph to enhance the GNN’s training efficiency and scal-
ability. This assumption is pivotal for managing large call graphs
and complex service interaction patterns. To adapt to changes in
service invocations, we introduce periodic model updates, allowing
our system to reflect changes over time without compromising the
initial efficiency gains.

Secondly, we implement batch processing, enabling simultane-
ous analysis of multiple graphs, each with unique structures and
sizes. This diversity is essential in training our model to recognize
a wide array of connectivity patterns. Our adaptation employs a
neighbourhood sampling strategy, where a fixed-size subset of a
node’s neighbours is selected for feature aggregation. This method
addresses challenges related to variable connectivity and scales ef-
fectively for large graphs. Each layer aggregates information from
a node’s immediate neighbours and subsequent layers aggregate
information at increasingly larger distances from the target node.
This iterative process ensures that even with sampling, information

from the broader neighbourhood can influence the node’s repre-
sentation, albeit indirectly. We mitigate potential data loss from
sampling by designing our model to aggregate features across lay-
ers. Unlike traditional methods that depend on separate embeddings
for each node to produce features, our design consolidates feature
generation across the network.

We adopted the GraphSAGE model [4], to construct our model
according to these considerations. Our model comprises two graph
convolutional layers. The initial layer transforms the features of
a node and its neighbours, aggregated through a mean function,
into a dimensional hidden space, for abstract representation. The
second layer then projects these hidden representations back to the
original feature dimensions. This unsupervised learning architec-
ture is adept at encoding and decoding node features, capturing
both structural and feature-based graph information to generalize
well to unseen nodes or entirely new graphs.

The model’s operation during each message-passing iteration is
mathematically described as follows:

𝐻
(𝑙+1)
𝑣 = 𝜎

(
𝑊 (𝑙 ) ·MEAN

(
{𝐻 (𝑙 )

𝑣 } ∪ {𝐻 (𝑙 )
𝑢 ,∀𝑢 ∈ N (𝑣)}

))
(2)

where 𝐻 (𝑙 )
𝑣 is the feature vector of node 𝑣 at layer 𝑙 ,𝑊 (𝑙 ) is the

weight matrix for layer 𝑙 , 𝜎 denotes a non-linear activation func-
tion (e.g., ReLU), and N(𝑣) includes the neighbours of node 𝑣 . Our
optimization goal is to minimize the mean squared error (MSE)
between the original node features (𝑋 ) and their reconstructed
counterparts (𝑋 ) after processing through the GraphSAGE layers.
The optimization goal is succinctly captured by:

Minimize L = MSE(𝑋,𝑋 ) (3)

Here, 𝑋 represents the model’s input (the original node features),
and 𝑋 denotes the output (the reconstructed node features).

To detect anomalies using the trained modes, we convert a test
trace into a format that aligns with the request feature vector struc-
ture previously outlined.We use ourmodel (𝑓 ) alongwith adjacency
information encapsulated in the graph (𝐸) to reconstruct the test
request feature vector 𝑋 as 𝑋 = 𝑓 (𝑋, 𝐸). Anomalies are identified
by comparing the loss between the original and reconstructed vec-
tors against a threshold, i.e.,𝑀𝑆𝐸 (𝑋,𝑋 ) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . In this paper,
we set the threshold at 0.1.

3.3 Culprit Ranking
After detecting an anomaly, we proceed with the Culprit Ranking
step by comparing the abnormal test request’s feature vector with
similar requests from historical data. Our experiments indicate that
narrowing these comparisons to critical paths is more efficient.
Critical paths encompass services that drive the latency issue in a
request, making them a priority for identifying the culprit.

We first, compute the critical path within the test request. Then,
we match it with the same critical path cluster in historical data.
From this match, we extract the cluster profile that provides de-
tailed insights into the distribution of each service along the critical
path. For each service within the test critical path, we hypothesize
it is a potential culprit. Then, we use the service distribution details
extracted from the critical path profile to choose an appropriate
statistical simulation technique, as advised by Forbes [2]. Through
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parameter estimation, we generate a new latency value for the ser-
vice that aligns with its distribution. This value replaces the original
one in the test vector, and anomaly detection is performed on this
manipulated request vector. If the model identifies the manipulated
vector as normal, our hypothesis is validated, and the service is
added to the list of culprits; otherwise, it’s discarded. Culprits are
subsequently ranked based on their deviation from their respective
normal distributions.

During the validation of our model, we discovered that checking
services individually as potential culprits aids in identifying indirect
anomaly propagation paths. We call frequently affected services by
a true root cause, evenwhen there are no direct invocations between
them, "indirect dependency". Figure 2-A, shows direct dependencies,
i.e., service invocations, as well as indirect dependencies for the
hotel reservation benchmark system. This representation assists in
understanding anomaly propagation paths and can be integrated
into our model to improve accuracy by accommodating unknown
service dependencies.

4 EXPERIMENTS AND EVALUATION
We evaluate our approach on a dataset including four microser-
vice benchmarks provided by Qiu et al.[15] as part of the FIRM
research project[14]. These benchmarks cover social networking,
hotel reservations, media services, and ticket booking systems. The
dataset includes traces representing normal system behaviour, with
latency data for all services, which we treat as our historical dataset.
Additionally, there are labelled files for each benchmark system,
containing traces collected during anomalies in labelled services,
treated as test requests for evaluating our approach. The dataset
also includes covered execution paths of collected requests, illustrat-
ing the interdependency patterns within each benchmark system.

Figure 2: A: Direct and indirect anomaly propagation paths,
B: Confusion metrics for benchmark systems

The performed exploratory data analysis (EDA) on the data, com-
bined with in-depth studies and collaborative consultations with
the FIRM authors, reveals that each sample in this dataset isn’t
simply a raw trace, but rather an aggregation of collected requests
spanning the system’s execution paths within a 1-minute time win-
dow. Each sample provides all services’ average latency time for
handling various requests within this window. Despite being aggre-
gated from numerous requests, there is consistency in workload and
covered execution paths for each sample. Therefore, each sample
can be treated as a trace covering all services and execution paths,

Benchmarks ACC Top-1 Top-3 Top-5
Social-network (MSE=0.005) 87% 83% 86.2% 87%
hotel-reservation (MSE=0.001) 95.4% 94.7% 95.4% 95.4%
media-service (MSE=0.007) 86.4% 85% 86.4% 86.4%
ticket-booking (MSE=0.001) 96% 94.3% 96% 96%

Table 1: Culprit localization results for different benchmarks

as commonly done in the literature [16, 17]. Consequently, within
this pre-processed dataset, the critical path of each sample (trace)
is a system critical path and can be computed as the execution path
with the maximum latency among all other execution paths.

In our study, we constructed datasets comprising 60% training
data, with an additional 20% set aside for both validation and testing
of our model. To assess the efficacy of the culprit ranking, we em-
ployed the same sampling rate used in prior literature [16], selecting
20% of labelled files.

4.1 Results
We conduct evaluations for anomaly detection and culprit ranking
separately. Figure 2-B, shows averaged results of precision, recall,
and F-1 score metrics [3] across all benchmarks. This visualization
illustrates the performance of our model in classifying anomalies
for various classification threshold values. Based on our findings,
we observed that setting the anomaly classification threshold lower
than 0.1 results in a decrease in precision. Conversely, for larger
threshold values, there is a decrease in recall while precision re-
mains stable. Therefore, we opted to set the threshold at 0.1 to strike
a balance in the performance of our model.

To evaluate the effectiveness of our approach in identifying the
true culprit, we employ two key metrics: the overall percentage of
accurately identified true culprits (referred to as "ACC") and the Top-
k metric, which measures the likelihood of ranking the true culprit
within the top k locations among all ranked identified culprits.
Table 1 displays the performance results for each benchmark. The
numerical values provided alongside the name of each benchmark
indicate the average loss value incurred by our trained model for
that particular benchmark. Our experiments across four case studies
indicate that the true culprit is accurately identified in 86.4% to
96% of cases, and is also ranked within the first five culprits in
83% to 94.7% of cases. Our investigation unveiled that having a
balanced representation of requests related to various critical paths
in the historical data significantly enhances the ability to distinguish
between service distributions of the test and historical critical paths
which leads to higher accuracy in our analysis.

In comparison with existing works, we create a dataset with
a similar train-test split ratio used by B-MEG [16], that proposes
a supervised GNN for the same dataset. We conducted multiple
iterations of experiments and reported the average result. Our ex-
periments yielded accuracy improvements of approximately 3-8%,
along with a reduction in time complexity to over one-fifth of the
model training. Due to the need for adjustments in B-MEG, we were
unable to compare execution times for processing test requests in
the current paper. However, we compared two variations of our
approach: v1 solely utilises the main request path in culprit identi-
fication, and v2 incorporates the critical paths to narrow down the
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test request context. Our results demonstrated that v2 significantly
improves processing time for identifying the culprits in different
benchmarks from 1.5-13 seconds in v1 to 0.8-8.3 seconds, marking a
58.33% enhancement on average. Figure 3 summarises the average
performance of two versions of our approach against Somashekar
et al. work [16].

Despite improvements in v2 of our approach, occasional slight
accuracy decreases were observed, although accuracy increased
for ticket-booking and social-network benchmarks. Further inves-
tigation of our dataset revealed that the stated computed critical
path method for this dataset may overshadow the true culprit. This
happens for systems with sparse connectivity and shorter request
paths since they have limited service diversity in different execution
paths. Therefore, the computed critical path can be affected if the
true culprit exhibits a relatively small latency distribution range
compared to other services.

Figure 3: Comparison of two different versions of our ap-
proach with B-MEG

5 CONCLUSION
In this paper, we propose an efficient unsupervised GNN model
integrated with critical path analysis for culprit ranking in microser-
vice architectures. Our approach eliminates the need for labelled
datasets, incorporates critical path analysis for efficient culprit de-
tection, and introduces enhancements for the scalability and speed
of the GNN model. Conducted experiments on four benchmarks
our model achieves an accuracy in culprit identification ranging
from 86.4% to 96%, representing a notable improvement of over 6%
compared to existing methods. Furthermore, our approach reduces
training time by 5.6 times compared to similar works. Additionally,
leveraging critical path analysis results in a 58.33% enhancement
in culprit identification speed. Looking ahead, we aim to refine our
methodology through additional experiments aimed at broadening
its applicability and improving detection capabilities.
The scripts of our model are accessible via the following link:
https://anonymous.4open.science/r/ICPE2024-4281/v2.py.
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