
DMBench: Load Testing and Benchmarking Tool for Data
Migration

Fares Hamouda
York University

North York, Canada
faresham@yorku.ca

Marios Fokaefs
York University

North York, Canada
fokaefs@yorku.ca

Dariusz Jania
IBM

Kraków, Poland
dariusz.jania@pl.ibm.com

ABSTRACT
Data migration refers to the set of tasks around transferring data
over a network between two systems, either homogeneous or het-
erogeneous, and the potential reformatting of this data. Combined
with large volumes of data, resource constraints and variety in
data models and formats, data migration can be critical for enter-
prises, as it can consume a significant amount of time, incur high
costs, and pose a significant risk if not executed correctly. The
ability to accurately and effectively predict these challenges and
plan for proper resource, time and budget allocation is vital for the
proper execution of data migration. In this work, we introduce the
concept of load testing and benchmarking for data migration to
allow decision-makers for higher efficiency and effectiveness when
planning for such tasks. Our framework aims for extensibility and
customizability to enable the execution of a greater variety of tests.
Here, we present a prototype architecture, a roadmap of how the
development of such a platform should proceed and a simple case
study of how it can be used in practice.

CCS CONCEPTS
• General and reference → Experimentation; • Computer
systems organization → Cloud computing; • Information
systems → Cloud based storage; Database performance eval-
uation.

KEYWORDS
data migration; big data; benchmarking; load testing; software per-
formance; data integrity; data transfer
ACM Reference Format:
Fares Hamouda, Marios Fokaefs, and Dariusz Jania. 2024. DMBench: Load
Testing and Benchmarking Tool for Data Migration. In Companion of the
15th ACM/SPEC International Conference on Performance Engineering (ICPE
Companion ’24 ), May 7–11, 2024, London, United Kingdom. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3629527.3653663

1 INTRODUCTION
Technological advancements often drive large-scale migrations of
software and data systems to new platforms, presenting challenges

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3653663

in data transfer. The volume of enterprise data, ranging from ter-
abytes to petabytes, strains networks and increases the risk of errors.
Additionally, diverse target systems may necessitate changes in
migration strategies. In a business context, data migration is viewed
as a maintenance task that requires resources and careful planning
to minimize disruption to regular business operations.

To tackle the planning and resource challenges, our prototype
architecture presents a flexible testing platform. It enables swift
and adaptable experimentation to systematically assess various mi-
gration scenarios and configurations, yielding comprehensive data
for informed decisions. Adding to its value, this framework extends
its utility to the execution of migration experiments by simulating
multiple production workloads on the data source machine. This
approach enables a comprehensive assessment of how the workload
on the data source machine influences the performance and relia-
bility of the data migration process. Additionally, the framework
allows for an investigation into the reciprocal impact—how the mi-
gration process affects production workloads and performance on
the data source. We maintain that this prototype’s inherent flexibil-
ity can readily accommodate such complex scenarios, positioning
it not only as a benchmarking tool but also as a versatile resource
for in-depth migration experimentation and analysis.

In this work, we outline the main components of the prototype
architecture while highlighting essential non-functional require-
ments crucial for platform design. We assert that the prototype’s
inherent flexibility allows for the accommodation of more complex
migration scenarios and configurations. Furthermore, we envision
this platform evolving beyond its benchmarking capabilities to
serve as a dynamic tool for data collection, decision-making, or
even as the foundation for a dynamically adaptive migration strat-
egy.

2 RELATEDWORK
Data migration has mainly been studied in the context of mi-
gration to the cloud [6, 9, 15]. Some studies investigate meth-
ods for validating data migration to ensure data accuracy post-
migration. These approaches include comparing data sets migrated
using different protocols, validating migration based on comparison
data, and employing techniques such as checksums or key-data
pairs [7, 10, 11, 16]. Additionally, research on optimizing the mi-
gration process focuses on minimizing testing costs, customizing
migration problems with specific constraints, and proposing stream-
lined algorithms [2, 4, 5, 8]. Besides practitioners, our platform can
also support this research by allowing testing of novel validation
and optimization techniques. Subramani et al. [13] propose a theo-
retical algorithm to optimize data migration in order to minimize

47

https://doi.org/10.1145/3629527.3653663
https://doi.org/10.1145/3629527.3653663


ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Fares Hamouda, Marios Fokaefs, & Dariusz Jania

testing on the application side. However, they do not discuss any
method or tool for testing the actual migration.

3 DMBENCH ARCHITECTURE AND
IMPLEMENTATION

DMBench is designed to be primarily functional, usable and portable,
but also flexible and extensible. To this end, it consists of multiple
semi-independent modules with distinct roles that can be easily
configured individually or as a whole, and can be replaced by alter-
native implementations with ease. The use of Docker containers
makes the platform easy to deploy and redeploy at will and on
demand. Next, we provide more details about the properties and
relations between these modules.

3.1 Functional and Non-Functional
Requirements

The primary objective of DMBench is to allow testers and decision-
makers to design and execute migration experiments as efficiently
and as effectively as possible. Such a platform should allow for
easy configuration of different experiments, fast deployment and
execution of the experiment and fully automated and comprehen-
sive presentation of the results. In principle, the platform should
enable testers to execute as many “what-if” scenarios as possible to
compare many alternatives or confirm many hypotheses. In prac-
tice, the platform guides the tester to prepare an environment to
send data from one machine to another (potentially remote) with
different types of configurations, and then monitors each part of
the process.

DMBench has been designed according to a set of principles on
the functional and non-functional requirements of a data migration
testing tool, as described below.

Functional Requirements:
• Easy setup: The setup for a migration task refers to all steps
relevant to preparing the source and target machines, the
migration engine, any metering apparatus (e.g., logging or
monitoring) along with respective databases to save results,
and the controller of the migration test or experiment. Setup
can be a time-consuming step, especially when it is not auto-
mated. The ability to quickly complete the setup and make
it easy to share between experiments is vital to the ability of
testing multiple scenarios and configurations.

• Easy configuration: Numerous parts of the platform and of
an experiment need to be configurable to allow for extensive
control to the tester. If the configuration is complex, incon-
sistent or generally lacking, it may render experimentation
results unusable.

• Convenient and complete access to results: For any
benchmark to be useful, it needs to provide the results in
a convenient way to enable further analysis and interpre-
tation. While this can include reports with visualizations
and descriptive statistics, it is important to also return all
raw measurements and results in a format that can be easily
digested by an analysis software.

Non-functional Requirements.

• Usability: The user of the tool is expected to have some
basic understanding of data migration and potentially of the
source and target systems, and the data to be transferred.
Besides that, the tools should hide as many details about the
experimentation infrastructure as possible and expose any
configuration or input points through a clear and easy-to-
use interface. The proposed benchmark follows a simplified
approach, allowing users to initiate experiments with a few
straightforward commands after the environment is set up
and configured. The objective is to streamline the process,
ensuring ease of use while maintaining simplicity.

• Extensibility: The benchmark as a software framework.
Through the configuration files, the user can provide outside
input to the framework and provide any migration engine
she wants to test by dockerizing it following our process. In
addition, all other modules, including logging and monitor-
ing, can be replaced by what the user desires, as long as they
can be deployed on Docker. Besides, the “frozen spots” of
the framework, i.e., the abstract components or the compo-
nents that the user cannot override, dictate the flow of the
experiment.

• Accuracy and Reliability: When configuring an experi-
ment, the user has the possibility to request for each experi-
ment to be executed a given number of times. By repeating
the exact same experiment multiple times and averaging over
the results of the iterations, we can ensure that any source
of variability is excluded, and the results are accurate and
reliable. In many analyses, it is required to perform statistical
testing to confirm or reject our initial hypothesis. By repeat-
ing the experiments multiple times, we make it possible to
run such tests with high confidence. No matter the num-
ber of repetitions, experiments in DMBench are executed
deterministically and any variations originates from the en-
vironment or the use case and not from the tool. Through
complete access to the results, this is verifiable by the tester.

3.2 Architecture
Figure 1 shows the main components of DMBench, which are de-
scribed in detail next.

• Migration Engine: Central to the framework, the Migration
Engine serves as the focal point for all bench-marking activi-
ties, but is primarily the module responsible for transferring
data from the source to the target. All other components
within the framework are designed to closely monitor and
assess the performance of the engine. Users are afforded the
flexibility to select any migration engine of their preference
for bench-marking purposes. Whether the chosen engine
operates within a singular service architecture or spans mul-
tiple services, the only prerequisite is the dockerization of
the selected engine. The framework seamlessly manages the
intricacies of the bench-marking process, offering a stream-
lined and user-friendly experience.

• Data Source: This component serves as the starting point
for the Migration Engine to transfer data from here to a
designated target machine. DMBench requires only an IP
address and appropriate credentials to connect to the Data

48



DMBench: Load Testing and Benchmarking Tool for Data Migration ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom

Figure 1: The general architecture of DMBench.

Source machine, but the specific deployment method (vir-
tual machine, physical server, container) is irrelevant to the
platform.

• Data Target: This component is the destination for data
transferred by the Migration Engine from the source ma-
chine. Similar to the sources, only an IP address and connec-
tion credentials are necessary.

• Controller: Responsible for orchestrating all experiments
under consistent conditions, the Controller configures the
migration engine for each experiment with varying param-
eters. It initiates and oversees the execution of the migra-
tion process, monitoring the engine’s performance through
recording and analysis of migration logs. Simultaneously,
the Controller tracks resource consumption by deploying
cAdvisor [14]and node-exporter [12] on the migration in-
frastructure.

• Metrics & Logs Databases: DMBench uses two databases
for the monitored data. The first, a time series database
based on Prometheus [1], aggregates resource consumption
data collected from cAdvisor [14]. The second database, a
MongoDB [3] instance, serves as the repository for all log data
generated during the experiments. These databases work in
tandem, with Prometheus [1] focusing on resource metrics
and the second database storing all logs from both the frame-
work and the migration engine, it ensures comprehensive
and organized storage of experiment results.

• Logs reporter: Comprising two integral components, the
Logs Reporter ensures a robust and organized handling of ex-
periment logs. The first component involves a Kafka cluster,
serving as the repository for all logs. Both the Controller and
the Migration Engine publish their logs to Kafka, with a ded-
icated consumer responsible for retrieving and temporarily
storing these logs in local files.
The second component is the parser, which not only ex-
tracts data from the logs but also transforms it into a human-
readable format. The parsed information is then exported
into CSV files before being permanently stored in a NoSQL
database, asmentioned above. This dual-component approach

ensures a seamless and efficient process for managing, inter-
preting, and extracting insights from the experiment logs.

In our framework, the configuration is specified in a config.ini
format, which is parsed within the framework. The framework
ensures that the config.ini file is available in a specified path within
the Docker container where the migration engine is deployed. The
engine then reads the config.ini file to run the experiment based
on the provided values. While this approach has been tested with
our engine and the DB2 migration engine using a simple Python
script to read and execute the configuration, it’s important to high-
light that the specifics of handling the configuration may vary
depending on the engine being used. Therefore, users are responsi-
ble for implementing the necessary scripts or procedures to ensure
compatibility with their chosen engine. For detailed config.ini expla-
nations, including section meanings and purposes, visit the GitHub
repository1, these details are found in the controller configuration
section.

4 CURRENT IMPLEMENTATION STATE
DMBench can presently accommodate: a) a proprietary default
migration engine, designed for migrating files from a source to a
target machine, b) a MySQL database migration engine, where
the database is first dumped into a file and subsequently migrated
using our default migration engine, and c) the IBM DB2 migra-
tion engine, which is discussed below. To facilitate the adoption
of DMBench, comprehensive guidelines on its utilization and fur-
ther development are meticulously documented and available in a
GitHub repository2. These guidelines provide users with step-by-
step instructions and best practices, ensuring a smooth and efficient
migration process.

In addition to the various migration engines, the framework
supports a number of different migration scenarios in terms of size
and format of data: a) Exploring multiple compression techniques
(e.g., GZIP, LZ4) or migrating data over multiple streams, to opti-
mize migration engine configurations. b)The framework enables
the assessment of migration engine limitations, such as maximum
stream capacity or data volume, by incrementally increasing param-
eters until system constraints are reached. c) A key feature of the
framework is its capability to compare multiple migration engines
using predefined datasets, allowing for a comparative analysis of
their performance characteristics during the migration process.

4.1 Case Study: IBM DB2 Migration
One practical use case in our framework focuses on migrating data
between two IBM Db2 databases. This migration is facilitated by
IBM’s dedicated migration service, initially containerized using
Docker. Following the guidelines detailed in the documentation of
our GitHub repository, we establish the required environment. Fur-
thermore, the Controller is configured based on the specifications
provided in the documentation.

(1) Ensuring the requisite machines are set up and accessible,
we’ve verified the readiness of both the source and target
machines, which are IBM Db2 databases.

1https://github.com/yorku-ease/DataMigrationBenchmarkingTool?tab=readme-ov-
file#configuration
2https://github.com/yorku-ease/DataMigrationBenchmarkingTool

49

https://github.com/yorku-ease/DataMigrationBenchmarkingTool?tab=readme-ov-file#configuration
https://github.com/yorku-ease/DataMigrationBenchmarkingTool?tab=readme-ov-file#configuration
https://github.com/yorku-ease/DataMigrationBenchmarkingTool


ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom Fares Hamouda, Marios Fokaefs, & Dariusz Jania

(2) In the configuration phase, we focused on configuring vari-
ous components of the framework. Notably, the configura-
tion of the Controller is detailed in the Table 1.

(3) Subsequently, the experiment was executed following the
steps outlined in the documentation, and the results were ob-
tained and stored in both MongoDB [3] and Prometheus [1].

Key Value
Section : targetServer

host 192.168.122.52
username db2inst1
password password
port 50000
type db2

Section : sourceServer
host 192.168.122.28
username db2inst1
password password
port 50000

Section : KafkaCluster
host 192.168.122.145
port 9092
performanceBenchmarkTopic performanceBenchmark
migrationEngineTopicName migrationEngine
frameworktopicname framework

Section : migrationEnvironment
migrationEngineDockerImage fareshamouda/d-

b2migrationservice
loggingId
numberofexperiments 1

Section : experiment
compress NO,GZIP,LZ4
maxStreams 3
sourceDatabasetoTargetDatabase sample=>testdb
tables DEPARTMENT

Table 1: Configuration parameters passed to the controller
for the IBM Db2 case study.

5 FUTURE DEVELOPMENT
The primary aim of the benchmark is to generate data for decision-
making and to enhance understanding of migration tasks and sys-
tems. In this context, DMBench will be used to accumulate a signifi-
cant data and knowledge base on the performance of data migration
tools and tasks under a large variety of migration scenarios. This
database will then be used to develop performance models, enabling
simulations and faster decision-making. In addition, DMBench will
be extended to support more migration engines to allow for com-
parisons and effective choice making for practitioners.

6 CONCLUSION
DMBench is a flexible framework for testing the performance of
data migration engines. Through systematic setup, configuration,
and execution, the framework proves its adaptability to diverse

migration scenarios. Leveraging Docker technology and robust log-
ging, it efficiently captures performance benchmarks and resource
consumption data.

50



DMBench: Load Testing and Benchmarking Tool for Data Migration ICPE Companion ’24 , May 7–11, 2024, London, United Kingdom

REFERENCES
[1] Julius Volz and Björn Rabenstein and Matt Bostock. 2012. Prometheus : an open-

source monitoring and alerting toolkit. SoundCloud. https://prometheus.io/
[2] Eric Anderson, Joe Hall, Jason Hartline, Michael Hobbs, Anna R. Karlin, Jared

Saia, Ram Swaminathan, and John Wilkes. 2001. An Experimental Study of Data
Migration Algorithms. In Algorithm Engineering, Gerth Stølting Brodal, Daniele
Frigioni, and Alberto Marchetti-Spaccamela (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 145–158.

[3] Dwight Merriman, Eliot Horowitz, and Kevin Ryan. 2007. MongoDB: an open-
source, document-oriented NoSQL database. DoubleClick. https://www.mongodb.
com/

[4] M Elamparithi and V Anuratha. 2015. A Review on Database Migration Strategies,
Techniques and Tools. World Journal of Computer Application and Technology 3,
3 (2015), 41–48.

[5] Zhao JF. and Zhou JT. 2014. Strategies and Methods for Cloud Migration. Inter-
national Journal of Automation and Computing 11 (2014), 143–152.

[6] Kevin Kline, Denis McDowell, Dustin Dorsey, and Matt Gordon. 2022. Moving
Your Data to the Cloud. In Pro Database Migration to Azure: Data Modernization
for the Enterprise. Springer, Berlin, Germany, 263–283.

[7] TN Manjunath, Ravindra S Hegadi, and HS Mohan. 2011. Automated data valida-
tion for data migration security. International Journal of Computer Applications
30, 6 (2011), 41–46.

[8] Johny Morris. 2012. Practical data migration. BCS, The Chartered Institute,
London, United Kingdom.

[9] Stephen Orban. 6. Strategies for Migrating Applications to the Cloud. Medium.
Library Catalog: medium. com 6 (6).

[10] PR Devale P Paygude. 2013. Automated Data Validation Testing Tool for Data Mi-
gration Quality Assurance. International Journal of Modern Engineering Research
(IJMER) 3 (2013), 599–603.

[11] Priyanka Paygude and PR Devale. 2013. Automation of data validation testing
for QA in the project of DB migration. International Journal of Computer Science
3, 2 (2013), 15–22.

[12] Prometheus community. [n. d.]. Node Exporter: a software component used in
conjunction with Prometheus for monitoring Linux and UNIX system. https:
//github.com/prometheus/node_exporter

[13] K. Subramani, Bugra Caskurlu, and Alvaro Velasquez. 2019. Minimization of
Testing Costs in Capacity-Constrained Database Migration. In Algorithmic As-
pects of Cloud Computing, Yann Disser and Vassilios S. Verykios (Eds.). Springer
International Publishing, Cham, 1–12.

[14] Google Core Team. 2014. cAdvisor: an open-source container monitoring and
performance analysis tool. Google. https://github.com/google/cadvisor

[15] Jinesh Varia. 2010. Migrating your existing applications to the aws cloud. A
Phase-driven Approach to Cloud Migration (2010), 1–23.

[16] Bin Wei and Tennyson X Chen. 2014. Verifying Data Migration Correctness: The
Checksum Principle. RTI Press, United States.

51

https://prometheus.io/
https://www.mongodb.com/
https://www.mongodb.com/
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/google/cadvisor

	Abstract
	1 Introduction
	2 Related Work
	3 DMBench Architecture and Implementation
	3.1 Functional and Non-Functional Requirements
	3.2 Architecture

	4 Current Implementation State
	4.1 Case Study: IBM DB2 Migration

	5 Future Development
	6 Conclusion
	References



