
Green Software Metrics
Andreas Brunnert

Munich University of Applied Sciences HM
Munich, Germany
brunnert@hm.edu

ABSTRACT
Efficiency has always been at the core of software performance
engineering research. Many aspects that have been addressed in
performance engineering for decades are gaining popularity under
the umbrella of Green IT and Green Software Engineering. Engi-
neers andmarketers in the industry are looking for ways to measure
how green (in terms of carbon dioxide emissions) their software
products are. Proxy measures are proposed, such as hosting cost
or the power consumption of the hardware environment on which
the software is running. In environments where a software system
runs on a dedicated server instance, this may make sense, but in vir-
tualised, containerised or serverless environments, it is necessary
to find ways of allocating the energy consumption of the entire
server to software components that share the same infrastructure.
This paper proposes the use of resource demand measurements as
a basis for measuring how green a given software actually is.

CCS CONCEPTS
• Software and its engineering → Software performance.

KEYWORDS
Green IT, Green Software Engineering, Resource Demand
ACM Reference Format:
Andreas Brunnert. 2024. Green Software Metrics. In Companion of the 15th
ACM/SPEC International Conference on Performance Engineering (ICPE ’24
Companion), May 7–11, 2024, London, United Kingdom. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3629527.3652883

1 INTRODUCTION
In order to meet global carbon dioxide (CO2) reduction targets,
the IT industry needs to be able to quantify its emissions. With-
out quantifiable emissions, it is difficult to identify improvements
and assess their impact. While it is common to use the energy
consumption of servers or entire data centers to derive their CO2
emissions [1], there is no comparable metric for software [4]. Mod-
ern software systems run in virtualised, containerised or serverless
infrastructures, for which we need to find ways of allocating the
CO2 emissions of entire servers to individual software components
or transactions [5].

To achieve this goal, several proxy approaches are currently be-
ing used in the industry [3, 4]. One proxy for carbon emissions is the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3652883

hosting cost of a software system [3] (e.g., when renting instances
from a cloud provider). The disadvantage of this approach is that
the price of the runtime environment does not correlate exactly
with the resource or CO2 emissions of the software. Just looking
at the price differences for the same runtime environment on a
cloud environment when choosing different payment options (e.g.,
up-front or on-demand) shows that there is no direct correlation
between price and resource use.

Another proposal from the Green Software Foundation is the
Software Carbon Intensity (SCI) specification1. SCI defines the car-
bon emissions of a software for a given unit of work (e.g., a request
to the system). The SCI specification combines the carbon emis-
sions of all components and transactions of a software system into
a single rate value. The advantage of this approach is the simplic-
ity of the result but it makes it difficult to understand the carbon
emissions of specific transactions or components of a system.

As an alternative approach, the Green Software Measurement
Model (GSMM) [4] attempts to describe a reference model for as-
sessing the resource and energy efficiency of software products and
components. GSMM focuses mainly on the individual components
of a software system, without considering their interrelationships
while processing individual units of work (e.g., transactions). There-
fore, the authors [4] also note that the current GSMM methods are
not fully applicable to complex architectures or distributed systems.

To overcome the limitations of the above approaches, this work
proposes the use of resource demand measurements at the level of
individual components and transactions as a basis for measuring
how green a software is.

2 RESOURCE DEMAND MEASUREMENTS AS
GREEN SOFTWARE METRICS

Measuring or calculating [6] the resource demands (i.e., CPU, mem-
ory, storage, network) of software systems is common in the soft-
ware performance engineering community, as such data is required
for capacity planning and performance modeling techniques. We
propose to use the same data to quantify the emissions of a software
system on a given runtime environment.

When measuring resource demand for a specific transaction,
typical metrics collected are CPU time, bytes allocated in memory,
or bytes written to/from storage or the network. Many of these
metrics, such as the amount of memory consumed by a transaction
or the amount of bytes written to or read from storage or the
network, are independent of the underlying hardware, as they are
primarily influenced by the parameters of a particular transaction.
The only metric that is tied to the actual processor used during the
measurements is CPU time.

In a previous work we have already shown and evaluated the
ability to measure all these resource demands of a software system
1https://sci.greensoftware.foundation

287

https://doi.org/10.1145/3629527.3652883
https://doi.org/10.1145/3629527.3652883
https://sci.greensoftware.foundation


ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Andreas Brunnert

rp = {rpT1, …, rpTn}

rpTn = {rpS1Tn, …, rpSiTn}

rpSiTn=

dCPU
dSTOr
dSTOw
dMEM
dNETi
dNETo

Server (S1)

Si

S…

Transaction (T1) … (Tn) 

Figure 1: Resource Profile [2]

dCPU
dSTOr
dSTOw
dMEM
dNETi
dNETo

cCPU
cSTO
cSTO
cMEM
cNET
cNET

* =

cCPU/T
cSTOr/T
cSTOw/T
cMEM/T
cNETi/T
cNETo/T

Figure 2: Calculating Carbon Emissions per Transaction

[2]. Therefore, we propose to use this data as a basis for assessing
the carbon intensity of a software system. To structure the data we
use so-called resource profiles, which can store the data for each
transaction of a given software system separately by server (see
Figure 1), software component or even at the level of individual
operations [2]. A resource profile (rp) is a set of vectors (i.e., rpTn )
that describe the resource demand (d) for individual transactions
(T, numbered from 1 to n) for a specific workload and a certain
set of servers (S, numbered from 1 to i). Resource profiles contain
resource demands for the following resource types: CPU (dCPU ),
storage (differentiated by read dSTOr

and write dSTOw
operations),

memory (dMEM ), and network (differentiated by incoming dNETi and
outgoing dNETo traffic).

A resource demand vector (rpSi Tn
) of a transaction on a given

server (virtual machine, container or serverless component) can
now be used to derive carbon emission metrics based on the carbon
intensity of the underlying hardware components as shown in Fig-
ure 2. For this calculation we need to be able to quantify the carbon
emissions (c) of the different resource types (CPU: cCPU ,storage: cSTO ,
memory: cMEM , network: cNET ) in the same unit as the resource de-
mand is stored in the vector. For CPU, we need to know how much
carbon is emitted when a core is running at a certain utilisation
level; for memory, the carbon emissions for a given size (e.g., GB);
and for storage and network, how much carbon is emitted when a
given amount of data is processed. This data can be collected using
services such as climatiq2 for CPU, storage and memory for all
common cloud environments, instance types and regions. Based on
the measured resource demand data and carbon emissions of the
individual resources the carbon emissions for individual transac-
tions of a software system can be calculated as shown in Figure 2 by
mutliplying the resource demand data with the carbon emissions.
The use of both data sources allows the carbon intensity of software
to be derived in more detail than is currently possible in industry.

To evaluate the feasibility of the aforementioned proposal, we
are currently implementing a prototype based on the architecture

2https://www.climatiq.io

Application
Resource Demand 

Measurements

OpenTelemetry
collector Prometheus Grafana

OpenTelemetry
protocol (OTLP)

Metrics: 
- Resource demands per 

transaction
- Throughput per transaction

Climatiq-
Publisher

OpenTelemetry
protocol (OTLP)

Metrics: 
- Carbon emissions for CPU, 

memory, storage per region
and (cloud) provider periodically
over time

Figure 3: Prototype Architecture

in Figure 3. We are using OpenTelemetry3 as a standard for trans-
ferring the required metrics from the application and climatiq to
Prometheus4 as a time series database. We need to store both sets
of data (resource demand and emission data) correlated by time as
emissions vary over time depending on the amount of green energy
used to power the runtime environment (e.g., lack of solar power at
night). Grafana5 is used to visualize the results of this calculation
to show the carbon emissions per transaction as well as per server,
container, or virtual machine involved in processing a transaction
over time.

3 CONCLUSION & FUTUREWORK
The use of resource demand measurements helps to provide a more
detailed insight into how much carbon a software system emits (in
other words, how green it is). We are currently building a prototype
that links all the different parts together (resource demand data
collection, carbon emission data collection and calculation). Once
this work is done, we plan to run software experiments to evaluate
our proposal against other approaches on the market, such as the
SCI or the GSMM[4]. We also do not currently include the carbon
emissions of network traffic in our prototype as we do not have
the necessary emissions data, but we are looking for suitable data
sources to fill this gap in the future.

REFERENCES
[1] L. Belkhir and A. Elmeligi. Assessing ict global emissions footprint: Trends to

2040 & recommendations. Journal of Cleaner Production, 177:448–463, 2018.
[2] A. Brunnert and H. Krcmar. Continuous performance evaluation and capacity

planning using resource profiles for enterprise applications. Journal of Systems
and Software, 123:239–262, 2017.

[3] A. Currie, S. Hsu, and S. Bergman. Building Green Software. O’Reilly Media, Inc.,
2024.

[4] A. Guldner, R. Bender, C. Calero, G. S. Fernando, M. Funke, J. Gröger, L. M. Hilty,
J. Hörnschemeyer, G.-D. Hoffmann, D. Junger, T. Kennes, S. Kreten, P. Lago, F. Mai,
I. Malavolta, J. Murach, K. Obergöker, B. Schmidt, A. Tarara, J. P. De Veaugh-
Geiss, S. Weber, M. Westing, V. Wohlgemuth, and S. Naumann. Development and
evaluation of a referencemeasurementmodel for assessing the resource and energy
efficiency of software products and components—green software measurement
model (gsmm). Future Generation Computer Systems, 155:402–418, 2024.

[5] A. Katal, S. Dahiya, and T. Choudhury. Energy efficiency in cloud computing data
centers: a survey on software technologies. Cluster Computing, 26(3):1845–1875,
June 2023.

[6] F. Willnecker, M. Dlugi, A. Brunnert, S. Spinner, S. Kounev, W. Gottesheim, and
H. Krcmar. Comparing the accuracy of resource demand measurement and estima-
tion techniques. In M. Beltrán, W. Knottenbelt, and J. Bradley, editors, Computer
Performance Engineering, pages 115–129, Cham, 2015. Springer International Pub-
lishing.

3https://opentelemetry.io
4https://prometheus.io
5https://grafana.com

288

https://www.climatiq.io
https://opentelemetry.io
https://prometheus.io
https://grafana.com

	Abstract
	1 Introduction
	2 Resource Demand Measurements as Green Software Metrics
	3 Conclusion & Future Work
	References



