
KubePlaybook: A Repository of Ansible Playbooks for
Kubernetes Auto-Remediation with LLMs

Komal Sarda∗
York University

Toronto, Ontario, Canada
komal253@yorku.ca

Zakeya Namrud∗
York University

Toronto, Ontario, Canada
zakeya10@yorku.ca

Marin Litoiu
York University

Toronto, Ontario, Canada
mlitoiu@yorku.ca

Larisa Shwartz
IBM T. J. Watson Research Center
Yorktown Heights, New York, USA

lshwart@us.ibm.com

Ian Watts
IBM Canada Lab

Markham, Ontario, Canada
ifwatts@ca.ibm.com

ABSTRACT
In the evolving landscape of software development and system op-
erations, the demand for automating traditionally manual tasks has
surged. Continuous operation and minimal downtimes highlight
the need for automated detection and remediation of runtime anom-
alies. Ansible, known for its scalable features, including high-level
abstraction and modularity, stands out as a reliable solution for
managing complex systems securely. The challenge lies in creat-
ing an on-the-spot Ansible solution for dynamic auto-remediation,
requiring a substantial dataset for in-context tuning of large lan-
guage models (LLMs). Our research introduces KubePlaybook, a
curated dataset with 130 natural language prompts for generat-
ing automation-focused remediation code scripts. After rigorous
manual testing, the generated code achieved an impressive 98.86%
accuracy rate, affirming the solution’s reliability and performance
in addressing dynamic auto-remediation complexities.
CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; Natu-
ral language processing; • Information systems → Informa-
tion systems applications.
KEYWORDS
Kubernetes, Ansible Playbook, LLMs, GPT-4, Auto-remediation,
Microservices.
ACM Reference Format:
Komal Sarda, Zakeya Namrud, Marin Litoiu, Larisa Shwartz, and Ian Watts.
2024. KubePlaybook: A Repository of Ansible Playbooks for Kubernetes
Auto-Remediation with LLMs. In Companion of the 15th ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE Companion ’24), May
7–11, 2024, London, United Kingdom.https://doi.org/10.1145/3629527.3653665
∗Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05. . . $15.00
https://doi.org/10.1145/3629527.3653665

1 INTRODUCTION
In the dynamic software development landscape, the adoption of
microservices has transformed scalability, flexibility, and agility
[33, 39]. Kubernetes (K8s) [22], a key orchestration tool, plays a cru-
cial role in managing microservices at scale, providing features like
auto-scaling and self-healing [3]. For smaller production settings
and local environments, MicroK8s, a lightweight K8s distribution,
proves valuable [20]. It includes all essential components of a full
K8s distribution, such as the API server, kubelet, and kubectl [21].
Kubectl, a vital command-line tool, simplifies the management and
interaction with K8s clusters, enabling users to deploy applications,
scale resources, create pods, and manage various K8s objects.
Despite advancements in autonomic and adaptive computing
[18, 35], many cloud services and applications still encounter
failures, necessitating manual intervention. Additionally, the
decentralized nature of microservices introduces complexity in
detecting and resolving root-cause incidents [2, 16].
In microservices environments, automation plays a pivotal role
in addressing complex issues swiftly [19]. AI-driven approaches
have been integrated into IT operations (AIOps) particularly
in self-healing processes using data-driven AI for automating
incident life cycles [43]. However, challenges persist in manually
creating remediation scripts, often relying on poorly organized
troubleshooting guides [17]. For on-call engineers (OCEs) dealing
with diverse anomalies across numerous services, the lack
of organized guides can be time-consuming [2]. Anomalies,
presenting differently or sharing traits across services, along with
unique configuration settings, require meticulous attention. Minor
script errors can lead to significant discrepancies, emphasizing
the need for effective remediation scripts to expedite incident
mitigation [18].
In response to these challenges, some researchers have turned
to leveraging pre-trained Large Language Models (LLMs) to
automatically generate remediation scripts based on identified root
causes, a methodology successfully applied in various use cases
[4, 5, 40]. Notable LLMs like CodeBert [7], Codex [5], LLaMa [38],
GPT-Neo, GPT-NeoX [42], and GPT-4 [32] demonstrate promise
for code generation tasks. While these techniques have been
extensively applied in general-purpose programming languages,
their adoption in IT domain-specific languages, particularly YAML,
has received less attention. YAML files play a crucial role in
defining and configuring key aspects of IT infrastructure [30]. In

57

https://doi.org/10.1145/3629527.3653665
https://doi.org/10.1145/3629527.3653665

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Komal Sarda, Zakeya Namrud, Marin Litoiu, Larisa Shwartz, & Ian Watts

specific IT domains, such as those utilizing Ansible-YAML [12] to
manage infrastructure, the integration of LLMs can streamline
incident response. Companies leverage Ansible playbooks in
conjunction with K8s to design intelligent, automated responses to
root cause alerts, reducing the burden of routine firefighting tasks
on on-call engineers (OCEs).
While progress has been made in leveraging LLMs to generate
Ansible playbooks, the focus has predominantly been on en-
hancing productivity for existing users, with an emphasis on
code completion rather than the creation of entirely new code.
A critical requirement emerges for specialized Ansible playbook
generation LLMs tailored for auto-remediation, functioning as
an AI assistant for OCEs [19]. To address challenges related to
the cost and maintenance of traditional LLMs, researchers are
turning to the few-shot learning capabilities of LLMs [17, 37]. This
approach enables incident-specific code generation with minimal
examples, eliminating the need for extensive parameter tuning.
However, the effectiveness of these models is hindered by the lack
of open-source, high-quality prompts and playbook corpora [31].
To bridge this gap, we aim to create the KubePlaybook dataset,
dedicated to Ansible playbooks in the context of IT automation
and anomaly resolution within cloud-native environments. This
dataset is crucial for enhancing the few-shot learning capabilities
of LLMs, enabling them to autonomously generate more Ansible
Playbooks for auto-remediation throughout the incident life cycle.
Addressing these challenges brings us closer to realizing a fully
autonomous AIOps environment.
Contribution: This paper introduces KubePlaybook, publicly
accessible through a GitHub repository1, a dataset featuring 130
Ansible playbooks accompanied by natural language (NL) prompts
designed for code generation. NL prompts, serving as queries
or descriptions, instruct LLMs to generate task-specific code.
While the details about LLMs and prompts are not extensively
covered due to page limitations, each NL prompt in KubePlaybook
describes a root cause along with the operator’s query input.
Our evaluation process meticulously assesses the effectiveness
of NL prompts in generating appropriate Ansible playbooks.
Following this, we evaluate the functionality of each playbook by
applying them to a sample microservices application to ensure
their efficacy. The paper is structured as follows: Section 2 details
dataset collection, generation, and description. Section 3 presents
an experimental evaluation and results discussion. Subsequently,
Section 4 deliberates on our work, highlighting challenges. Section
5 reviews relevant literature, and Section 6 provides conclusion
and outlines future research directions.

2 KUBEPLAYBOOK FRAMEWORK
2.1 Data Collection & Generation
The development of the KubePlaybook repository employs a struc-
tured process as shown in Figure 1. We initially collect K8s Ansible
playbooks from GitHub [9] and Galaxy [8], along with kubectl shell
commands and real-time faults. Leveraging Ansible for systemman-
agement, which is more scalable than traditional shell commands
[14, 27], addresses automation challenges. To automate Ansible
1https://github.com/K8sPlayBook/KubePlaybook

Select 10 kubectl commands for few-shot learning and rest 120 for evaluation of
structured prompt template and instruction tuned GPT-4

10

Scrapping Kubectl
commands Real-time faults

Root-cause parameters,
operator’s solution

to incident

Manual curation and fixing of
NL prompts to get valid

ansible responses

GPT-4
Few-shot dataset
with valid Ansible
playbook and
corresponding
NL prompts

Evaluate
manually

GitHub and Galaxy
scrapped codes

120

Structured prompt template

Evaluate
manually

Instruction-tuned
GPT-4

KubePlaybook

Figure 1: Overview of Building the Dataset

playbook creation for kubectl commands and faults, a playbooks
generation approach using GPT-4 is adopted. An incident remedia-
tion dataset is built using root cause alerts and operator input as
prompts. Few-shot learning on GPT-4 is applied to streamline the
process, following a method adapted by many researchers [17, 37].
Initiating with 10 random kubectl commands, each is transformed
into an Ansible playbook using purpose-specific prompts. The gen-
erated playbook, serving as the auto-remediation script, undergoes
testing and manual examination. Adjustments are made to prompts
until the desired Ansible-based remediation playbooks is obtained.
A robust prompt template is integrated into KubePlaybook along
with corresponding playbooks, and the few-shot learning dataset is
updated for deployment with GPT-4. This iterative process is consis-
tently applied to the initial 10 commands, tuning the GPT-4 model
with newly generated samples. Careful adjustments are made to
both prompts and playbooks, ensuring the creation of precise and
context-sensitive playbooks tailored for incident resolution. Having
generated and validated 10 structured prompt templates for auto-
remediation in microservices, the same prompt structure is applied
to the remaining 120 samples. The tuned GPT-4 model generates
playbooks for the entire dataset, ensuring a efficient approach to
incident resolution in the microservices environment.

2.2 Composition of NL Prompts
To translate Kubectl commands and address real-time faults into
valid Ansible playbook, it is crucial to construct well-defined
prompts that provide detailed information for the AI model.
This process involves crafting precise instructions to guide the
model in automatically resolving issues within microservices
architectures [30, 41]. Microservices architectures consist of
multiple independent services, and the initial step involves
specifying precise targets, such as host names, pod names, and
deployment names, in prompts for LLM-driven remediation based

58

KubePlaybook: A Repository of Ansible Playbooks for Kubernetes Auto-Remediation with LLMs ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom

on root-cause alerts. Various anomaly detection models [34] and
multimodal root-cause models [23, 24] are available to identify this
information. This approach enables playbook to focus on specific
services, minimizing disruptions to others. The next step is to
define the desired automation actions, such as adjusting resources,
restarting services, or implementing fixes for specific events. This
action instructs the LLMs to generate Ansible playbook based
on root-cause actions. This information can be derived directly
from a root-cause mitigation recommendation model [2] or from
operators. An example of our structured prompt and Ansible code is
depicted in Figure 2. We selected smallest possible playbook for the
example. This prompt incorporates placeholders like <Host_Name>,
<Name_space>, and <Deployment_name> as indicators for inserting
concrete values or variables, streamlining the management of
deployments within a microservices framework. Additionally,
the provided prompt serves as a guide for those involved in
developing prompt templates using LLMs, demonstrating how
to structure prompts to facilitate the automated generation of
Ansible playbooks for addressing issues within microservices
architectures. For practical application, placeholders should be
replaced with actual values, and the resulting Ansible playbook
must be customized to meet the unique requirements of the specific
microservices environment and deployment details.

Figure 2: Sample of NL prompt & its corresponding Ansible
playbook generated using GPT-4.

2.3 KubePlaybook Description
The KubePlaybook dataset comprises NL prompts and Ansible play-
books, manifested as text and YAML files, respectively, aligning
with targeted K8s commands. Our repository, outlined in Table 1,
encompasses 130 Ansible playbooks categorized into three main
classes, each featuring pairs of playbooks and corresponding NL
prompts. According to Table 1, 62.3% of the playbooks focus on
essential K8s commands, 19.2% are sourced from Ansible Galaxy
and GitHub, and 18.5% are specifically designed for addressing
chaos-engineered operational faults [26]. This categorization high-
lights the diverse nature of the playbooks in our dataset, covering

aspects such as cluster management, real-time fault resolution, and
external contributions. Our objective extends beyond constructing
an Ansible playbook; we aim to extract meaningful NL prompts
from each code. The repository mirrors the categorization format in
directories for clarity and ease of navigation. As depicted in Figure
2, defining a placeholder in the prompt generates Ansible code that
extracts target deployment details and applies the ‘kubectl’ com-
mand to the specified service. Notably, our dataset has no external
package dependencies; it utilizes the latest versions of Ansible and
Kubernetes.

Table 1: Repository Overview Description

Categories List of Ansible Playbooks & Prompts

Generated Ansible
playbook using LLMs
Essential & common
for (configuration &

deployment)

Cluster Management (6), Daemonsets
(6), Deployments (6), Events (5), Image
name (1), Jobs (3), Logs (8), Namespaces
(6), Nodes (11), Pods (10), ReplicaSets (3),
Replication (2), Secrets (4), Service Ac-
counts (3), Services (4), StatefulSet (3)

62.3%

Ansible playbooks
from Galaxy &

GitHub
Collection of K8s tasks (25) 19.2%

Real-time faults

DNS errors (1), DNS fault (1), Node I/O
stress (1), Pod API latency (1), Overrides
the header values of API requests (1),
Node memory hog (1), Resources over-
load (2), Operational Error (4), Connec-
tion refused (6), Access denied (1), Lo-
gin failure (1), Process crash (1), System
stuck (1)

18.5%

3 EXPERIMENTAL SETUP & EVALUATION
3.1 Experiment Configuration
To guarantee the reliability and efficiency of Ansible playbooks
generated using GPT-4, a thorough evaluation process precedes
their production deployment. Our evaluation involved testing the
efficacy of the dataset to adapt few-shot learning on LLMs. We
utilized 10 samples for few-shot learning on GPT-4 and conducted
evaluations on 120 samples. We utilized the GPT-4 model, specif-
ically opting for the gpt-4-1106 [36]-preview version-recognized
as the latest and most proficient model for code comprehension
from OpenAI. Testing occurred on a t2.2xlarge EC2 instance with
Ubuntu, installing Robot-shop [1] and QoTD [11]. We validated
both syntactic correctness and functional soundness during this
crucial phase, focusing on the effectiveness of automated deploy-
ment. Hyperparameter tuning for GPT-4 was tailored to our needs,
utilizing maximum output length with 10 samples for few-shot data,
optimizing within token count limits. After iterative experimenta-
tion, optimal hyperparameters-temperature [10] at 0.6 and Top-P
[10] at (1.0)-were chosen to fine-tune the model’s performance for
precise YAML configurations from NL instructions. This meticu-
lous testing and tuning ensure robust Ansible playbooks, ready for
seamless deployment in real-world production environments.

3.2 Evaluation Methodology
We performed manual testing on each Ansible playbook on our
setup to ensure successful execution. The Average Correctness (AC)

59

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Komal Sarda, Zakeya Namrud, Marin Litoiu, Larisa Shwartz, & Ian Watts

metric was employed for evaluation, focusing on the precision of
individual code blocks or sub-tasks within Ansible playbooks. These
sub-tasks, crucial units in Ansible, encompass actions like package
installations, service configurations, or file transfers, influencing
the overall playbook accuracy. The ACmetric is defined by Equation
1, evaluating the accuracy of generated Ansible playbooks. For each
Ansible playbook code (APC), AC computes the accuracy per task
by comparing the correctly executed tasks (C) to the total tasks (n)
in that APC . The accuracy ratios of all tasks across all APCs are
summed, providing an aggregate view of performance. The final AC
value represents the average of these task accuracy ratios, obtained
by dividing the sum by the total number ofAPCs (m). This nuanced
approach offers insights into the quality of individual code blocks
beyond a binary overall judgment.

AC =

∑m
j=1(Cj/Nj ∗ 100)

m
∗ 100 (1)

We refrained from utilizing other lexical metrics such as BLEU-4
[28] or semantic metrics like BERTScore[28] due to the unavailabil-
ity of ground truth. Table 2 presents the performance metrics, high-
lighting GPT-4’s exceptional accuracy in generating Ansible play-
book. With a 98.86% accuracy rate for code pertaining to Kubectl
commands. Additionally, when assessed against 24 real-time faults,
GPT-4 achieved a 92.36% accuracy rate. This stands in stark contrast
to a 60% accuracy rate for identical tasks performed by humans.

Table 2: Evaluation of Ansible playbooks

Task Source Accuracy

Kubectl command 98.86%
Code was written by a human from GitHub 60%

Real-time fault 92.36%

4 DISCUSSION & CHALLENGES
To foster operator trust in automated code generation for
expediting incident resolution, a large, real-world dataset is
crucial for fine-tuning models. Towards this, our dataset serves
as a valuable starting point. We devised a specific pattern for
constructing prompts using operator inputs, recognizing the
potential variations across industries. The evaluation involved
testing prompt construction and Ansible playbook generation on
e-commerce microservice applications like robot-shop and QoTD
using Kubectl. However, it’s important to note that these results
may not universally apply to different microservice applications
and tools. Additionally, while the GPT-4 were instruction-tuned
and evaluated to generate a specific dataset, variations in results
and accuracy may occur for different datasets. Rigorous manual
tweaking and testing were performed to ensure the reliability of
each playbook on our setup.

5 RELATEDWORK & APPLICATION
Benchmark datasets have become crucial for advancing applied AI
research, particularly as the demand for evaluating models across
diverse applications grows. Among the key contributions to this
area, Hendrycks et al.[13] pioneered the assessment of large trans-
former language models in competitive programming with the in-
troduction of the APPS dataset, featuring 10,000 coding competition

problems. The CodeXGLUE [25] and CodeSearchNet [15] datasets
further extend the toolset for researchers with tasks ranging from
code summarization to code translation, and offering professional
annotations for NL queries across several programming languages.
However, Ansible was not considered. 20-MAD [6] is a dataset that
links the commit and issue data of the Mozilla and Apache projects.
Our work distinguishes itself by focusing on the generation of Ansi-
ble playbooks, a niche not covered by the aforementioned datasets
that primarily utilize NL for code generation. Although the work of
Ahmed et al.[2] is closely related through its use of LLMs for text
generation, our emphasis remains on code generation. Moreover,
unlike the Andromeda [29], which provides an overview of the
Ansible Galaxy ecosystem, our dataset is specifically tailored for
training LLMs with generated and scraped Ansible playbooks along
with their associated prompts. To our knowledge, KubePlaybook
is the starting point for K8s-based Ansible playbook benchmark
dataset crafted using LLMs. Aimed at auto-remediation microser-
vices, it sets a new precedent for employing LLM-generated datasets
in practical applications. Table 3 outlines the distinctions between
the current cutting-edge research initiatives and our methodology.
This includes the employment of LLMs for the generation of the
Ansible playbook, the automation of code scraping techniques, the
detailed generation of report descriptions, and the careful crafting
involved in prompt engineering.

Table 3: Comparison between state-of-the-art research
and our approach.

References LLMs
usage

Scraped
repositories

Ansible
playbook

NL
prompts

Paper [2] ✗ ✓ ✗ ✓

Paper [5] ✗ ✓ ✗ ✗

Paper [6] ✗ ✓ ✗ ✗

Paper [13] ✓ ✗ ✗ ✗

Paper [15] ✓ ✓ ✗ ✗

Paper [25] ✓ ✗ ✗ ✗

Paper [29] ✗ ✓ ✓ ✗

Our Dataset ✓ ✓ ✓ ✓

6 CONCLUSION & FUTURE DIRECTIONS
In conclusion, while the application of AI, especially LLMs, in au-
tomating IT operations holds promise for self-healing mechanisms,
challenges persist in applying these advancements to IT-centric lan-
guages like YAML. The introduction of the KubePlaybook dataset,
comprising 130 NL prompts and Ansible playbooks, represents a
significant step towards addressing this gap. It facilitates the con-
textual learning of LLMs to generate Ansible-YAML scripts for
automated remediation tasks, a pivotal development for advancing
IT automation in cloud-native environments. It is poised to enhance
incident response in the dynamic realm of IT operations. Future
research may focus on augmenting playbook quality by incorpo-
rating more real-time fault data examples. The manual creation
of corresponding NL prompts for each script, a meticulous and
time-consuming process, motivates us to explore automatic prompt
generation for auto-remediation tasks in microservices environ-
ments. Additionally, investigating the performance and adaptability
of different LLMs for playbook generation presents a potential area
of exploration.

60

KubePlaybook: A Repository of Ansible Playbooks for Kubernetes Auto-Remediation with LLMs ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom

REFERENCES
[1] 1steveww et al. 2023. Robot Shop is a sample microservice application. Retrieved

Mar 6, 2023 from https://github.com/instana/robot-shop
[2] Toufique Ahmed, Supriyo Ghosh, Chetan Bansal, Thomas Zimmermann, Xuchao

Zhang, and Saravan Rajmohan. 2023. Recommending Root-Cause and Mitiga-
tion Steps for Cloud Incidents using Large Language Models. arXiv preprint
arXiv:2301.03797 (2023).

[3] Meriem Azaiez and Walid Chainbi. 2016. A multi-agent system architecture for
self-healing cloud infrastructure. In Proceedings of the International Conference
on Internet of things and Cloud Computing. 1–6.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[6] Maëlick Claes andMika VMäntylä. 2020. 20-MAD: 20 years of issues and commits
of Mozilla and Apache development. In Proceedings of the 17th International
Conference on Mining Software Repositories. 503–507.

[7] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[8] Ansible Galaxy. 2024. Ansible Galaxy. Retrieved Jan 30, 2024 from https:
//galaxy.ansible.com/ui/collections/

[9] GitHub. 2024. GitHub. Retrieved Jan 30, 2024 from https://github.com/
[10] Fabian Gloeckle, Baptiste Roziere, Amaury Hayat, and Gabriel Synnaeve. 2023.

Temperature-scaled large language models for Lean proofstep prediction. In The
3rd Workshop on Mathematical Reasoning and AI at NeurIPS’23.

[11] Red Hat. 2023. QoTD. Retrieved Oct 11, 2023 from https://github.com/redhat-
developer-demos/qotd.git

[12] Red Hat. 2023. Red Hat Ansible Automation Platform. Retrieved Nov 27, 2023
from https://www.redhat.com/en/technologies/management/ansible

[13] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora,
Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, et al. 2021. Mea-
suring coding challenge competence with apps. arXiv preprint arXiv:2105.09938
(2021).

[14] Eric Horton and Chris Parnin. 2022. Dozer: migrating shell commands to an-
sible modules via execution profiling and synthesis. In Proceedings of the 44th
International Conference on Software Engineering: Software Engineering in Practice.
147–148.

[15] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Codesearchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

[16] Jiajun Jiang, Weihai Lu, Junjie Chen, Qingwei Lin, Pu Zhao, Yu Kang, Hongyu
Zhang, Yingfei Xiong, Feng Gao, Zhangwei Xu, et al. 2020. How to mitigate
the incident? an effective troubleshooting guide recommendation technique for
online service systems. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1410–1420.

[17] Yuxuan Jiang, Chaoyun Zhang, Shilin He, Zhihao Yang, Minghua Ma, Si Qin,
Yu Kang, Yingnong Dang, Saravan Rajmohan, Qingwei Lin, et al. 2023. Xpert:
Empowering Incident Management with Query Recommendations via Large
Language Models. arXiv preprint arXiv:2312.11988 (2023).

[18] Cornel Klein, Reiner Schmid, Christian Leuxner, Wassiou Sitou, and Bernd Span-
felner. 2008. A survey of context adaptation in autonomic computing. In Fourth
International Conference on Autonomic and Autonomous Systems (ICAS’08). IEEE,
106–111.

[19] Sarda Komal, Namrud Zakeya, Rouf Raphael, Ahuja Harit, Rasolroveicy Mo-
hammadreza, Litoiu Marin, Shwartz Larisa, and Watts Ian. 2023. ADARMA
Auto-Detection and Auto-Remediation of Microservice Anomalies by Leveraging
Large LanguageModels. In Proceedings of the 33rd Annual International Conference
on Computer Science and Software Engineering. 200–205.

[20] Heiko Koziolek and Nafise Eskandani. 2023. Lightweight Kubernetes Distri-
butions: A Performance Comparison of MicroK8s, k3s, k0s, and Microshift. In
Proceedings of the 2023 ACM/SPEC International Conference on Performance Engi-
neering. 17–29.

[21] Kubectl. 2024. Kubectl. Retrieved Jan 30, 2024 from https://kubernetes.io/docs/
reference/kubectl/

[22] Kubernetes. 2024. Kubernetes. Retrieved Jan 30, 2024 from https://kubernetes.io/
[23] Zeyan Li, Junjie Chen, Rui Jiao, Nengwen Zhao, Zhijun Wang, Shuwei Zhang,

Yanjun Wu, Long Jiang, Leiqin Yan, Zikai Wang, et al. 2021. Practical root cause
localization for microservice systems via trace analysis. In 2021 IEEE/ACM 29th
International Symposium on Quality of Service (IWQOS). IEEE, 1–10.

[24] Fred Lin, Keyur Muzumdar, Nikolay Pavlovich Laptev, Mihai-Valentin Curelea,
Seunghak Lee, and Sriram Sankar. 2020. Fast dimensional analysis for root cause
investigation in a large-scale service environment. Proceedings of the ACM on
Measurement and Analysis of Computing Systems 4, 2 (2020), 1–23.

[25] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-
sio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset for code understanding and
generation. arXiv preprint arXiv:2102.04664 (2021).

[26] Sehrish Malik, Moeen Ali Naqvi, and Leon Moonen. 2023. CHESS: A Framework
for Evaluation of Self-adaptive Systems based on Chaos Engineering. arXiv
preprint arXiv:2303.07283 (2023).

[27] Pavel Masek, Martin Stusek, Jan Krejci, Krystof Zeman, Jiri Pokorny, and Marek
Kudlacek. 2018. Unleashing full potential of ansible framework: University labs
administration. In 2018 22nd conference of open innovations association (FRUCT).
IEEE, 144–150.

[28] Nabor C Mendonça, Pooyan Jamshidi, David Garlan, and Claus Pahl. 2019. De-
veloping self-adaptive microservice systems: Challenges and directions. IEEE
Software 38, 2 (2019), 70–79.

[29] Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. 2021. Andromeda:
A dataset of Ansible Galaxy roles and their evolution. In 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR). IEEE, 580–584.

[30] Saurabh Pujar, Luca Buratti, Xiaojie Guo, Nicolas Dupuis, Burn Lewis, Sahil
Suneja, Atin Sood, Ganesh Nalawade, Matt Jones, Alessandro Morari, et al. 2023.
Automated Code generation for Information Technology Tasks in YAML through
Large Language Models. arXiv preprint arXiv:2305.02783 (2023).

[31] Laria Reynolds and KyleMcDonell. 2021. Prompt programming for large language
models: Beyond the few-shot paradigm. In Extended Abstracts of the 2021 CHI
Conference on Human Factors in Computing Systems. 1–7.

[32] Katharine Sanderson. 2023. GPT-4 is here: what scientists think. Nature 615,
7954 (2023), 773.

[33] Komal Sarda. 2023. Leveraging Large Language Models for Auto-remediation in
Microservices Architecture. In 2023 IEEE International Conference on Autonomic
Computing and Self-Organizing Systems Companion (ACSOS-C). IEEE, 16–18.

[34] Jacopo Soldani and Antonio Brogi. 2022. Anomaly detection and failure root cause
analysis in (micro) service-based cloud applications: A survey. ACM Computing
Surveys (CSUR) 55, 3 (2022), 1–39.

[35] Roy Sterritt, Manish Parashar, Huaglory Tianfield, and Rainer Unland. 2005. A
concise introduction to autonomic computing. Advanced engineering informatics
19, 3 (2005), 181–187.

[36] Kaiming Tao, Zachary A Osman, Philip L Tzou, Soo-Yon Rhee, Vineet Ahluwalia,
and Robert W Shafer. 2024. GPT-4 Performance on Querying Scientific Publica-
tions: Reproducibility, Accuracy, and Impact of an Instruction Sheet. (2024).

[37] Catherine Tony, Markus Mutas, Nicolás E Díaz Ferreyra, and Riccardo Scandari-
ato. 2023. LLMSecEval: A Dataset of Natural Language Prompts for Security
Evaluations. arXiv preprint arXiv:2303.09384 (2023).

[38] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[39] Hulya Vural, Murat Koyuncu, and Sinem Guney. 2017. A systematic literature
review on microservices. In Computational Science and Its Applications–ICCSA
2017: 17th International Conference, Trieste, Italy, July 3-6, 2017, Proceedings, Part
VI 17. Springer, 203–217.

[40] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le,
and Denny Zhou. 2022. Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903 (2022).

[41] JulesWhite, Quchen Fu, SamHays, Michael Sandborn, Carlos Olea, Henry Gilbert,
Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C Schmidt. 2023. A prompt
pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint
arXiv:2302.11382 (2023).

[42] Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A
systematic evaluation of large language models of code. In Proceedings of the 6th
ACM SIGPLAN International Symposium on Machine Programming. 1–10.

[43] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and
Shankar Pasupathy. 2016. Early detection of configuration errors to reduce
failure damage. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). 619–634.

61

https://github.com/instana/robot-shop
https://galaxy.ansible.com/ui/collections/
https://galaxy.ansible.com/ui/collections/
https://github.com/
https://github.com/redhat-developer-demos/qotd.git
https://github.com/redhat-developer-demos/qotd.git
https://www.redhat.com/en/technologies/management/ansible
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/docs/reference/kubectl/
https://kubernetes.io/

	Abstract
	1 Introduction
	2 KubePlaybook Framework
	2.1 Data Collection & Generation
	2.2 Composition of NL Prompts
	2.3 KubePlaybook Description

	3 Experimental Setup & Evaluation
	3.1 Experiment Configuration
	3.2 Evaluation Methodology

	4 Discussion & Challenges
	5 Related Work & Application
	6 Conclusion & Future Directions
	References

