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ABSTRACT
In this paper, we present a comprehensive empirical study to evalu-
ate four prominent Computer Vision inference frameworks. Our
goal is to shed light on their strengths and weaknesses and provide
valuable insights into the challenges of selecting the right inference
framework for diverse situations. Additionally, we discuss the po-
tential room for improvement to accelerate inference computing
efficiency.
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1 INTRODUCTION
In the field of deep learning, the deployment of trained neural net-
works to make predictions, a process also known as inference, is
the pivotal moment where these models provide value in applica-
tions. Inference deep learning frameworks play a central role in
this process by translating the mathematical representation of the
neural network into low-level code optimized for specific hardware
platforms. These inference frameworks employ a diverse range of
optimizations aimed at significantly improving the computational
speed of neural network predictions.

While the training phase of deep neural networks is generally a
time-bounded computing process with a fixed number of epochs or
batches, the inference phase often involves long-term deployment.
This is why pursuing lower prediction time has been recognized as
a strategically significant endeavor for reducing the financial cost
of computing infrastructure [6] and greener computing [5].

Various benchmarks have emerged to assess the speed of deep
neural networks, they often focus on the performance of specific
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operators like matrix multiplication and convolution. These mi-
crobenchmarks, while informative, fall short of comprehensively
evaluating the intricate complexities of modern neural networks
[19]. Additionally, benchmarks like Dawn Bench [3] have high-
lighted that neural networks frequently under-utilize computing
cores due to memory transfer bottlenecks. Although studies such as
MLPerf Inference [15] and ML Bench [13] provide comprehensive
assessments of various inference applications, frameworks, and
hardware, they generally lack in-depth analysis of the comparison
between different inference frameworks and software settings. This
paper aims to address this gap by providing fresh perspectives to
steer the future development of inference technology and set of
tools for reproducibility.

This paper explores the inference performance exhibited by the
inference frameworks such as TensorRT [4], ONNX-runtime [16],
OpenVINO [7], LLVM MLIR [11], TVM [2]. These inference frame-
works employ a diverse range of optimizations aimed at signifi-
cantly improving the computational speed of neural network in-
ference. Additionally, we also test/compare the performance of
Tensorflow XLA [12] which, unlike the aforementioned inference
frameworks, is a software environment that applies optimizations
for both the training and inference phases.

With the inference frameworks we benchmark different convolu-
tional neural network (CNN) architectures used in computer vision
tasks selected for their diversified neural topology: Resnet50[9]
VGG19[20] and DenseNet201[10]. For each framework, we col-
lected over 80 data points, encompassing metrics such as predic-
tion throughput (predictions per second), loading time, memory
consumption, and power consumption on both GPU and CPU hard-
ware configurations. The code and additional plots are linked in
the GitHub repository at the end of the conclusion.

The structure of this paper is as follows. In Section 2, we dis-
cuss inference frameworks state-of-art and their optimization tech-
niques. In Section 3, we elaborate on the settings used. In Section 4,
we present the experimental results with different metrics. In Sec-
tion 5, we provide key insights by summarizing the lessons learned
from the experiments. Finally, in Section 6 we conclude by showing
the importance of this work direction, future work, and GitHub
links.

2 POST-TRAINING REPRESENTATION AND
OPTIMIZATION

Post-training representation and optimization serve as a critical
bridge between model training and efficient inference deployment.

The optimization is generally done in two steps, high-level and
low-level optimizations. While high-level optimizations focus on al-
gorithmic and architectural enhancements, low-level optimizations
delve into the intricacies of code generation and hardware-specific
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performance tuning. The synergy between these optimization lay-
ers empowers deep learning frameworks to deliver both accuracy
and speed in real-world applications. However, different inference
frameworks have different implementations.

One fundamental high-level optimization strategy is known as
"fusing," a technique that consolidates multiple operations into a
single kernel launch. For example, sequences of convolutions can
be merged into one single convolution [1]. Fusing offers several
advantages, including the elimination of slow intermediate tensor
storage, improved cache utilization, and the removal of synchro-
nization barriers between operations. Notably, these optimization
methods, such as XLA [12], not only accelerate inference but can
also benefit the training phase. Moreover, certain fusing opera-
tions involve mathematical simplifications, like combining adjacent
convolution layers together without lowering the accuracy of the
model [8].

Additional high-level optimizations encompass techniques such
as constant-folding and static memory planning. Constant-folding
evaluates constant expressions before executing the program and
static memory planning creates a plan to reuse ahead and use
intermediate tensor buffers.

On the other end, low-level optimization entails converting the
computational graph into highly optimized low-level code tailored
for specific hardware platforms. Drawing upon decades of com-
pilation expertise, this optimization category encompasses sub-
expression elimination, vectorization, loop ordering, tiling, un-
rolling, threading patterns, and memory caching/reusing strategies.
Notably, the field benefits from two noteworthy low-level compil-
ers and optimizers, namely TVM [2] and LLVM MLIR [11], both
enriched with tensor types, which enable efficient code generation
and execution.

3 EXPERIMENTAL SETTINGS
3.1 Evaluated Neural Networks
To assess the performance of different inference frameworks, we
utilize a diverse set of convolutional neural networks, including
VGG19, ResNet50, DenseNet201, and EfficientNetB0. Overall, these
networks offer a range of characteristics, such as varying depths,
widths (parametric ratio to the number of layers), and densities, pro-
viding a comprehensive evaluation of the frameworks’ capabilities.
The details of these architectures are summarized in Table 1.

Table 1: Summary of the CNNs architectures used in the
benchmark.

#𝑝𝑎𝑟𝑎𝑚.

#𝑙𝑎𝑦𝑒𝑟𝑠 #layers #jumps #param. Jump type

VGG19 7.26M 19 0 138M No jumps
ResNet50 0.52M 50 16 26M Additions
DensetNet201 0.1M 201 98 20M Concatenations
EfficientNetB0 0.06M 89 25 5.3M Mult. and Add.

3.2 Evaluated Machine Specifications
Our benchmarking experiments are conducted on two distinct ma-
chines, namely Machine A and B. Machine A is equipped with Tesla

V100 SXM2 GPUs and its CPU is a dual-socket Intel(R) Xeon(R)
CPU E5-2698 v4. Whereas, Machine B has NVIDIA Amper A100
PCI-E GPUs and its CPU is a single-socket AMD EPYC 7F52. Table
2 presents the full details for both machines.

For the Software Stack, we maintain consistent software ver-
sions across both machines. Our assessment involves popular infer-
ence frameworks, including TensorFlow 2.6, TensorRT 8.0, ONNX-
runtime 1.10, and OpenVINO 2021. To facilitate the benchmarking
process, we utilize neural network converters such as tf2onnx 1.9.3
and LLVM 14.0.

Machine A operates on Ubuntu with Python 3.9, while Machine
B runs on CentOS with Python 3.8. It’s worth noting that special-
ized real-time operating systems may enhance latency determinism
and speed but could potentially impact throughput negatively. We
also explored MLIR (onnx-mlir 0.2 framework [11]) on Machine B;
however, it only supports ResNet50. In all our benchmarks, Tensor-
flow benefits from acceleration via XLA [12] (Accelerated Linear
Algebra).

Table 2: Summary of the characteristics of the machines used
in the benchmark.

Feature Machine A Machine B

GPU model Tesla V100 SXM2 Amper A100 PCIE
GPU # of cores 5,120 6,912
GPU clock speed 1,312MHz-1,530MHz 765MHz-1,310MHz
GPU memory 16GB 40GB
GPU board cons. 300 watts 250 watts
CPU model Intel XEON E5-2698 v4 AMD EPYC 7f52
CPU # of cores 80 16
CPU clock speed 1.2GHz-3.6GHz 2.5GHz-3.5GHz
CPU memory 512GB 256GB
OS Ubuntu CentOS
Python version 3.9 3.8

3.3 Graph Optimization Settings
To discuss optimization settings and the effect of each performance
we discuss the obtained speed up by ablation (starting from the
mostly well optimized settings and discussing the impact of chang-
ing a specific setting).

• TensorflowXLA:We freeze the computational graph, which
means all weights are stored in read-onlymemory.We enable
the "optimize_for_inference_lib" optimizer, although it
doesn’t significantly impact performance. XLA is enabled
on the GPU because disabling it reduces speed by 15%. How-
ever, enabling XLA multiplies initialization time by a factor
of six on the range of neural networks. We do not observe a
performance gain from enabling XLA on the CPU. Therefore,
it remains disabled.

• ONNX-RT (ONNX-runtime) [16]: We enable caching, as
disabling it reduces speed by approximately 3%. We also
enable maximum graph-level optimization, and using the
default optimization settings reduces speed by 8%.

• OpenVINO We enabled two settings: "NCHW" and con-
volution fusing. NCHW stands for batch (N), channels (C),
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height (H), and width (W). NCHW is a data format, a way
to represent a tensor in memory and all input images are
converted into this format for this framework. In a nutshell,
convolution fusing combines or merges multiple convolu-
tional operations within a CNN model into a single, more
efficient operation. When convolutional fusing is disabled
the execution speed is reduced by 9%. We disabled concate-
nation optimization because there was no significant gain
in any experiment. In fact, with Densenet201 concatenation
optimization reduced the performance by 1%.

• MLIR [11] (Multi-Level Intermediate Representation from
the LLVM project): MLIR is still under development, but we
could compile the Resnet50 graph with the "-O3" optimiza-
tion level for performance. This optimization level represents
the highest level of optimization provided by the compiler.

These settings have been carefully configured to ensure optimal
performance for each framework, enabling a fair and informative
comparison of their capabilities.

4 EXPERIMENTAL RESULTS
After the training phase, the importance of performance metrics
can significantly differ depending on the application at hand. The
prioritization of specific metrics over others is deeply influenced
by the unique requirements of each use case. In this study, we con-
duct assessments focusing on prediction speed, memory utilization,
power consumption, and model loading time.

4.1 Prediction Speed
Our assessment of prediction speed encompasses three key scenar-
ios, each measured differently:

• Batch Applications: In scenarios where neural networks pre-
dict a substantial workload of data samples, optimizing the
batch size becomes critical to maximize predictions per sec-
ond, referred to as throughput. Throughput is quantified as
the number of predictions per second.

• Data Flow Applications: For use cases involving sequential
data sample prediction, such as real-time embedded sys-
tems and Markov Decision Processes in deep reinforcement
learning, we evaluate latency, represented as the number of
milliseconds required for a single prediction.

• Irregular Batch Applications: In situations where data sam-
ples arrive irregularly, such as web services serving multiple
client requests, a dynamic batch computing approach is es-
sential. Here, we carefully balance latency for responsiveness
and throughput when the service faces heavy request loads.

Figure 1 and 2 show the throughput results for machines A and
B, respectively. Each figure has results for the inference frameworks
by varying the batch size and the model. Notice the vertical axis is
log2-scale. Please note that we have opted not to display latencies
for predicting a single data point (data flow applications) since
these results exhibited a strong correlation with batch size 1. In
cases where there are no bars in the figure, it indicates out-of-
memory issues (e.g., VGG with TensorRT) or compilation errors
(e.g., EfficientNet with OpenVINO).

4.2 Memory Consumption
Optimizing memory usage within the inference framework un-
locks various GPU utilization possibilities, effectively reducing the
need for investments in multi-GPU configurations and minimizing
their associated power demands. The diverse memory consumption
scenarios encompass serving larger models, enhancing accuracy
through the management of asynchronous ensembles [14], and
efficiently handling independent applications [18]. Figure 3 shows
the memory consumption of an ensemble model, quantified as the
combined storage occupied by the neural network on disk and
the current batch of features propagating through the layers. The
ensemble results from diverse topologies: VGG19 has wider convo-
lutions, Resnet50 is deeper, and Densenet201 includes numerous
jumps between layers.

4.3 Power consumption
Figure 4 presents the power consumption (Watt/sec.) of different
inference frameworks (“TRT” for TensorRT, “TF” for Tensorflow,
“ORT” for ONNX-RT) with batch sizes 1, 32, and 128. The model
running is the ensemble of VGG19, Resnet50, and DenseNet201.

We use the following command to estimate GPU power draw:

$ nv id i a −smi − i $GPUID −− format= csv −−query −
↩→ gpu=power . draw −−loop −ms=3000

Where $GPUID is the corresponding GPU identifier hosting the
neural network.

It’s worth noting that the Relative Standard Deviation (RSD)
of instantaneous power consumption (watt) can be high, approxi-
mately around 20%. The oscillations observed in the estimated GPU
consumption are attributed to a combination of factors including
instruction flows, dynamic voltage and frequency, temperature reg-
ulation, and measurement error. This underscores the significance
of averaging power consumption over multiple sampling to obtain
a more representative value.

Power consumption is a pivotal metric, with implications for
ecological sustainability, energy costs, and thermal management.
We express power consumption in terms of watt-seconds required
by the inference system to predict a fixed quantity of data samples,
denoted as 𝐷 . The actual value of power consumption is influenced
by the specific neural network, chosen inference engine, and batch
size. These measurements can be further converted into equiva-
lent units such as CO2 emissions, energy expenses, or thermal
dissipation.

Equation 1 is used to describe power consumption denoted as 𝐸.
The variable 𝐷 stands for the quantity of data samples. Whereas
variable𝑊 represents the mean instantaneous power consumption
in watts during the prediction period 𝑇 in seconds.

𝐸 = 𝐷 ×𝑊 ×𝑇 (1)
Equation 1 provides insights into the relationship between the

throughput of an inference system and its power consumption. It
appears that the relationship adheres to a power law 𝑦 = 𝛼𝑥𝛽 , with
𝛼 and 𝛽 coefficients for different GPU generations.

The measurement teaches us two lessons for sustainable com-
puting. First, model speed and power consumption are linked in a
predictable way, their correlation is above 0.95. Second, the power
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Figure 1: Machine A. Inference framework comparison with different batch size values.

Figure 2: Machine B. Inference framework comparison with different batch size values.
law curvature shows us that to a certain degree, improving the
model parallelism may not reduce significantly the power con-
sumption. This reduction in the trend can be interpreted like the
following: maximizing cores utilization reduces computing time

(𝑇 ) but increases instantaneous power consumption (𝑊 ), less ef-
ficient internal parallelism keeps the cores idle which takes more
computing time but consumes less power.
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Figure 3: Memory consumption of the model’s ensemble with different frameworks varying the batch size.

Figure 4: Plot of the throughput and power consumption with the ensemble model varying the batch size.

4.4 Loading Time
Loading time refers to the duration from the neural network’s repre-
sentation on disk to its readiness in memory for making predictions.
This metric is of particular interest in applications requiring rapid
service setup to accommodate peak demand periods, such as elastic
cloud services [17]. In all our benchmarks, we enable or implement
caching systems to measure loading times.

The loading times for the ensemble model (containing VGG19,
Resnet50, and Densenet121) are displayed in Table 3. The data is
organized by machine and processing unit (CPU/GPU), with faster
loading times listed before slower ones for clarity.

TensorFlowwith XLA optimization exhibits slower loading times
due to the current absence of caching for optimized graphs on disk.
However, disabling XLA optimization reduces loading time by a
factor of 6 but it keeps staying the slowest inference framework to
load the model.

5 KEY TAKEAWAYS
In this section, we offer valuable insights derived from our bench-
marking outcomes. These insights are designed to aid deep learning
practitioners in selecting the most suitable inference framework
for their specific requirements.

Table 3: Results of loading themodels categorized bymachine
and processing units.

Machine Device Framework Time (seconds)

A

CPU
OpenVINO 3.4
TensorFlow 8.7
ONNX-RT 8.7

GPU
TensorRT 3.6
ONNX-RT 5.7
Tensorflow XLA 42.5

B
CPU

ONNX-RT 0.5
Tensorflow 2.9

GPU
ONNX-RT 2.1
TensorRT 3.9
Tensorflow XLA 29.2

The performance of GPU-based frameworks, including ONNX-
RT, TensorRT, and TensorFlow with XLA, had results in response
to different scenarios (batch size values and model architecture).
For low-latency and sporadic request scenarios, ONNX-RT had the
best results. TensorRT shines in high-throughput scenarios with
larger batch sizes. TensorFlow optimized with XLA shows the good
speed with high-density networks (i.e. VGG19).
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For CPU inference, Intel OpenVINO consistently outperformed
other CPU-based frameworks, making it a strong choice for CPU-
centric deployments. MLIR shows promise and should be considered
for future use as it continues to mature.

It is widely acknowledged by deep learning practitioners that
optimizing the batch size for speed’s sake is an empirical process.
A "sufficiently large" batch size value allows inference frameworks
to harness the full power of a particular processing unit. However,
if the batch size value is too large, it can result in cache memory
issues, potentially slowing down execution. It is worth noting that
some inference frameworks have specific constraints on tensor
shapes (such as TensorRT with VGG19 and batch size 1024). Fur-
thermore, very large tensor shapes may lead to memory crashes
due to indexing element errors.

In terms of GPU memory usage, TensorFlow XLA GPU con-
sumes significantly more memory than other technologies but the
gap is slightly reduced when the batch size increases. Conversely,
TensorRT stands out for having the lowest overall memory foot-
print. For CPU memory usage, Tensorflow XLA exhibits the largest
memory footprint, particularly noticeable with batch sizes 1 and 32.
However, with a batch size of 128, ONNX-RT for CPU experiences a
considerable increase in memory usage. The most memory-efficient
option for CPU is OpenVINO.

With the power consumption metric, we provide a link between
computing speed and power consumption for a fixed amount of
data samples. This leads us to the conclusion that optimizing the
computing time reduces the power consumption up to a certain
extent.

6 CONCLUSION AND FUTURE DIRECTIONS
We benchmark four deep learning inference frameworks: TensorRT,
ONNX-runtime, OpenVINO, and LLVM MLIR and a diverse array
of neural network architectures and configurations. Some inference
frameworks are still missing such as TVM and will be introduced
later in our repo.

Our study has yielded valuable insights into the domain of ma-
chine learning inference optimization. We learned that selecting the
ideal inference framework from the multitude of options available
can be a daunting task. In addition to that, our findings under-
score the importance of aligning the specific choice with the final
application requirements and hardware environment. Therefore
fast experimentation of the application under different settings is
desirable to optimize it, this is what we published in our GitHub
repo.

Looking ahead, more in-depth analysis will lead our future explo-
rations in the design of inference development tools and inference
systems. We anticipate that our work will inspire research and
innovation leading to more efficient and effective machine learning
solutions for making easier the development and deployment of
optimized neural networks.

Supplementary materials, including the GitHub repository link
and full-resolution figures, will be provided upon acceptance for
the double-blind reviewing process.
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