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ABSTRACT
Microservices have been a cornerstone for building scalable, flexible,
and robust applications, thereby enabling service providers to en-
hance their systems’ resilience and fault tolerance. However, adopt-
ing this architecture has often led to many challenges, particularly
when pinpointing performance bottlenecks and diagnosing their
underlying causes. Various tools have been developed to bridge
this gap and facilitate comprehensive observability in microservice
ecosystems. While these tools are effective at detecting latency-
related anomalies, they often fall short of isolating the root causes
of these problems. In this paper, we present a novel method for
identifying and analyzing performance anomalies in microservice-
based applications by leveraging cross-layer tracing techniques.
Our method uniquely integrates system resource metrics—such
as CPU, disk, and network consumption—with each user request,
providing a multi-dimensional view for diagnosing performance
issues. Through the use of sequential pattern mining, this method
effectively isolates aberrant execution behaviors and helps identify
their root causes. Our experimental evaluations demonstrate its
efficiency in diagnosing a wide range of performance anomalies.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.
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1 INTRODUCTION
Microservices have emerged as a paradigm of choice for cloud-
based applications, thanks to their scalability and flexibility. Unlike
the monolithic architecture which encompasses all functionalities
within a single codebase, microservices break down applications
into a set of autonomous, self-contained, and single-purpose ser-
vices. These services operate independently and communicate via
well-defined interfaces and lightweight APIs (e.g., RESTful APIs).
Such modularity enables agile scaling and promotes polyglot pro-
gramming, allowing services to be developed in the languages
and frameworks best suited for their tasks. Nevertheless, the com-
partmentalization of services often introduces challenges, partic-
ularly in debugging performance bottlenecks. In a microservice
environment, the processing of user requests often requires coordi-
nated actions frommultiple services. These intricate interdependen-
cies among microservices create a complex chain of dependencies,
where a performance bottleneck in one service can trigger cascad-
ing effects that compromise the efficiency of the entire application.
Identifying the culprit service and isolating the root causes of perfor-
mance degradation within such a decentralized architecture proves
to be a complex endeavor.

Distributed tracing [11, 15, 17, 25, 29] is a powerful method for
monitoring user requests as they move through the various compo-
nents of a distributed application. It tracks the end-to-end execution
of user requests through the insertion of unique identifiers into
requests and the propagation of metadata between processes and
system components. Hence, this method provides a comprehensive
view of each request’s end-to-end execution, shedding light on its
life cycle from initiation to completion. A "trace" represents the
journey of a single request, documenting the sequence of opera-
tions it undergoes [4]. Within a trace, individual work units are
captured as "spans," each corresponding to an action (e.g., a function
call, database query, or instruction blocks) executed by a service
or component. Spans are nested within traces to illustrate the hi-
erarchical relationships between different operations, offering a
detailed and structured view of how a request is processed across
multiple services. While distributed tracing effectively captures the
flow and timing of requests, it falls short of pinpointing the root
causes of unexpected latencies. The reason is that it only collects
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high-level information. This limitation is especially pronounced
when unexpected delays stem from operating system-level resource
contention, such as waiting for CPU, disk, network, or lock avail-
ability.

To address this limitation, some efforts have attempted to enrich
traces generated through distributed tracing with application- and
kernel-level logs, aiming to identify slow code paths, contention for
resources, and load imbalances [3, 26]. However, these approaches
often fail at detecting and diagnosing transient and short-lived per-
formance problems. Another approach involves leveraging vertical
context propagation to inject application-level events into kernel
traces [2, 4]. This provides a granular understanding of system be-
havior but comes at the cost of additional complexity and significant
overhead. Additionally, several statistical and machine-learning
methods have been explored for analyzing the performance of
distributed applications [5, 10, 16, 18, 21, 24, 28]. While these meth-
ods offer powerful analytical capabilities, they come with many
limitations, such as low detection accuracy and computational inef-
ficiency. In short, although the proposed approaches offer insights
into different types of performance problems, they mostly struggle
to accurately identify the root causes of these issues.

In this paper, we propose a novel approach for identifying perfor-
mance problems in microservice applications and uncovering their
underlying causes. Based on this approach, we implement a cross-
layer analysis enabling the characterization of request executions.
Additionally, we leverage a combination of distributed and software
tracing techniques to capture both kernel- and application-level
events. We use a small subset of kernel events to conduct fine-
grained critical path analysis of service threads, and application-
level events to delimit the spans of operations involved in request
processing. By utilizing a sequential pattern mining technique, we
extract sequences of thread states that characterize the behavior
within each request category. Using these normative patterns as
a basis, we identify anomalous request executions. Anomalies are
flagged when the observed behavior diverges significantly from the
established patterns.

The rest of the paper is organized as follows. Section 2 intro-
duces our approach and elaborates on the design details of the
implemented framework. Section 3 evaluates the effectiveness of
our framework in practical scenarios through an illustrative use
case. It also assesses the overhead it induces and discusses avenues
for potential improvements. Section 4 reviews relevant works in the
field that have informed our research. Finally, Section 5 concludes
this paper and outlines directions for future work.

2 PROPOSED SOLUTION
The framework we developed to implement this approach is specif-
ically designed for seamless integration with distributed tracing
infrastructures supporting OpenTelemetry (OTel) [6]. OTel is an
open-source initiative that provides a comprehensive suite of APIs,
libraries, agents, and instrumentation designed to enhance observ-
ability in distributed applications. Its main goal is to provide devel-
opers with a unified way to collect distributed traces and metrics
through instrumentation. The vendor-neutral design of OTel makes
it compatible with a wide range of distributed tracers, including but
not limited to Jaeger [15] and Zipkin [29]. Consequently, this design

consideration greatly simplifies the integration of our framework
into existing systems.

Our framework aims to detect performance issues inmicroservice-
based applications and uncover their root causes through offline
analysis. To pinpoint performance anomalies, our framework re-
quires two separate sets of trace data - referred to as the ’baseline’
and ’test’ datasets. The baseline dataset is used to generate a basis
for modeling the software’s normal behavior, while the test dataset
is evaluated against this baseline to identify any deviation or ab-
normality. Fig. 1 depicts the architecture of our framework and
outlines its key operations. These elements will be discussed in
greater details in the following sections.

2.1 Capturing Execution Traces
Our approach uses cross-layer tracing to collect fine-grained data
that characterizes resource consumption per request. Therefore,
to avoid the overhead associated with vertical context propaga-
tion and the need to modify the application source code, we chose
to instrument OTel libraries using the Linux Trace Toolkit Next
Generation (LTTng) [7]. LTTng is a high-throughput tracer for
Linux-based systems that is designed for low-overhead tracing of
applications at kernel and user-space levels. The instrumentation
we added to OTel aims to emit userspace events each time a service
starts or finishes the processing of a request. Hence, we inserted tra-
cepoints into the API methods responsible for starting and ending
spans. For example, to gather data from C++-based microservices,
we instrumented the Tracer class’s StartSpan() and end() methods
within the opentelemetry-cpp library. We extended our instrumen-
tation to multiple OTel libraries, as a microservice application may
consist of services developed in various programming languages.
Our analysis requires also gathering specific kernel events to con-
struct critical paths for request executions. The Linux kernel comes
with hundreds of tracepoints, allowing us to capture needed events
without additional instrumentation. A description of a subset of
leveraged kernel events is provided in Table 1.

2.2 Classification of Traces
After collecting execution traces, our framework starts analyzing
them to identify potential performance anomalies. The analysis
is based on the hypothesis that operations in traces of the same
type should exhibit similar performance characteristics when pro-
cessed by the same services. Therefore, categorizing traces based
on their types is critical. We consider traces to be of the same type
if they present the same workflow. A trace workflow outlines the
order in which operations and requests are executed within in-
dividual processes and across the various services that compose
a microservice-based application. Our framework recreates trace
workflows by generating tree structures from the operation names
exported via the userspace events mentioned earlier. The tree’s root
node is labeled with the name of the initiating request, which is
also known as the root span. The remaining nodes are labeled with
the names of their respective requests/operations. Unique iden-
tifiers for tasks performed by services are formulated by pairing
the "service_name" with the "operation_name". After building the
workflow trees, we use a hash function to generate an identifier for
the trace type that captures both the labels of the nodes and their
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Figure 1: The operation of our framework is based on collecting kernel-level events and leveraging an instrumented version of
OTel to add information about the start and end of spans to the kernel trace

Table 1: A subset of the kernel events required for our analysis

Tracepoint Description

sched_switch Signals that a new thread has taken over from a previously active thread on a CPU.

sched_wakeup Triggered when a thread, previously in a blocked state, is now ready to execute.

softirq_entry/exit Indicates the start/end of a software interrupt handler’s execution.

irq_handler_entry/exit Indicates the start/end of a hardware interrupt handler’s execution.

timer_expire_entry/exit Indicates the start/end of a timer interrupt’s execution.

sched_process_fork Fires when a new process is created by the kernel.

relative positions within the tree structure. Hence, traces whose
workflows produce identical type identifiers are classified in the
same category.

2.3 Extraction of Thread States
Our second hypothesis is that when processing operations of the
same type, the service threads will follow a consistent sequence
of states. For example, let us consider a basic authentication ser-
vice and its thread states during operation. When a login request
is received, the service initially validates the provided username
and password against predefined criteria (state: running). It then
retrieves the associated hashed password from a disk (or a data-
base), keyed by the username (state: blocked for disk). After that,
the service compares the stored hashed password with the hashed
version of the received password (state: running). Finally, the out-
come of this comparison is transmitted back to the originating
service (state: blocked for network). Therefore, it is reasonable to
assume that the service thread will follow the same sequence of
states when processing future requests. If it deviates from the ex-
pected sequence, either there is something wrong with its behavior
or other unknown factors at play. This unexpected behavior could
potentially reflect performance issues like contention for resources,
defective hardware, or slow functions.

To ascertain the states through which operations progress during
their execution, our framework identifies the critical path of the
subsequent service threads. In software engineering, the "critical

path" refers to the sequence of dependencies that inherently limit
the speed at which a thread can be completed [27]. Threads rely
on hardware and software resources for execution. Their hardware
dependencies include but are not limited to the need for CPU time,
disk access, or network bandwidth. As for the software dependen-
cies, it may involve waiting for data from other threads or requiring
certain locks or semaphores to be available for synchronization.
Practitioners often use critical path analysis to assess software re-
source bottlenecks and gain insight into a process’s interactions
with system resources and other processes.

Based on the algorithm proposed in [12], we developed an anal-
ysis in Trace Compass [9] to extract the critical path of services’
threads and obtain their states during operations’ execution. We
converted operations execution into a text-based representation,
wherein each unique thread state is encoded as a distinct letter of
the alphabet. For example, the "Running" state is represented by the
letter ’R’, the state "blocked for Disk" is represented by ’D’, the state
"blocked for Network" is denoted by ’N’, and the state "blocked for
Timer" is denoted by ’T’. It is worth noting that our analysis is based
on 8 thread states as we excluded some states that are not indica-
tive of application behavior (e.g., the ’Interrupted’ and ’Preempted’
states). In addition, we introduced an extra state, symbolized by the
letter ’Z’, to represent the execution of sub-operations. Our frame-
work leverages this state to achieve accurate anomaly detection as
the conducted analysis is guided by the operations hierarchy (see
Fig. 2).
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Figure 2: Thread states are transposed to corresponding spans
and sub-spans. Spans’ intervals are highlighted with a bold
grey line underneath it

2.4 Frequent Pattern Mining
Establishing a baseline for what is considered normal behavior
while processing operations is crucial for detecting performance
bottlenecks and anomalies. Our approach focuses on identifying
recurring patterns in thread execution states during these periods.
We achieve this through sequential pattern mining, a technique
specifically designed to uncover recurring subsequences within a
set of sequences. As we can observe in Fig. 3, these subsequences
correspond to frequent sequences of execution states. We assess the
relevance of discovered state subsequences based on their lengths
and frequency of occurrence.

Sequential pattern mining is not limited to our context but finds
broad applications in various areas like financial market prediction,
and text analysis. It is widely used to identify frequently occurring
ordered events or subsequences in various types of datasets. For-
mally speaking, let 𝐷 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} be a set of sequences, where
each sequence 𝑠𝑖 is an ordered list of items ⟨𝑎1, 𝑎2, . . . , 𝑎𝑚⟩. An
itemset 𝑋 is said to be a "sequential pattern" if it appears in at least
minsup number of sequences in 𝐷 , where minsup is a predefined
minimum support threshold. On the other hand, a sequence 𝑠 =

⟨𝑎1, 𝑎2, . . . , 𝑎𝑚⟩ is said to "contain" an itemset 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑘 }
if there exists a subsequence ⟨𝑎𝑖1 , 𝑎𝑖2 , . . . , 𝑎𝑖𝑘 ⟩ such that 𝑎𝑖 𝑗 = 𝑥 𝑗 for
all 𝑗 from 1 to 𝑘 . The aim is to find all such itemsets 𝑋 that satisfy
the minimum support condition in the given dataset 𝐷 .

Our approach is based on the implementation of the algorithm
proposed in [20] to identify all closed sequential patterns of thread
states that are present in the dataset. A closed sequential pattern
can be defined as a sequential pattern that is not a strict subset of
any other pattern with identical support. This algorithm further
allows us to impose constraints on the gaps between states, thereby
offering a more flexible way to mine recurring sequential states.
The minimal support value required for identifying patterns is a
user-defined parameter, but we recommend setting it at 95% or
higher. Setting this parameter at a high value allows prioritizing
patterns that are more common in the dataset and filtering out in-
frequent ones. This would improve the effectiveness of our anomaly
detection analysis and ensure its scalability for larger datasets.

Baseline Dataset
(Req. Type X)

Test Dataset
(Req. Type X)

R T R F R T

R N R F R T R N

Normal

Anomalous

D R T R F R N R

TRT R F

T R F RU

Common Pattern

....

R

R

R R

R N

Figure 3: Sequential pattern mining is used to extract execu-
tion state patterns from same-type trace operations.

2.5 Performance Anomaly Diagnosis
Our methodology, as we explained in the previous section, relies on
extracting from the baseline dataset patterns that encode the ser-
vice runtime behavior during operations execution. This involves
clustering similar traces based on their type identifiers. Then, crit-
ical path analysis is used to extract, for each operation, threads’
execution states as illustrated in Fig. 2. Moreover, the execution of
each operation is divided into intervals based on the occurrence
of the ’Z’ state. Thus, the number of intervals is equal to the num-
ber of sub-operations plus one. For instance, in Fig. 2, Span A is
divided into three intervals, Span B into two, and Span C and Span
D each into a single interval. Subsequently, we apply sequential
pattern mining to identify patterns in thread states within these
intervals, and we compute the minimum and maximum latencies
for each state encompassed by these patterns. These latency thresh-
olds are established using the three-sigma rule, thereby enriching
the pattern states with mean and standard deviation information.

The second step in our methodology is the evaluation of the test
dataset to ascertain whether its operations are normal or anomalous.
For each trace in this set, we identify its type and extract the thread
states occurring while executing its operations. We also determine
the states that correspond to the operation intervals and require
validation. By comparing the generated trace type identifiers with
type identifiers in the baseline dataset, we determine the frequent
state patterns that must be validated against the state sequences
in each operation interval. Therefore, for every operation interval,
we check if the observed state sequence matches the expected
pattern. If this is the case, we check whether the states of the
sequence matching the pattern are within the identified limits.
This is done through a bottom-up approach, where sub-spans are
evaluated before their parent spans. If a discrepancy is found during
this verification process, the operation in question is flagged as
anomalous, triggering a more detailed investigation to pinpoint the
cause of the deviation. Furthermore, this hierarchical evaluation
serves as a structured way to address potential issues at the granular
level of sub-spans and execution intervals, which simplifies isolating
and resolving performance problems.
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3 EVALUATION AND DISCUSSION
To demonstrate the effectiveness of our approach in diagnosing
performance anomalies in microservice applications, we leverage
"Bank-of-Sirius," an HTTP-enabled web application that emulates a
banking system [23]. This application allows users to create bank ac-
counts and execute financial transactions. We chose Bank-of-Sirius
for our evaluation because it comes pre-instrumented with OTel
and features a diverse architecture, comprising nine microservices
implemented in Python, Java, and C (Fig. 4).
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Figure 4: Bank-of-sirius Architecture

3.1 Use case
In this case study, we allocated one virtual machine (VM) to host
the Java-based services and the ledger-db service, and another VM
for the remaining services. Each service was containerized using
Docker to ensure isolated execution environments. We then devel-
oped and executed a benchmark script simulating the activities of
100 concurrent users. Each user interacts with the frontend service
through a specific sequence of HTTP requests: a "/login" request,
followed by a "/home" request, and lastly a "/logout" request. It is
important to note that the "/home" request is responsible for loading
the user’s home page, which displays profile information, account
balance, and transaction history. Accomplishing this requires the
frontend service tomake sub-requests to the contacts, balance-reader,
and transaction-history services. We traced the benchmark execu-
tion and used our framework to establish the sequences of thread
states involved in the processing of the "/login", "/home", and "/l-
ogout" requests. This experiment was repeated tenfold at various
time intervals to create a baseline dataset representing application
normal performance.

To create our test datasets, we conducted two separate interac-
tions with our target application. For the first, we emulated typical
user behavior: logging in, visiting the homepage, and logging out. In
the second interaction, we altered the configuration of the contacts
service by changing the type of Gunicorn workers from synchronous
to gThread. This is a notable change given that all Python-based ser-
vices in Bank-of-Sirius are Flask applications serviced by Gunicorn
servers. Following this modification, we duplicated the initial user

behavior. Both interactions were traced, allowing us to capture and
compile requests’ state sequences into two distinct test datasets.

To identify potential anomalies within the test datasets, our
framework scrutinized the captured state sequences for consistency
with the established patterns from the baseline dataset. The analy-
sis revealed no anomalies in the first dataset; however, it flagged
irregularities in the "contacts" service state sequences in the second
dataset. Specifically, we observed that the latencies of this service’s
spans were unexpectedly lower, and there was a recurrent absence
of the "N" (Network) states across numerous spans. This aligns with
the variation in Gunicorn operations observed when employing
the Sync and gThread models, as illustrated in Fig. 5. Gunicorn
uses a pre-fork worker model where a master process manages a
set of worker processes dedicated to handling client requests. In
the Sync model, each worker handles connections and executes
requests one at a time, leading to a simple but less concurrent
workflow. Conversely, in the gThread model, each worker pools
connections, spawns multiple threads, and distributes tasks across
them to efficiently handle simultaneous requests. That explains
why the latencies of requests in the latter configuration were lower
and the ’N’ states were missing from the sequence of states related
to the contact service.

3.2 Discussion
In this section, we delve into the intricacies of state pattern recog-
nition and its implications for our anomaly detection mechanism.
A notable observation was the presence of repetitive pairs of states
within the identified patterns, suggestive of specific activities like
prolonged network communication or disk read operations (e.g.,
R-T-R-D-R-D-R-D-R). These repetitive sequences, while indicative
of certain behaviors, posed a limitation in the versatility of our
pattern-matching algorithm. To enhance our framework’s adapt-
ability and precision, we have introduced a transformative step
that condenses these repetitive pairs into regular expressions when
their occurrence is frequent (e.g., R-T-(R-D)+-R). This refinement
not only streamlines the pattern detection process but also enriches
our framework’s ability to discern more complex behaviors while
simplifying the representation of state sequences.

Additionally, we encountered scenarios where the latencies asso-
ciated with certain states displayed substantial variability, challeng-
ing our framework’s ability to discern normative from anomalous
behavior. For instance, the ’Running’ state in a computationally
intensive operation, such as factorial computation, can exhibit sig-
nificant latency fluctuations based on the input magnitude. To
address this, we propose the analysis of the latency distributions,
particularly for operations marked by a high coefficient of variation.
This strategy involves the use of call stack profilers to add a finer
granularity to our analysis by accounting for function calls as sub-
spans. This approach allows us to reclassify requests from certain
types based on the unique footprint of the executed function calls
and their parameters. It would also enable a more tailored detection
process that accounts for the distinctive nature of each operation
within our microservice architecture.
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Figure 5: Critical paths of a single Gunicorn worker in two configurations: Sync (a) and gThread (b). In the Sync configuration,
the worker manages both communication and task processing, reflected in running and network states. In contrast, gThread
configuration involves the worker handling communication while task processing is distributed among its threads

3.3 Overhead Analysis
Minimizing tracing overhead is essential to prevent skewed re-
sults. Excessive overhead may alter the system’s normal operation,
making the tracing solution impractical for use in production envi-
ronments. Therefore, to evaluate the overhead incurred by tracing,
we conducted performance benchmarks on the Bank-of-Sirius ap-
plication both with tracing enabled and disabled. We subjected
this application to varying workloads and observed its response
times. For these tests, we employed Locust [13], an open-source
load testing utility, to simulate clients issuing requests at different
rates. These clients issue different types of requests to provide a
comprehensive view of the system’s performance under load. The
benchmarking was carried out on a machine equipped with 16
GB of RAM and an Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz.
The software environment consisted of Ubuntu 22.04, featuring the
5.15.0-60 kernel version, LTTng 2.12 for tracing, and Docker 24.0.5
for containerization.

The outcomes of our investigation are presented in Fig 6. The
latter illustrates the application’s response time to "/home" re-
quests—identified as the most resource-intensive requests. Within
our test environment, the application under test achieves a peak
throughput of 45 requests per second. The graph indicates that
the activation of the required tracepoints introduces a negligible
performance impact, with tracing causing only a 2 to 4% increase in
response time. Interestingly, our benchmark’s results also show a
slight improvement in the application’s response time with tracing
enabled at a rate of 5 requests per second. Under identical con-
ditions, this improvement would be unexpected. Nevertheless, a
degree of fluctuation is inherent in operating system operations
due to many factors such as the scheduling of system processes,
and memory page faults. Given that the overhead from tracing a rel-
atively small number of events is almost imperceptible, it becomes
challenging to measure and can be smaller than the natural variabil-
ity of the operating system’s performance. In short, our overhead
analysis shows that tracing Bank-of-Sirius introduces a marginal
increase in its response times, thus confirming the suitability of our
framework for production environments.
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Figure 6: Bank-of-Sirius’s response time to "/home" requests
with tracing disabled and enabled

4 RELATEDWORK
There is extensive prior work on monitoring and debugging per-
formance problems in distributed and microservice-based appli-
cations. Most of it is based on the use of distributed tracing for
collecting monitoring data from a distributed system. Distributed
tracing indeed provides a broad overview of end-to-end request
processing in microservice-based applications. Nonetheless, the
information it produces is insufficient to pinpoint the causes of
detected latency issues. Many strategies were hence proposed to
enrich the span-based traces with data collected from application-
and kernel-level logs and tracepoints [3, 26]. For example, authors
in [3, 26] proposed an automated instrumentation framework that
runs alongside the distributed tracing infrastructure. Their frame-
work combines distributed tracing and variance-based control logic
to explore at runtime where logs/tracepoints need to be enabled to
effectively help diagnose performance problems. The main limita-
tion of the proposed framework is its incapacity to provide value
in diagnosing transient and short-lived performance problems.

On the other hand, various cross-layer tracing techniques have
been used in literature to enhance the understanding of distributed
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applications behaviors [1, 2, 4, 19]. For example, authors. in [2]
inject application-level events into kernel traces by executing a
series of innocuous system calls for each high-level event of interest
(e.g., the start and end of an RPC call). These system calls serve as
synchronization points in the trace to merge high-level and low-
level events. Also, in [4], Belkhiri et al. relied on vertical context
propagation to inject high-level request identifiers into the kernel.
The weakness of this approach is that it poses scalability challenges
as it requires a system call each time the target application starts
or completes the processing of a request. There are also numerous
attempts to diagnose performance anomalies by applying statistics,
graph theory, and trace comparison techniques on collected traces
[8, 14, 22]. For instance, Huang et al. in [14] leverage the structure
within the distributed traces to group similar traces and provide
detailed statistics at each level of the trace hierarchy. Their tool
can assist practitioners in identifying the relevant operations to
focus on when debugging but cannot identify the cause of the issue
automatically.

5 CONCLUSION
Microservices often complicate the debugging of unexpected la-
tencies in application operations and pinpointing their root causes.
This paper addresses this issue by proposing an innovative approach
for diagnosing performance anomalies in microservice applications.
Our approach leverages cross-layer tracing to enhance the gran-
ularity of observability, providing a multi-dimensional view that
correlates system resource metrics with user requests. The use of
sequential pattern mining enables the isolation of anomalous be-
havior patterns and facilitates the identification of their root causes.
Our evaluations have not only confirmed the efficacy of our frame-
work in identifying performance anomalies but also demonstrated
its operational efficiency by maintaining minimal overhead.

As distributed systems evolve, diagnosing performance grows
increasingly complex. Our contribution represents a step forward in
mitigating this challenge by equipping developers and system oper-
ators with a tool capable of identifying and diagnosing performance
issues without invasive instrumentation or prohibitive performance
penalties. We expect that our findings will incite further research
into optimizing distributed tracing infrastructures and developing
even more sophisticated analysis techniques. Future work could
explore the potential for real-time anomaly detection and auto-
mated remediation, which would enhance further the resilience
and reliability of microservice-based applications.
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