
STIGS: Spatio-Temporal Interference Graph Simulator for
Self-Configurable Multi-Tenant Cloud Systems

Iqra Zafar∗
Hasso Plattner Institute
University of Potsdam
iqra.zafar@hpi.de

Christian Medeiros Adriano
Hasso Plattner Institute
University of Potsdam

christian.adriano@hpi.de

Holger Giese†
Hasso Plattner Institute
University of Potsdam
holger.giese@hpi.de

ABSTRACT
The finer-granularity of microservices facilitate their evolution and
deployment on shared resources. However, resource concurrency
creates elusive interdependencies, which can cause complex inter-
ference patterns to propagate in the form of performance anomalies
across distinct applications. Meanwhile, the existing methods for
Anomaly Detection (AD) and Root-Cause Analysis (RCA) are con-
founded by this phenomenon of interference because they operate
within single call-graphs. To bridge this gap, we develop a graph
formalism (Spatio-Temporal Interference Graph - STIG) to express
interference patterns and an artifact to simulate their dynamics.
Our simulator contributes to the study and mitigation of interfer-
ence patterns as a performance phenomenon that emerges from
regular resource consumption anomalies.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures;

KEYWORDS
Microservices, Anomaly Propagation, Interference, Multi-tenant
Cloud Systems, Self-Configuration
ACM Reference Format:
Iqra Zafar, Christian Medeiros Adriano, and Holger Giese. 2024. STIGS:
Spatio-Temporal Interference Graph Simulator for Self-Configurable Multi-
Tenant Cloud Systems. In Companion of the 15th ACM/SPEC International
Conference on Performance Engineering (ICPE Companion ’24), May 7–11,
2024, London, United Kingdom. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3629527.3653664

1 INTRODUCTION
In the ever-evolving landscape of cloud computing, microservices
have emerged as a dominant architectural style, enabling more flexi-
ble and scalable applications. This style relies on a finer-granularity
of functions and more radical resource sharing among different ap-
plications. However, this strategy increases overall system complex-
ity by adding elusive interdependencies among microservices [6]
from distinct applications.
∗ACM Member
†IEEE and ACM Member

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3653664

Definition 1.1. Interference happens when two services that
have no logical dependency (caller-callee relation) compete for the
same resource (compute, memory, I/O) to the extent that they affect
each other’s performance (e.g., throughput, latency) [9].

Contrary to the caller-callee relations [5], in application call-
graphs and abstract syntax trees, these new interference-enabling
interdependencies are more elusive because their presence and
flow of direction are not deterministic. Instead, interdependen-
cies might appear and disappear according to the non-stationary
patterns of the applications’ usage and the work of load balanc-
ing or self-configurable service placement mechanisms. Therefore,
cross-application services interference confounds the outcome of
traditional microservice diagnostic methods like Anomaly Detec-
tion (AD) and Root-Cause Analysis (RCA) [4, 11], as these methods
rely on stable and predictable call-graph dependencies [5].

While self-configuration solutions can dynamically adapt to
changes in the application usage [3], multi-tenant systems require
more involved approaches [10]. For that, various interference mit-
igation (IM) methods have been developed - originally, for virtu-
alized cloud environments [9] and, lately, for microservices [1, 7].
Nonetheless, there are still at least two obstacles that prevent ex-
isting IM methods from reducing confounding in AD and RCA ap-
proaches: (1) limited number of covered services (four as in [1, 12]),
and (2) reliance on metrics that are agnostic to the interdependen-
cies across applications. These methods measure interference w.r.t.
sensitivity (the susceptibility of a service to be influenced by other
services) and contention (the service consumption demand on a
resource, e.g., CPU) between service pairs, but they are oblivious
of the many-to-many relationship nature of interference.

Conversely, our approach overcomes these limitations by for-
mulating the interference phenomenon as a spatio-temporal graph.
Our corresponding simulation helps mitigate the probability and
impact of the interference phenomenon by de-confounding the
diagnostics from the AD, RCA, and IM methods, hence, render-
ing these methods more effective for complex multi-tenant cloud
systems [1, 12]. We contribute with (1) a formalism to capture
interference patterns as spatio-temporal graphs (STIG), (2) a simu-
lator called STIGS (Figure 2) for generating interference patterns,
and (3) a practical evaluation with three popular microservice
benchmarks (Bookinfo1, TeaStore2 and SockShop3).

Definition 1.2. Spatio-Temporal Interference Graph (STIG)
is denoted as G = (𝑉 , 𝐸, 𝑋𝑣 (𝑡) , 𝑋𝑒 (𝑡)), where𝑉 are nodes represent-
ing services, 𝐸 are directed edges representing interference between

1Bookinfo:https://github.com/nocalhost/bookinfo
2Tea-Store: https://github.com/DaGeRe/TeaStore
3SockShop: https://microservices-demo.github.io/

52

https://orcid.org/0000-0002-7754-6082
https://orcid.org/0000-0003-2588-9937
https://orcid.org/0000-0002-4723-730X
https://doi.org/10.1145/3629527.3653664
https://doi.org/10.1145/3629527.3653664
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3653664

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Iqra Zafar, Christian Medeiros Adriano, & Holger Giese

services across applications, 𝑋𝑣 (𝑡) are the time-varying node fea-
tures (e.g., resource per service), and 𝑋𝑒 (𝑡) the edge features (e.g.,
interference probability).

2 INTERFERENCE ANOMALY SCENARIO
As an example, assume three e-commerce applications having 14
microservices (shown in Figure 1) deployed on the same server (ei-
ther host1, host2) each with a CPU of 4 cores and 10 GB of memory.
The occurrence of a sudden surge of 100% in users during a flash
sales event could subsequently cause an increase in the demand for
these applications, e.g., from 60% to 90% CPU and memory usage
from 5GB to 10GB. As the services compete for shared resources,
the increased load could induce a low response time, e.g., 1000ms
from the original 100ms among the resource-sharing services. This,
in turn, could evolve to more severe problems like intermittent or
permanent failures. Because anomalies jump across the applica-
tions’ borders, one cannot rely on the individual call-graphs and
performance metrics. To address this situation, the STIG model
captures the dependencies originating both from the call-graph and
the deployment graph (e.g., service placement configuration).

Figure 1: Knowledge Deployment Graph. Nodes colors for
distinct applications (shops) and maroon/red color for host
nodes. The dashed arrows for hosting service relationships
and the solid arrows for caller-callee relationships.

3 STIG SIMULATOR
3.1 Design and Architecture
The workflow of the STIGS depicted in Figure 2 represents a struc-
tured approach to modeling and analyzing interference in multi-
node applications, which we detail next. The task Define Multi-
Node Application generates the dependency graphs from the
system architecture (System Archi.xml) and the deployment config-
uration (Deployment config.yaml). Based on that, we Instantiate
the Semantic Model Template to extract distinct interference-
enabling paths. The Graph Generator combines the set of distinct
paths and the multi-tenant setup (Deployment config.yaml) to gen-
erate (1) a knowledge deployment graph (e.g. Figure 1) and (2)
the time-annotated call-graphs, which serve as ground truth for
the STIG generation process. The Impacted Pair Generator task
identifies the candidate pairs of service nodes with the potential
for mutual interference. The Interference Probability Calcula-
tor estimates the likelihood of interference by taking into account
both the execution timings and their history of service anomalies.
Finally, one or multiple instances of the STIG (e.g. Figure 3) are
generated to represent distinct likelihood scenarios of anomalies
induced by interference between services across applications. If at

Figure 2: STIG Simulator Workflow

least one STIG was generated, the workflow ends and the simulator
proceeds to Graph Display, where the STIG set is made available
for analysis. We provided detailed instructions on how to install
the STIG Simulator which is available for download on Zenodo4
and Github5.

3.2 Algorithms
To investigate the interference phenomenon, we identify the source
and corresponding impact of the interference through the proposed
algorithms. In Algorithm 1, we computed query predicate stack that
acts as sources and targets of interference, respectively, from the
Knowledge Deployment Graph (kgraph) and particular host node
(Host1 in Figure 1). These stack computations depend on the execu-
tion order of calls at the specific host (line 5 and 10). The source
of interference on one or more targets services is capture as a prob-
ability measure proportionate to the magnitude of shared resources
within a time window. Consequently, longer time intervals and
higher resource utilization entail higher probability of interference
(computed by the Algorithm 2). This involves generating a list of
the impacted node pairs (sourceStack and the targetStack) based on
their execution overlapping times. The algorithm first sorts these
stacks by their execution start time (line 2) and matches the current

4Zenodo repository: https://zenodo.org/records/10610874
5https://github.com/christianadriano/STIGS-Artifact

53

STIGS: Spatio-Temporal Interference Graph Simulator for Self-Configurable
Multi-Tenant Cloud Systems ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom

source node and the target nodes list given their execution time
conditions (lines 3-10). The probability of interference is derived
for each source node (curSource) and their respective overlapping
target nodes (curTargetList), also factoring-in their levels of shared
resource usage. With that, we can estimate the interference proba-
bilities for the STIG (line 12 by calling Algorithm 3). This involves
computing for each source node (curSource) the list of target nodes
(curTargetList) and their corresponding execution time overlap, as
well as the magnitude of the resource usage shared with each source
and target nodes (lines 3-6). The resulting list of impacted pairs is
then returned by Algorithm 2 (line 15).

Algorithm 1 Compute Query Predicate Stack

1: procedure generateQPstack(kgraph, host, filepath)
2: arch = get.architecture.callgraph(kgraph)
3: deploy = get.deploy.callgraph(kgraph)
4: if file at filepath exists then
5: exeOrders = Load data from filepath
6: else
7: exeOrders = createTempgraph(arch, filepath)
8: end if
9: serPaths = getDistPaths(archi)
10: nodes.at.host = List all nodes deployed on host
11: exe.orders= exe orders in nodes at host
12: Initialize Query.Predicate.stack as an empty list
13: for each 𝑒𝑥𝑒.𝑜𝑟𝑑𝑒𝑟 in 𝑒𝑥𝑒.𝑜𝑟𝑑𝑒𝑟𝑠.𝑎𝑡 .ℎ𝑜𝑠𝑡 do
14: Get index of first service path in 𝑠𝑒𝑟𝑃𝑎𝑡ℎ𝑠

15: end for
16: for each 𝑠𝑒𝑟 in 𝑒𝑥𝑒.𝑜𝑟𝑑𝑒𝑟𝑠 do
17: Create 𝑠𝑡𝑎𝑐𝑘.𝑒𝑛𝑡𝑟𝑦 with service details
18: if 𝑠𝑒𝑟 on same path of service in 𝑒𝑥𝑒.𝑜𝑟𝑑𝑒𝑟𝑠 then
19: Add stack.entry to query
20: else
21: Add stack.entry to predicate
22: end if
23: end for
24: Update start time for each entry in query and predicate lists
25: Add a dictionary with query and predicate to

𝑞𝑢𝑒𝑟𝑦.𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒.𝑠𝑡𝑎𝑐𝑘𝑠

26: return 𝑞𝑢𝑒𝑟𝑦.𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒.𝑠𝑡𝑎𝑐𝑘𝑠

27: end procedure

Using this information, we can construct Spatio-Temporal Inter-
ference Graphs (STIGs) as described in Algorithms 1,2 and 3. The
STIG, as seen in Figure 3, consists of nodes as services, solid edges
as service calls within the same application, and the dotted edges
standing for interference paths. The weights on the interference
edges can be initialized with prior probabilities based on tempo-
ral execution overlap across application services sharing the same
resource (worker-node).

4 EVALUATION CASE STUDY
We deploy three popular benchmarks (BookShop, TeaShop, and
SockShop) on a Kubernetes cluster and generate traces by injecting
requests (10 to 1000) to their front webpages. Traces are collected
based on the following Table 1 configurations. The "Number of

Algorithm 2 Compute List of Impacted Pairs

1: procedure ImpactedPairList(sourceStk, targetStk)
2: Sort both input sets by start of execution
3: while 𝑠𝑜𝑢𝑟𝑐𝑒𝑆𝑡𝑘 is not empty do
4: Pop 𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒 from 𝑠𝑜𝑢𝑟𝑐𝑒𝑆𝑡𝑘

5: while endTime of 𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒 > starting.time.target at
head of 𝑡𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑘 do

6: Pop 𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡 from 𝑡𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑘

7: Put 𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡 into 𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑖𝑠𝑡
8: if endingTime of 𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒 is < ending time of

𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡 then
9: Set starting time of 𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡 to endingTime of

𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒

10: Push it back to stack
11: end if
12: Append ComputeSTIGProb (𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒 ,

𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑖𝑠𝑡) to 𝑟𝑒𝑠𝑢𝑙𝑡𝐿𝑖𝑠𝑡
13: end while
14: end while
15: return 𝑟𝑒𝑠𝑢𝑙𝑡𝐿𝑖𝑠𝑡

16: end procedure

Algorithm 3 Compute STIG Interference Probability Edges

1: procedure ComputeSTIGProb(curSource,curTargetList)
2: 𝑡𝑜𝑡𝑎𝑙𝑆𝑜𝑢𝑟𝑐𝑒𝑇=𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒.𝑒𝑛𝑑𝑇𝑖𝑚𝑒-𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒.𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒

3: for each node in 𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡𝐿𝑖𝑠𝑡 do
4: 𝑡𝑜𝑡𝑎𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑇=min(𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡 .𝑒𝑛𝑑𝑇𝑖𝑚𝑒 ,

𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒.𝑒𝑛𝑑𝑇𝑖𝑚𝑒)-𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡 .𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒

5: 𝑐𝑢𝑟𝑀𝑎𝑔=𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒.𝑟𝑒𝑠𝑈𝑠𝑎𝑔𝑒+𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡 .𝑟𝑒𝑠𝑈𝑠𝑎𝑔𝑒

6: return {source, target, prob, mag}=𝑐𝑢𝑟𝑆𝑜𝑢𝑟𝑐𝑒 ,
𝑐𝑢𝑟𝑇𝑎𝑟𝑔𝑒𝑡 , 𝑡𝑜𝑡𝑎𝑙𝑇𝑎𝑟𝑔𝑒𝑡𝑇 / 𝑡𝑜𝑡𝑎𝑙𝑆𝑜𝑢𝑟𝑐𝑒𝑇 , 𝑐𝑢𝑟𝑀𝑎𝑔

7: end for
8: end procedure

Figure 3: Spatio-Temporal-Interference-Graph. (STIG). Nodes
are services, solid edges are calls within one application, and
the dotted edges are interference paths

54

ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Iqra Zafar, Christian Medeiros Adriano, & Holger Giese

Figure 4: Structural Dependency Matrix: consolidates the
averages of interference across a STIG set.

Requests" column shows how many requests are made in each
configuration. This starts at 10 requests in config1 and increases
progressively, reaching up to 1000 requests in config11. The "Rate"
of request is every 1 min. These generated traces will help in our
analysis in combination with STIGs. Traces dataset is available at
simulator’s Github repository.

Table 1: Configuration of Traces Generation

Config of Requests Rate

config1 10 every 1 min
config2 20 every 1 min
config3 30 every 1 min

...
config10 800 every 1 min
config11 1000 every 1 min

4.1 STIG Analysis
To visualize the cause-effect phenomenon on generated STIGs, we
extracted only the source and target pairs of the front-end service
based on the maximum interference effect and obtained all asso-
ciated source and target pairs. As a reference, Figure 4 shows a
structural dependency matrix (SDM [2]) representing the interfer-
ence probabilities (STIG edges) between source and target services
(STIG nodes) of SockShop and TeaShop, where the darker colors
represent higher probability. In the SDM, the front-end-M1:shop1
shows the highest probability (1.0) of being interfered with by front-
end-M2:shop2, which stems from the assumed determinism of these
services starting simultaneously. Conversely, as the effect of inter-
ference propagates, there is a lower interference probability, which
reflects smaller execution overlap between downstream services.

4.2 Reconfiguration Plan
The reconfiguration plan involves ranking the services with respect
to the highest probability of necessity and sufficiency of being the

culprit of the anomaly induced by interference. Because interference
happens both ways, the plan can attribute source and target to
anomalous services in either side of an interference association. For
this, we monitored and collected traces from shops (Table 1) and
performed probabilistic analysis on them. Probability of Necessity
(PN) consists of the chance that an effect (anomaly) on a target node
(𝑌 = 1, i.e.,𝑌) is caused (interfered) by an anomaly on a source node
(𝑋 = 1, i.e.,𝑋), given that there is a history of absence of anomaly on
the target node (𝑌 = 0, i.e., 𝑌 ′) and there is an absence of anomaly
on the source node (𝑋 = 0 or 𝑋 ′). Formally, from Pearl [8], PN(Y,X)
= P(Y,X|Y’,X’). The Probability of Sufficiency (PS) is the reverse case
PS(Y,X) = P(Y’,X’|Y,X), while the probability of both Necessity and
Sufficiency (PNS) is the weighted average PNS(Y,X) = P(X,Y)PN(Y,X)
+ P(X’,Y’)PS(Y,X). Among the various approaches to compute these
probabilities, we adopted the formulations in [8] (section 19.3.3) that
assume causal exogeneity6 and monotonicity7. The formulations
are the following PNS = P(Y|X) - P(Y|X’), PN = PNS / P(Y|X), and PS
= PNS / [1 - P(Y|X’)]. The results in Table 2 show that PN is more
than two orders of magnitude higher than PS and PNS. This means
that one can focus primarily on tackling the necessary sources of
the induced anomaly, i.e., product-page and reviews. To mitigate
the interference-induced anomalies on teastore-webui, one could
reconfigure the deployment graph in a way that this microservice is
placed on aworker-nodewhere there are no instances of the product-
page and reviews microservices. Meanwhile, the STIG simulated
data also informs us that the other anomalies (e.g., on (teastore-auth
and teastore-image services) are not induced by an interference.
For these cases, the solution is to add more resources (compute,
memory) to their corresponding worker-nodes. For more details, an
analysis is available under the artifact Github repository data/traces
folder8.

Table 2: Results for two interfering service pairs𝑎

Item Pair 1 Pair 2

𝑋 product-page reviews
𝑌 teastore-webui teastore-webui

𝑃𝑁 8.40% 24.97%
𝑃𝑆 0.05% 0.05%
𝑃𝑁𝑆 0.05% 0.05%

𝑎 The only services with anomalies in BookShop are product-page and reviews,
whereas in TeaShop only the teastore-webui, teastore-auth, and teastore-image have
anomalies. However, there were only two pairs of services with joint probabilities
𝑃 (𝑌,𝑋) > 0 (shown in the table).

5 CONCLUSION AND FUTUREWORK
We presented a novel approach to the problem of service interference in multi-tenant
microservice architectures, where concurrency over shared resources induces the prop-
agation of elusive anomaly patterns. Our formalism and simulator are a contribution
to the study of interference anomalies and the mitigation of this complex emergent
phenomenon. The artifact components and the interference simulation can be easily
extended to new performance anomaly scenarios. In future work, we plan to study
the scalability and latency of the simulator within larger and more heterogeneous
deployments.

6Exogeneity = no hidden confounders beyond the detected anomalies
7Monotonicity of the causal effects, i.e., anomalies cannot cancel each other.
8Analysis Details: https://github.com/christianadriano/STIGS-
Artifact/blob/main/data/traces/excel-filtered-combined-services-anomalies.xlsx

55

STIGS: Spatio-Temporal Interference Graph Simulator for Self-Configurable
Multi-Tenant Cloud Systems ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom

REFERENCES
[1] Madhura Adeppady, Paolo Giaccone, Holger Karl, and Carla Fabiana Chiasserini.

2023. Reducing Microservices Interference and Deployment Time in Resource-
constrained Cloud Systems. IEEE Transactions on Network and Service Manage-
ment (2023). https://doi.org/10.1109/TNSM.2023.3235710

[2] Tyson R Browning. 2015. Design structure matrix extensions and innovations: a
survey and new opportunities. IEEE Transactions on engineering management 63,
1 (2015), 27–52.

[3] Vincent Bushong, Amr S. Abdelfattah, Abdullah A. Maruf, Dipta Das, Austin
Lehman, Eric Jaroszewski, Michael Coffey, Tomas Cerny, Karel Frajtak, Pavel
Tisnovsky, and Miroslav Bures. 2021. On Microservice Analysis and Architecture
Evolution: A Systematic Mapping Study. Applied Sciences 11, 17 (2021). https:
//doi.org/10.3390/app11177856

[4] Shenghui Gu, Guoping Rong, Tian Ren, He Zhang, Haifeng Shen, Yongda Yu,
Xian Li, Jian Ouyang, and Chunan Chen. 2023. TrinityRCL: Multi-Granular and
Code-Level Root Cause Localization Using Multiple Types of Telemetry Data in
Microservice Systems. IEEE Transactions on Software Engineering (2023).

[5] Devki Nandan Jha, Saurabh Garg, Prem Prakash Jayaraman, Rajkumar Buyya,
Zheng Li, and Rajiv Ranjan. 2018. A holistic evaluation of docker containers
for interfering microservices. In 2018 IEEE International Conference on Services
Computing (SCC). IEEE, 33–40.

[6] Claus Pahl, Pooyan Jamshidi, and Olaf Zimmermann. 2018. Architectural princi-
ples for cloud software. ACM Transactions on Internet Technology (TOIT) 18, 2

(2018), 1–23.
[7] Yicheng Pan, Meng Ma, Xinrui Jiang, and Ping Wang. 2021. Faster, deeper,

easier: crowdsourcing diagnosis of microservice kernel failure from user space.
In 30th ACM SIGSOFT International Symposium on Software Testing and Analysis.
646–657.

[8] Judea Pearl. 2022. Probabilities of causation: three counterfactual interpretations
and their identification. In Probabilistic and Causal Inference: The Works of Judea
Pearl. 317–372.

[9] Xing Pu, Ling Liu, Yiduo Mei, Sankaran Sivathanu, Younggyun Koh, and Calton
Pu. 2010. Understanding performance interference of I/O workload in virtualized
cloud environments. In 2010 IEEE 3rd international conference on cloud computing.
51–58. https://doi.org/10.1109/CLOUD.2010.65

[10] Miguel G Xavier, Kassiano J Matteussi, Fabian Lorenzo, and Cesar AF De Rose.
2016. Understanding performance interference in multi-tenant cloud databases
and web applications. In 2016 IEEE international conference on big data (big data).
IEEE, 2847–2852.

[11] Ruyue Xin, Peng Chen, and Zhiming Zhao. 2023. Causalrca: Causal inference
based precise fine-grained root cause localization for microservice applications.
J. of Systems and Software (2023).

[12] Chaobing Zeng, Fangming Liu, Shutong Chen, Weixiang Jiang, and Miao Li.
2018. Demystifying the Performance Interference of Co-Located Virtual Network
Functions. In IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.
765–773. https://doi.org/10.1109/INFOCOM.2018.8486246

56

https://doi.org/10.1109/TNSM.2023.3235710
https://doi.org/10.3390/app11177856
https://doi.org/10.3390/app11177856
https://doi.org/10.1109/CLOUD.2010.65
https://doi.org/10.1109/INFOCOM.2018.8486246

	Abstract
	1 Introduction
	2 Interference Anomaly Scenario
	3 STIG Simulator
	3.1 Design and Architecture
	3.2 Algorithms

	4 Evaluation Case Study
	4.1 STIG Analysis
	4.2 Reconfiguration Plan

	5 Conclusion and Future Work
	References

