
Matrix Network Analyzer: a New Decomposition Algorithm for
Phase-typeQueueing Networks

(Work in Progress Paper)
Zhuoyuan Li

Imperial College London
London, United Kingdom

zhuoyuan.li22@imperial.ac.uk

Giuliano Casale
Imperial College London
London, United Kingdom
g.casale@imperial.ac.uk

ABSTRACT
This paper proposes a new traffic decomposition method called
MNA to solve multi-class queueing networks with first-come first-
serve stations having phase-type (PH) service, which generalizes
the classic QNA method by Whitt. MNA not only supports open
queueing networks but also closed networks, which are useful to
model concurrency limits in software systems. Using validation
models, we show that under low SCV of service time and inter-
arrival time, the new method is on average more accurate than
QNA. Therefore, MNA can provide better software performance
prediction for quality-of-service management tasks.
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1 INTRODUCTION
In software engineering, the stochastic model is a useful tool for
analyzing the uncertainty and variability of application workloads.
These models offer a way to capture randomness in user behav-
iors, system loads, and operational environments. By integrating
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stochastic principles, software engineers can perform nuanced anal-
yses, ranging from system performance and reliability assessments
to optimal resource allocation and risk management.

In particular, queueing network models are well-suited to the
above aims, helping to analyze the stochastic flow of tasks and data
within distributed software systems. By simulating the behavior of
resources and the interconnections between different services and
components, queueing network models enable a granular analysis
of system performance metrics such as response time, throughput,
and resource utilization. This level of detail is crucial to accurately
predict the behavior of the system under varying load conditions,
which is often influenced by stochastic user demands. Furthermore,
queueing networks provide insights into potential bottlenecks and
resource contention issues, guiding engineers toward targeted opti-
mizations and sizing.

Real workloads often deviate from exponential distributions,
yet solution methods for multi-class non-exponential queueing
networks are limited. In particular, existing methods may not ef-
fectively model phase-type (PH) inter-arrival and service times, es-
pecially under multiple job classes for which first-come first-serve
(FCFS) stations typically do not admit a product-form solution.
Using PH models in queueing networks can be beneficial, given
that recent work has shown that they can closely fit distributions
that are often difficult to represent in a Markovian setting, such as
distributions with bounded support [10].

The Queueing Network Analyser (QNA) [13] is a well-known
method for non-exponential multiclass queueing networks, focus-
ing on open systems. At the same time, closed and mixed queueing
networks also have wide applications such as in layered queueing
network analysis. Yet, we notice that for closed queueing networks
the matrix analytic method (MAM) [12] commonly used for queue-
ing systems with non-exponential arrivals and service is rarely
applied, and even for mixed models a complete theory leverag-
ing MAM is missing. Existing works focus on open models and
single-class workloads, e.g. [4, 8, 9]. Multiclass interpolation meth-
ods exist, such as the hybrid diffusion-G/G/k methods proposed in
[3], however, such methods also do not leverage MAM. Given that
MAM is one of the most sophisticated and complete approaches
to analyzing non-exponential workloads, we believe that further
investigation into the potential of these methods in the context of
multiclass queueing networks is warranted. Therefore, in this paper,
we introduce a new algorithm, called Matrix Network Analyzer
(MNA), which replaces the Langenbach-Belz approximation used
in QNA with a MAM solution technique for MMAP/PH/1 nodes [7],
allowing us to solve multiple classes queueing networks with FCFS
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queues with PH service time. In various test cases, MNA provides a
more accurate result than QNA. Moreover, MNA is shown to extend
to closed queueing networks.

In all cases, we find that MNA compares favorably to QNA in the
open queueing network model under low SCV of service time and
interarrival time and also delivers high accuracy in closed networks,
where results are instead compared to discrete-event simulation.We
find in particular that the majority of the models enjoy under MNA
a small relative approximation error within a 5 percent margin.

In this paper, Section 2 reviews related work and background,
Section 3 details the new method, Section 4 presents the experi-
mental results, Section 5 presents a real case example and Section
6 gives conclusions.

2 BACKGROUND
2.1 Queueing Network Models
A single-class open queueing network consists of a set of𝑀 service
nodes (or queues), indexed by 𝑖 = 1, 2, . . . , 𝑀 , where customers
or jobs arrive from outside the network, receive service at one
or more nodes, and then leave the network. A closed queueing
network similarly consists of a set of 𝑀 interconnected service
nodes (or queues), indexed by, but has a fixed number of customers
𝑁 , circulating within the network. Unlike open queueing networks,
there is no arrival from or departure to the outside. The following
components characterize the behavior of a network:

• Arrival Process: arrivals to node 𝑖 follow a stochastic process,
with rate 𝜆𝑖 .

• Service Process at Each Node: the service times at each node 𝑖
are random variables. The service discipline (e.g., FCFS also
affects performance.

• Routing Matrix: a routing matrix 𝑃 = [𝑝𝑖 𝑗 ] of size 𝑀 × 𝑀

defines the probability 𝑝𝑖 𝑗 that a customer, upon completing
service at node 𝑖 , will proceed to node 𝑗 . For an open network,
there is also a probability 𝑝𝑖0 for a customer to leave the
network after being served at node 𝑖 .

A multi-class queueing network is similar to a single-class queueing
network in terms of network elements, but they have 𝑟 different
customers or jobs classes, indexed by 𝑛 = 1, 2, . . . , 𝑟 and different
classes of customers or jobs may have different arrival processes,
service processes, and routing matrices.

2.2 Markovian Arrival Process (MAP)
In a PH distribution, events occur upon transitions into an absorbing
state, whereas in a Markovian arrival process (MAP), the events
may be generated by any specific transition between states. Such
transitions are referred to as apparent transitions, while those that
do not lead to an arrival event are termed hidden transitions.

MAPs may be specified by a matrix pair that is 𝐷0 = [𝐶𝑖, 𝑗 ] and
𝐷1 = [𝐷𝑖, 𝑗 ]. 𝐷0 contains all the hidden transitions, while 𝐷1 is for
the apparent transitions. [2]The generator matrix of the underlying
continuous-timeMarkov chain (CTMC) of this MAP is:𝑄 = 𝐷0+𝐷1.

The steady-state solution 𝜋 for this CTMC can be calculated
using the global balance equations. The steady-state event arrival
rate 𝜆 is then: 𝜆 = 𝜋𝐷11, where 1 = (1,1,..,1,1)

Algorithm 1 MMAP superposition algorithm
1: 𝐷0 = 𝐴0 ⊕ 𝐵0
2: for 𝑖 = 1; 𝑖 ≤ 𝑚; 𝑖 + + do
3: 𝐷𝑖 = 𝐴𝑖 ⊕ 0𝑏×𝑏
4: end for
5: for 𝑖 = 1; 𝑖 ≤ 𝑛; 𝑖 + + do
6: 𝐷𝑖+𝑚 = 𝐵𝑖 ⊕ 0𝑎×𝑎
7: end for

2.3 Phase-type Renewal Process
A PH renewal process is an arrival process, where the interarrival
time is an independent and identical PH distribution. The renewal
process of a PH, of which the initial probability is 𝛼 and the sub-
generator is𝑇 , can be considered as aMAP, where an arrival event is
generated when the embedded Markov chain of this PH transitions
into the absorbing state and then immediately transitions to an
initial state according to the initial probability 𝛼 . Thus the 𝐷0 and
𝐷1 of the corresponding MAP is 𝐷0 = 𝑇 and 𝐷1 = −𝑇1𝛼 , where 1
is a column vector with the same number of rows with 𝑇 , of which
all the element is 1.

2.4 Marked Markovian Arrival Process (MMAP)
The marked Markovian Arrival Process is used to model the ar-
rival process of multiple classes where the arrival process of each
class is a MAP. An MMAP modeling the arrival process of 𝑛 classes
can be specified by 𝑛 + 1 matrics that is 𝐷0, 𝐷1, ..., 𝐷𝑛+1. 𝐷0 con-
tains all the hidden transitions, and 𝐷𝑖 contains the transitions
generating a arrival event of class 𝑖 . Using Kronecker sums of
the MAP arrival streams that model inter-arrival times of indi-
vidual classes, an MMAP is readily produced to describe the super-
position of the arrival streams [5]; Given two MMAPs modeling
the arrival process of𝑚 classes and 𝑛 classes respectively, which
can be specified by 𝐴0, 𝐴1, ..., 𝐴𝑚 and 𝐵0, 𝐵1, ..., 𝐵𝑛 , the superposi-
tion of these two MMAPs is also an MMAP, which can be used to
model the overall arrival process of these𝑚 +𝑛 classes, specified by
𝐷0, 𝐷1, ..., 𝐷𝑚+𝑛 . Suppose𝐴0, 𝐴1, ..., 𝐴𝑚 are squares matrices of size
𝑎, and 𝐵0, 𝐵1, ..., 𝐵𝑛 are squares matrices of size𝑏. The superposition
method is shown in Algorithm 1, where ⊕ stands for Kronecker
sum and 0𝑏×𝑏 stands for a 𝑏 × 𝑏 matrix with all the elements being
0.

3 MNA: A NOVEL HYBRID APPROACH
3.1 MNA for Open Models
MNA is a novel approach for open queueing networks that inte-
grates QNA, PH fitting, MMAP superposition, and the MAM. This
method follows the same network decomposition principle as QNA
but relies on the recent developments in MAM to approximate indi-
vidual nodes. MNA begins by solving first and second-order traffic
equations to determine the mean and the Squared Coefficient of
Variation (SCV) of the interarrival times at each node. The notations
used below are all listed in Table 1. The first-order traffic equations
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are:

𝜆𝑖,𝑟 = 𝜆0𝑖,𝑟 +
𝑁∑︁
𝑗=1

𝜆 𝑗,𝑟𝑝 𝑗𝑖,𝑟 , (1)

𝜆𝑖 =

𝑅∑︁
𝑟=1

𝜆𝑖,𝑟 , (2)

𝜆𝑖 𝑗,𝑟 = 𝜆𝑖,𝑟𝑝𝑖 𝑗,𝑟 , (3)

After solving these equations, one can obtain all the means of inter-
arrival times for each class at all nodes. Thus, the utilization can be
calculated as:

𝜌𝑖,𝑟 =
𝜆𝑖,𝑟

𝑚𝑖𝜇𝑖,𝑟
, (4)

𝜌𝑖 =

𝑅∑︁
𝑟=1

𝜌𝑖,𝑟 , (5)

𝜇𝑖 =
𝜆𝑖

𝜌𝑖
, (6)

Then, the second-order traffic equations are:

𝐶2
𝑆𝑖

= −1 +
𝑅∑︁
𝑟=1

𝜆𝑖,𝑟

𝜆𝑖
( 𝜇𝑖

𝑚𝑖𝜇𝑖,𝑟
)2 (𝐶2

𝑆𝑖,𝑟
+ 1) (7)

𝐶2
𝐴𝑖,𝑗

=
1
𝜆𝑖, 𝑗

𝑁∑︁
𝑗=0

𝐶2
𝑗𝑖,𝑟𝜆 𝑗,𝑟𝑝 𝑗𝑖,𝑟 (8)

𝐶2
𝐴𝑖

=
1
𝜆𝑖

𝑅∑︁
𝑟=1

𝐶2
𝐴𝑖,𝑗

𝜆𝑖, 𝑗 (9)

𝐶2
𝐷𝑖

= 1 +
𝜌2
𝑖
(𝐶2

𝑆𝑖
− 1)

√
𝑚𝑖

+ (1 − 𝜌2
𝑖 ) (𝐶

2
𝐴𝑖

− 1) (10)

𝐶2
𝑖 𝑗,𝑟 = 1 + 𝑝𝑖 𝑗,𝑟 (𝐶2

𝐷𝑖
− 1) (11)

Upon solving the second-order traffic equations, the means and
SCVs of inter-arrival times for each class at all nodes are obtained.
The above equations are from QNA for the multi-class open model.
[6]

Subsequently, each node is addressed individually. QNA solves
the network node-by-node by using the Langenbach-Belz approxi-
mation:

𝛼𝑚𝑖
=


𝜌
𝑚𝑖
𝑖

+𝜌𝑖
2 , if 𝜌𝑖 > 0.7,

𝜌
𝑚𝑖+1

2
𝑖

, if 𝜌𝑖 < 0.7,
(12)

𝑊𝑖𝑞 ≈
𝛼𝑚𝑖

𝜇𝑖

1
1 − 𝜌𝑖

𝐶2
𝐴𝑖

+𝐶2
𝑆𝑖

2
, (13)

𝐿𝑖,𝑟 =
𝜆𝑖,𝑟

𝜇𝑖,𝑟
+ 𝜆𝑖,𝑟𝑊𝑖𝑞 . (14)

Instead, for each node, a three-moment matching algorithm [1]
is first applied to fit the mean and SCV of interarrival times, and
then use the corresponding PH renewal process as a MAP of this
class to this node. Next, we superpose these MAPs to produce an

Table 1: Notaitons and descriptions of MNA

Notation Description
𝜆𝑖 𝑗,𝑟 Mean arrival rate of class 𝑟 customers from node 𝑖 to

node 𝑗

𝜆𝑖,𝑟 Mean arrival (departure) rate of class 𝑟 customers to
(from) node 𝑖

𝜆𝑖 Mean aggregate arrival (departure) rate to (from) node
𝑗

𝜇𝑖,𝑟 Mean service rate of class 𝑟 customers at node 𝑖
𝜇𝑖 Mean aggregate service rate at node 𝑖
𝜌𝑖, 𝑗 Utilization of node 𝑖 due to customers of class 𝑟
𝜌𝑖 Utilization of node 𝑖
𝑚𝑖 Numbers of servers of node 𝑖
𝐶2
𝑖 𝑗,𝑟

SCV of time between two consecutive class 𝑟 customers
going from node 𝑖 to node 𝑗

𝐶2
𝐴𝑖,𝑟

SCV of interarrival time for class 𝑟 to node 𝑖
𝐶2
𝐴𝑖

Aggregate SCV of interarrival time to node 𝑖
𝐶2
𝐷𝑖

Aggregate SCV of node 𝑖 inter-departure times
𝐶2
𝑆𝑖

Aggregate SCV of service time of node i
𝐶2
𝑆𝑖,𝑟

SCV of service time for customer class r at node i
𝑝𝑖 𝑗,𝑟 Routing probability of Class r from node 𝑖 to 𝑗

𝑁 Numbers of queueing nodes
𝑅 Numbers of classes
𝑄𝑖,𝑟 Queue length of customer class r at node i
𝑛𝑟 Numbers of jobs for class r.

MMAP as the overall arrival process to this node. Then, every sin-
gle queue in the network is solved as a MMAP[R]/PH[R]/1/FCFS
queue, allowing to account for class arrival cross-correlations. In-
deed, while the superposition of Poisson processes is Poisson, the
superposition even of renewal (i.i.d.) processes can produce non-
renewal processes (non-i.i.d.) [11], thus the MMAP representation
helps us to capture interarrival time covariances introduces in this
fashion. He [7] proposes a matrix analytic method for calculating
the margin distributions of the queue length of different classes in
an MMAP[R]/PH[R]/1/FCFS queue. Finally, the mean queue length
of each class can be calculated according to its margin distribution.
Combining the utilization acquired in the previous traffic equation,
other metrics of this node can be calculated.

3.2 MNA for Closed Models
The MNA method for closed queueing networks is shown in Algo-
rithm 2.

Initialization (Lines 1-4): 𝜆𝑖,𝑟 is the arrival rate of class r to node
i, while 𝜇𝑖,𝑟 is the service rate of class r to node i. These lines set
the upper bound of the arrival rate of class r to the reference node
equal to the bottleneck service rate of this class.

Initial Guess (Lines 5-7): 𝜆 is a vector contains the guessed ar-
rival rates of all the job classes to the reference node, namely
𝜆 = (𝜆1,1, 𝜆1,2, ...). In this first iteration, an initial guess is made
that the arrival rate of class r to the reference node is equal to the
bottleneck service rate of this class.
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Algorithm 2 MNA for closed queueing networks

1: for 𝑟 = 1; 𝑟 ≤ 𝑅; 𝑟 + + do
2: 𝜆UB1,𝑟 = min 𝜇𝑖,𝑟

3: 𝜆LB1,𝑟 = 0
4: end for
5: for 𝑖𝑡 = 1; 𝑖𝑡 < it_max; 𝑖𝑡 + + do
6: if 𝑖𝑡 == 1 then
7: 𝝀 = 𝝀UB

8: else
9: if (max𝑖 (𝑄𝑁𝑟 − 𝑛𝑟 ) < threshold) then
10: break
11: else
12: 𝑟∗ = arg max𝑟

(
𝑄𝑁𝑟 −𝑛𝑟
𝑄𝑁𝑟

)
13: if (𝑄𝑁𝑟 ∗ > 𝑛𝑟 ∗ ) then
14: 𝜆UB1,𝑟 ∗ = 𝜆1,𝑟 ∗

15: else
16: 𝜆LB1,𝑟 ∗ = 𝜆1,𝑟 ∗

17: end if
18: end if
19: 𝝀 = (𝝀UB + 𝝀LB)/2
20: end if
21: Solve the network under arrival rate of 𝜆,

using MNA algorithm for open queueing networks
22: 𝑄𝑁𝑟 =

∑𝑁
𝑖=1 𝑄𝑖,𝑟

23: end for

Arrival Rate Adjustment (Lines 8-20): This step are performing
a fixed point iteration, making the guessed arrival rate converge
to the real arrival rate. 𝑄𝑁𝑟 is the sum of the queueing length of
class r, and 𝑛𝑟 is the population of job class 𝑟 in this network. The
iteration ends if the difference between𝑄𝑁𝑟 and 𝑛𝑟 is small enough
for every job class r. Otherwise, MNA adjusts the arrival rate of
the class, which has the largest population relative error. If 𝑄𝑁𝑟 is
larger than 𝑛𝑟 , then we set the upper bound of the arrival rate of
this class to the guessed value, otherwise, we set the lower bound to
the guessed value. MNA uses the average value of the upper bound
and lower bound as the new guessed value in the next iteration.

Network Analysis (Line 21-22): Using the guessed arrival rate,
the closed queueing network can be solved as an open queueing
network. In each iteration, a method very similar to MNA for the
open queueing network is called to evaluate the current state of the
network given the current arrival rates𝝀. The only difference is that,
when solving closed models, after getting the margin distribution
of the queue length of class 𝑟 in a node, instead of directly using
the mean of this distribution, the mean queue length of this class is
calculated by

∑𝑛𝑟
𝑖=1

𝑃 (𝑥=𝑖 )𝑖∑𝑛𝑟
𝑘=1 𝑃 (𝑥=𝑘 )

, where 𝑃 (𝑥 = 𝑖) is the probability
of this node having a queue length of 𝑖 . After achieving the queue
length of class 𝑟 at each node, the total population of this class,
namely 𝑄𝑁𝑟 , can be calculated by the sum of queue lengths at all
the nodes. The outcome of this analysis feeds into the next iteration
for further adjustment.

In summary, this algorithm initially guesses the arrival rate of
the reference node, transforming the closed queueing network into
an open queueing network, then applies a fixed point iteration,

Figure 1: A feedback loop open queueing network

Table 2: Performance of MNA for single-class open queueing
network

node mean ARE models within 5% ARE
queue 1 0.0201 951/1000
queue 2 0.0242 908/1000
overall 0.0221 871/1000

which adapts the rates based on the network performance in each
iteration, aiming to achieve a balance between the actual and desired
populations in each class.

4 NUMERICAL EVALUATION OF MNA
In this chapter, the improvements of MNA will be shown through
a selection of experimental cases, highlighting its higher accuracy
compared to QNA. These experiments are conducted with assis-
tance from LINE, a Matlab toolbox created by the QORE lab at
Imperial College London. LINE is designed for resolving complex
queueing network models using various algorithms or simulations.
[3]

4.1 Model Design
To facilitate a comparative evaluation of the performance between
QNA and MNA, we have designed a benchmark using an open
feedback queuing network with a feedback loop. As depicted in
Figure 1, this network comprises several key elements: a source
with an arrival rate 𝜆, and two FCFS queues with individual service
rates 𝜇1 and 𝜇2, respectively.

Jobs generated by the source initially enter Queue 1. After being
serviced in Queue 1, they are transferred to Queue 2. Upon com-
pletion of service in Queue 2, each job has a probability of 0.5 of
proceeding directly to a sink. Conversely, there is a probability 0.5
that the job will be re-routed back to Queue 1.

4.2 Single-class Open Queueing Networks
Consider the following example and its numerical result in Table
2 & Figure 2: the interarrival time, and the service time of node
1 and node 2 are all PH distributed. the mean interarrival time is
generated by a random variable uniformly distributed between 40
and 45, the mean service time of node 1 is generated by a uniform
distribution between 5 and 8, and the mean service time of node 2
is generated by a uniform distribution between 3 and 6. The SCVs
for interarrival time and service time of node 1 and node 2 are all
generated by a uniform distribution a uniform distribution between
0.01 and 0.8. Through the random selection of 1000 instances, these
conditions are examined empirically.

In the experimental analysis, it is observed in Table 2 that 90
percent of the results obtained from MNA exhibited an Absolute
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Figure 2: MAE for single-class open queueing networks

Table 3: Interarrival time parameters for multi-class open
queueing network test

class mean SCV
1 𝑈 (40, 50) 1/4
2 𝑈 (52, 57) 1/5

Table 4: Service time parameter for multi-class open queue-
ing network test

node class mean SCV
1 1 𝑈 (2, 5) 1/6
1 2 𝑈 (2, 5) 1/7
2 1 𝑈 (3, 6) 1/9
2 2 𝑈 (3, 5) 1/2

Relative Error (ARE) within the 5 percent threshold. Additionally,
MNA provides a better result for both node 1 and node 2 than
QNA. This is evidenced by the lower Mean Absolute Errors (MAE)
observed for MNA in Figure 2.

4.3 Multiclass Open Queueing Networks
Considering the following example which uses the same network
routing as the last example but has multiple job classes. The in-
terarrival time, and the service time are all phase-type distributed.
The means and SCVs are generated as shown in the table 3 and
4 where all the means follow uniform distributions and SCVs are
fixed values. For this example, without loss of generality, we set
SCV as a fixed value. This is because randomly generated values
may include some irrational numbers, which may lead to a MAP
with extremely large state space which increases the execution
time.

As is shown in Table 5 and Figure 3, MNA demonstrates high
accuracy for multi-class scenarios. Approximately 95% of the sam-
ples exhibit an ARE within a 5% margin. When compared to QNA,

Table 5: Performance of MNA for multi-class queueing net-
work

node and class mean ARE models within 5% ARE
queue 1, class 1 0.0115 993/1000
queue 2, class 1 0.0220 932/1000
queue 1, class 2 0.0201 985/1000
queue 2, class 2 0.0256 891/1000
overall 0.0198 947/1000

Figure 3: MAE for multi-class open queueing network

Table 6: Performance of MNA for single-class closed models

node Mean ARE models within 5% ARE
queue 1 0.0247 942/1000
queue 2 0.0161 967/1000
overall 0.0204 951/1000

MNA offers more accurate results. While there are instances where
MNA does not perform as well as QNA for specific classes at certain
nodes, it consistently outperforms QNA for the whole system.

4.4 Closed Queueing Networks
Consider this example: a closed queueing network with 3 nodes
and 1 class. The first node is a delay node, and the other two are
FCFS queueing nodes. The interarrival time, and the service time
are all phase-type distributed. The service time of the delay node
has a mean of 𝜇, where 𝜇 follows a uniform distribution 𝑈 (1, 3),
and the SCV is 4. The service time of the first FCFS node has a
mean of 𝜇, where 𝜇 follows a uniform distribution 𝑈 (2, 4), and the
SCV is 4. The service time of the second FCFS node has a mean of
𝜇, where 𝜇 follows a uniform distribution 𝑈 (1, 4), and the SCV is
4. The number of jobs is 4, and the jobs follow a circular routing,
namely from the delay node to the first FCFS node, then to the
Second FCFS node, and finally back to the delay node.
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Figure 4: Routing for class 1

Figure 5: Routing for class 2

As is shown in Table 6, there is only a 2 percent mean relative
error between the result of MNA and simulation. 95% of the samples
exhibit an ARE within a 5% margin.

5 APPLICATION AND EXAMPLE
We model as a queueing network a three-tier e-commerce system
consisting of the following components: Web Server : the first point
of contact is a web server that handles initial customer requests. Ap-
plication Servers: once the web server processes the initial request,
it forwards the customer to one of the three available application
servers, depending on their specific needs. Database Server : each
application server is connected to a central database server respon-
sible for data access.

The system serves two different classes of customers. Upon vis-
iting the website, customers first arrive at the web server. The web
server evaluates their needs and routes them to the most appropri-
ate application server for further processing. Once the application
server completes its tasks, it interacts with the database server
for data storage or retrieval. After being served by the database
server, customers have two options: they may continue using the
website, in which case they are sent back to the application server
for additional services. Alternatively, they may choose to leave the
system.

The routing probability of class 1 and class 2 are shown in Figure
4 and Figure 5 respectively. The interarrival time, and the service
time are all phase-type distributed. The means of interarrival time
of class 1 and class 2 are 4 and 5 respectively, and the SCVs of

Table 7: Service time parameters for real case example

node classes mean SCV
Application 1 1,2 0.5 1/10
Application 2 1 1 1/10
Application 2 2 0.3 1/10
Application 3 1, 2 0.5 1/10
Database 1 0.3 1/10
Database 2 0.5 1/10

interarrival time are all 1/10. The means and SCVs of the service
time are generated as shown in Table 7. For this example, QNA
provides a result with a relative error of 8.6 percent while MNA
provides a more accurate result with a relative error of 1.5 percent.

6 CONCLUSION
In this paper, we have proposed MNA, a new algorithm for solving
multiclass PH queueing networks that leverages the matrix-analytic
method. The method has been shown to improve the accuracy of
the class QNA algorithm.

In future work, we seek to integrate additional features into
MNA. In particular, the method should be extended to incorporate
functionalities such as self-loops, class-switching, and mixed work-
loads. A comparison with gradient-based methods to seek the fixed
point would also be beneficial.

Additionally, throughput calculation for closedmulti-class queue-
ing networks may face challenges due to its use of fixed iterations,
which may not converge. A more efficient and accurate method,
perhaps based on gradient search, may be needed.
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