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ABSTRACT
Application Performance Monitoring (APM) tools are used in the

industry to gain insights, identify bottlenecks, and alert to issues

related to software performance. The available APM tools generally

differ in terms of functionality and licensing, but also in monitoring

overhead, which should be minimized due to use in production

deployments. One notable source of monitoring overhead is the

instrumentation technology, which adds code to the system under

test to obtain monitoring data.

Because there are many ways how to instrument applications,

we study the overhead of five different instrumentation technolo-

gies (AspectJ, ByteBuddy, DiSL, Javassist, and pure source code

instrumentation) in the context of the Kieker open-source moni-

toring framework, using the MooBench benchmark as the system

under test. Our experiments reveal that ByteBuddy, DiSL, Javassist,

and source instrumentation achieve low monitoring overhead, and

are therefore most suitable for achieving generally low overhead

in the monitoring of production systems.

However, the lowest overhead may be achieved by different

technologies, depending on the configuration and the execution

environment (e.g., the JVM implementation or the processor ar-

chitecture). The overhead may also change due to modifications

of the instrumentation technology. Consequently, if having the

lowest possible overhead is crucial, it is best to analyze the over-

head in concrete scenarios, with specific fractions of monitored

methods and in the execution environment that accurately reflects

the deployment environment. To this end, our extensions of the

Kieker framework and the MooBench benchmark enable repeated

assessment of monitoring overhead in different scenarios.

CCS CONCEPTS
• General and reference→ Performance; • Software and its
engineering→ Software performance; Software maintenance
tools.
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1 INTRODUCTION
Understanding application performance at runtime requires collect-

ing metrics such as response times, resource usage, or error rates

during application execution. When applied to production environ-

ments, this process is referred to as performance monitoring [19].

While monitoring can be done at different levels, including business,

application, and the infrastructure, we focus on the application level

in this work.

Because performance monitoring is often orthogonal to features

delivering value to application users, it is common to implement

monitoring as a cross-cutting concern using instrumentation, i.e.,

by inserting instructions into software that explicitly create mon-

itoring records associated with relevant performance events. An

alternative method for obtaining information about application

performance is sampling, in which the system periodically collects

snapshots of generic (e.g., code location being executed, stack traces,

memory consumption) or application-specific metrics (e.g., request

queue depth, average response time) exposed through a suitable

framework (e.g., JMX beans).

While sampling allows controlling the trade-off between (a fixed)

overhead and accuracy by setting the sampling period, instrumen-

tation producing explicit records of relevant events is generally

more flexible, because it can produce data usable for both monitor-

ing and tracing. However, the overhead of instrumentation-based

monitoring is much more variable and potentially more difficult to

control. In this paper, we focus on the baseline overhead due to the

use of a particular instrumentation technology.

During instrumentation, monitoring code (probe) is inserted into
the monitored application to create monitoring records correspond-

ing to various events occurring during application execution. The

injection of probes can be achieved using different instrumentation

technologies. The instrumentation process, depicted in Figure 1,

is generally driven by a application monitoring frameworks, such

as OpenTelemetry or Kieker, which also determine the instrumen-

tation technology used to insert probes into system under test.
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Figure 1: Instrumentation Process for Monitoring Frame-
works

In this paper, we compare the overhead of different instrumen-

tation technologies using the Kieker [5] monitoring framework.

In addition, we compare the measured overhead to the overhead

of OpenTelemetry using its default instrumentation technology

ByteBuddy.

The instrumentation can be done at compile time, at applica-

tion start time, using a javaagent with a premain method, or at

application runtime, using an agentmain method. In this work, we

compare the monitoring overhead that is introduced due to compile-

time or application start-time instrumentation. The overhead of

dynamic instrumentation has already been examined [6].

By comparing the monitoring overhead of the instrumenta-

tion technologies AspectJ
1
, ByteBuddy

2
, DiSL [11], Javassist

3
, and

source code instrumentation, we find that (1) There are significant

differences using the instrumentation technologies, e.g., using As-

pectJ creates up to 30 % more overhead than directly instrumenting

the source code, (2) source code instrumentation has the lowest

overhead in our benchmarking executions, (3) OpenTelemetry has

significantly higher overhead, that is not caused by its instrumenta-

tion technology ByteBuddy, and (4) all technologies scale linearly

with the call tree depth. Furthermore, our extensions of the Kieker

framework and the MooBench benchmark enable repeated assess-

ment of monitoring overhead, e.g., in case the underlying JVM or

the instrumentation technologies are changed.

This paper is structured as follows. We first provide a brief

overview of the instrumentation technologies, the application mon-

itoring framework, and the benchmark used. Then we present our

experimental setup and results, which we subsequently compare to

related work. Finally, we give a summary and an outlook.

2 FOUNDATIONS
In this section, we first provide an overview of the instrumentation

technologies that are the subject of this study. We then describe the

Kieker monitoring framework used to carry out the comparison

and the information collected for monitoring purposes. Finally, we

describe the benchmark used as the system under test.

1
https://eclipse.dev/aspectj/

2
https://bytebuddy.net/

3
https://www.javassist.org/

2.1 Instrumentation Technologies
In this work, we use five instrumentation technologies: Source

instrumentation, AspectJ, ByteBuddy, DiSL, and Javassist. Source

instrumentation operates directly on the source code and trans-

forms it into instrumented source code. Subsequent compilation

produces instrumented bytecode which is executed by the JVM.

Source code instrumentation requires access to the source code and

is language-specific, and generally need to be done at application

compile time. The other technologies employ bytecode manipulation
and insert instrumentation code directly into the bytecode of appli-

cation classes, producing instrumented bytecode to be executed by

the JVM. This approach is (mostly) language-agnostic and offers

increased flexibility compared to source instrumentation.

Frameworks such as AspectJ, ByteBuddy, and Javassist support

compile time instrumentation, i.e., instrumentation is performed

prior to application execution using bytecode that is either down-

loaded or produced by compilation. An alternative is to perform in-

strumentation at application load time, which completely decouples

instrumentation from the build process. This is done using instru-

mentation API provided by the JVM, usually through a javaagent
with a premain method which triggers bytecode transformation of

the classes being loaded by the JVM. This approach is supported by

all of the above mentioned frameworks. The different instrumenta-

tion processes are summarized in Figure 2.

Source Code

Source Code

(Instrumented)

Bytecode

(Instrumented)

JVM

Bytecode

Bytecode

(Instrumented)

JVM

Separate main

ByteBuddyAspectJ

Javassist

Bytecode

(Instrumented)

JVM with -javaagent

premain

ByteBuddyAspectJ

JavassistDiSL

DiSL VM

Instrumentation

Figure 2: Instrumentation Options: Source Code, Compile
Time and Load Time

Source Instrumentation. The most direct way of injecting moni-

toring probes is by adding them to the source code of an application.

Listing 1 shows this in a simplified way: In the original code of

myMethod, obtaining the start time, obtaining the end time, and

passing this information to a MonitoringController is added.

Listing 1: Manual Instrumentation Example
public void myMethod () {

long tin = System.nanoTime ();

....

long tout = System.nanoTime ();
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MONITORING_CONTROLLER.newOperationExecution(

tin , tout , "MyClass.myMethod ()");

}

Manual instrumentation is time-consuming and error-prone, and

reduces the maintainability of the source code. Therefore, we de-

veloped a tool for automated injection of monitoring probes in

Java source code.
4
This reduces the monitoring overhead signif-

icantly [16]. While source code instrumentation can reduce the

monitoring overhead, it cannot be used in cases where only the

bytecode (and not the source code) is available. This includes cases

where other programming languages have been used, e.g., Scala

or Kotlin. This disadvantage could be fixed by implementing the

source instrumentation for other languages.

AspectJ. AspectJ was developed to support the modular imple-

mentation of crosscutting concerns, i.e., concerns that need to be

addressed in different modules. This is called aspect-oriented pro-

gramming [8]. AspectJ builds on advices that consist of pointcuts
(patterns describing when the pointcut is activated) and advice bod-

ies (the code that should be executed on a matching pointcut). The

usability of AspectJ for implementation of domain requirements

that are crosscutting concerns is controversial [13]. Nevertheless,

its usability for logging and monitoring is indisputable. Internally,

AspectJ uses BCEL
5
for low-level adaptation of bytecode.

ByteBuddy. ByteBuddy aims to make the adaptation of byte code

possible without knowledge of its format. Thereby, it makes it

possible to support various use cases of bytecode manipulation

for security, logging, or performance monitoring. Especially, the

OpenTelemetry API reference implementation relies on ByteBuddy.

Internally, AspectJ uses ASM
6
for low-level adaptation of bytecode.

DiSL. DiSL7 (Domain-specific language for instrumentation) was

developed primarily for dynamic program analysis [11]. DiSL allows

selecting any region of the bytecode for instrumentation, in contrast

to AspectJ’s model, which only allows the selection of specific

points, e.g., operation starts. DiSL also supports synthetic local

variables, which facilitate passing of information between advice

code in the scope of a single method, e.g., collecting operation

start and end times, and passing the operation duration along with

context information to the application performance monitoring

framework for recording.

Internally, DiSL uses the ASM
8
library that provides a low-level

interface for bytecode manipulation. During load time instrumen-

tation, DiSL uses a separate VM to execute the instrumentation

logic which processes the application classes loaded by the VM

in which the application executes. This eliminates perturbations

in the application VM caused by the instrumentation logic using

common classes that may be subject to instrumentation (due to

their use by the application).

Javassist. Javassist9 is a Java bytecode manipulation library [2].

It supports changing the bytecode by the specification of adapted

bytecode and source code. By adding a javagent and adding a

4
https://github.com/kieker-monitoring/kieker-source-instrumentation

5
https://commons.apache.org/proper/commons-bcel/

6
https://asm.ow2.io/license.html

7
https://gitlab.ow2.org/disl/disl

8
https://asm.ow2.io/

9
https://www.javassist.org/
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Figure 3: Call Tree of MooBench, from: [16]

ClassTransformer (which is a class from java.lang), monitoring

libraries can interact with the class loading mechanism. Since byte-

code manipulation needs a thorough knowledge of the structure of

bytecode itself, libraries like Javassist can ease this process. How-

ever, the usage of Javassist also requires the (indirect) definition of

bytecode manipulation. Checking the instrumentation source at

compile-time (like with AspectJ aspects or DiSL instrumentation

definitions) is not possible.

2.2 Kieker
Application performance monitoring (APM) frameworks contain

a library and an agent that are responsible for data acquisition.
10

There are both open-source APM tools, such as Kieker [5] and

OpenTelemetry
11
, and closed-source APM tools, such as Dynatrace

APM
12

and the DataDog agent.
13

While their implementation de-

tails differ, they are all able to obtain operation execution data,

such as operation start and end times, operation signature, and

operation’s position in the call tree.

Our prior study on the overhead of these frameworks shows

that Kieker has the lowest overhead among the open-source tools

[15]. Kieker’s OperationExecutionRecord contains, next to the

timing information, the execution operation index (eoi) and the

execution stack size (ess), which make it possible to reconstruct the

call tree. In this work, we compare how much overhead different

instrumentation technologies cause to collect the data needed to

create the OperationExecutionRecord.

2.3 MooBench
Moobench is a benchmark that compares the overhead of differ-

ent APM frameworks and their configurations [20]. To measure

the overhead for each operation execution, MooBench calls its

monitoredMethod recursively for a given call tree depth. In the

leaf node, a busy waiting is executed, which simulates calculations.

The structure of the MooBench call tree is depicted in Figure 3.

Performance measurement is subject to non-determinism be-

cause of a number of factors. Some, such as other processes running

on the same system or CPU frequency and voltage scaling can be

mitigated by platform configuration. Other factors such as differ-

ences in memory layout between different runs of the workload

(in different processes) need to be addressed by the measurement

process. Experiments involving platforms such as the Java or JavaS-

cipt VM need to account for the effects of just-in-time compilation

and garbage collection. A rigorous measurement process must col-

lect data from multiple experiment runs, each time using a new

(managed language) VM process. Within each run, the measured op-

eration needs to be repeated enough times to get past the warm-up

10
https://openapm.io/

11
https://opentelemetry.io/

12
https://www.dynatrace.com/de/platform/application-performance-monitoring/

13
https://docs.datadoghq.com/agent/
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Figure 4: Architecture of MooBench (Green: Added by us,
Yellow: Future extension options)

phase (dominated by just-in-time compilation) to collect samples

representing the expected operation durations. The averages of

operation durations obtained from individual runs then provide

basis for statistical analysis, e.g., a comparison using the two-sided

t-test [4].

MooBench allows comparing different frameworks and execu-

tion environments using a rigorous measurement process. Each

framework/execution environment combination contains a single

folder, e.g., Kieker-java and Kieker-Python with a script to execute

measurements. Each script contains configuration parameters for

the respective framework, including the name, the command line

parameters, and the environment variables.

MooBench also aims to identify the causes of the overhead, as-

suming that monitoring overhead emerges from instrumentation

overhead, data collection, and the writing of data [21]. To this end,

MooBench supports performance measurements using multiple

configurations: Baseline (without any instrumentation), instrumen-

tation only (with deactivated monitoring), monitoring with no log-
ging (data is not written to data sink), and full monitoring (writes

data to a sink, e.g., binary file, TCP receiver, Zipkin server).

3 BENCHMARKING
In this section, we first describe how we implemented the bench-

mark changes. Afterwards, we describe our configurations for

benchmark execution. Based on this, we describe the results of

the MooBench performance comparison. Finally, we discuss the

scalability of the overhead.

3.1 Benchmark Adaptation
To benchmark the different instrumentation technologies, load-

time and compile-time instrumentations for each instrumentation

technology, the decision of how to handle deactivated monitoring,

and the adaptation of the benchmark were necessary. These are

described in the following.

Load-time Instrumentation. Kieker already supports the AspectJ

instrumentation and contains a subproject for automated source

instrumentation. Therefore, we additionally implemented probes

for ByteBuddy, DiSL, and Javassist. To do so, we started providing

separate JARs for each instrumentation

(kieker-bytebuddy, kieker-disl, and kieker-javassist), as a
kieker-aspectj-jar was already provided before.

To create a javaagent, the premain needs to specifywhat should
be donewhen the agent is started. AspectJ contains its own premain
implementation which handles the instrumentation of classes ac-

cording to joinpoint specification in aop.xml. Because ByteBuddy
and Javassist require users to implement the instrumentation proce-

dure on their own, we implemented a javaagent for each of them.

Since the other technologies do not provide a method for joinpoint

specification, we use the previously existing Kieker method pattern

definition to specify methods that should be instrumented and pass

it to the agents through the KIEKER_SIGNATURES environment vari-

able. Both agents only support the OperationExecutionRecord,
as this record is also used for the other MooBench implementations.

Compile-Time Instrumentation. Source instrumentation naturally

happens at compile-time. To get to know whether the load-time

weaving or the bytecode created by the instrumentation technology

is causing overhead, we additionally created Kieker main methods

that instrument an existing JAR using AspectJ, ByteBuddy and

Javassist. Afterwards, these are used by specifically tailored bench-

mark configurations.

Deactivated Monitoring. One challenge is the need to support

deactivation of monitoring at runtime, either fully or for selected

methods. AspectJ and ByteBuddy allow to return directly from

the instrumentation methods, and thereby execute the unchanged

original method. Because that is not possible with the source instru-

mentation, we copy the original method body into a branch that is

executed when monitoring is disabled or when the monitoring of

the method is deactivated. In the case of Javassist and DiSL, we use

a separate monitoring class (OperationExecutionDataGatherer)
that the instrumentation code calls on operation start and operation

end. When monitoring is disabled, the operation start invocation

returns null, indicating to the instrumentation code that the oper-

ation end invocation is not necessary. Otherwise it returns a object

(FullOperationStartData) representing operation data needed

to create a monitoring record, which the instrumentation passes to

the operation end invocation.

Listing 2: Exit Handling in DiSL and Javassist
@SyntheticLocal

static FullOperationStartData data;

@Before(marker = BodyMarker.class ,

scope = "MonitoredClass *.*")

public static void beforemain(

final KiekerStaticContext c) {

data = OperationExecutionDataGatherer
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.operationStart(c.operationSignature ());

}

@After(marker = BodyMarker.class ,

scope = "MonitoredClass *.*")

public static void aftermain () {

if (data != null) {

OperationExecutionDataGatherer

.operationEnd(data);

}

}

For Javassist, another option is to obtain all monitoring data at

the beginning of the method call (including the start time) and to

only add the monitoring data if monitoring is enabled. This leads

to heavily increased overhead for deactivated monitoring (0.55 𝜇𝑠 ,

instead of 0.06𝜇𝑠) and to slightly decreased overhead for enabled

monitoring (2.42 𝜇𝑠 instead of 2.55𝜇𝑠). This is a good option if all

instrumented classes have activated monitoring. If monitoring is

deactivated (and might be activated again later), this increases the

overhead. Since the other frameworks do not have this option, we

did not consider this implementation variant further to have a fair

comparison between all frameworks.

MooBench Adaptation. Based on these changes, we modified

MooBench to support all instrumentation technologies. Before

our refactoring, only framework-language combinations were sup-

ported, i.e., Kieker-java, Kieker-python, inspectIT-java, and Open-

Telemetry-java. After our refactoring, we added the instrumenta-

tion technology for every framework, e.g., we renamed the old

Kieker-java to Kieker-java-aspectj and additionally implemented

Kieker-java-bytebuddy. Since ByteBuddy and Javassist provide their

bytecode instrumentation directly, we could reuse most of the code.

For DiSL, we needed to call the DiSL starter Python script in every

benchmark call. The adapted architecture of MooBench is depicted

in Figure 4.

3.2 Execution Configuration
After extending the benchmark, we executed it with two environ-

ment configurations: An i7-4770 running Ubuntu 22.04 and Open-

JDK 11, and a Raspberry Pi 4 running Debian 11 with OpenJDK 11.

While using the Raspberry Pi might yield measurement values that

are different from typical business application deployments, they

have the advantage of being reproducible for other researchers due

to their standardization and affordability [9]. For each environment

configuration, we ran two experiments: The measurement of the

monitoring overhead and the measurement of the overhead
scalability.

For the monitoring overhead, we ran the experiments with

MooBench’s default parametrization (2 000 000 calls, zero time for

busy waiting, so the busy waiting part will only be two calls to

System.nanoTime(), a call tree depth of 10 and 30 seconds sleep

time), but set the number of VM starts to 30 (according to [4], who

recommends at least 30 VM starts to gather enough observations

for statistical testing).

For the overhead scalability, we also used the default configu-

ration and set the recursion depth to 2, 4, . . . , 128 to examine the

change of execution time with growing call tree size. To reduce

the benchmarking time, we only executed the benchmark on the

i7-4770. Our full measurement data are available as a dataset
14
.

While executing the experiments, we noticed that the execution

duration increased after a certain count of iterations. The effect

occurred on every technology. Based on technology and execution

environment, the threshold of iteration for this effect to start is

between 500 000 and 2 000 000 iterations. After more iterations, the

effect becomes stronger. We suspected memory and hard disk writ-

ing to be responsible for this effect. Therefore, we tried to change the

memory settings (using different configurations between -Xmx2g
and -Xmx10g). Regardless of the memory settings, the effect stayed

the same. When reducing hard disk writing by setting a maximum

file number that Kieker should write to,
15

we could eliminate this

effect. The runtime for this effect is depicted in Figure 5 (with a very

strong increase after 5 000 000, and a barely visible effect occurring

earlier). Therefore, we set the maxLogFiles and will keep this for

MooBench’s future default configuration.
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Figure 5: Average Duration per Iteration With and Without
Setting maxfiles

3.3 Monitoring Overhead
Table 1 depicts the monitoring overhead for the different technol-

ogy framework combinations for load-time instrumentation, and

Table 2 depicts the monitoring overhead for Kieker for compile-time

instrumentation. Overhead in the MooBench context means execu-
tion time caused by monitoring. Therefore, the measured duration is

the measured duration of empty method executions with monitor-

ing. For AspectJ, this would mean full monitoring causes roughly

3.30 𝜇𝑠 overhead (=3.35𝜇𝑠−0.05𝜇𝑠) on 10 method calls, indicating an

overhead of 0.33 𝜇𝑠 per node. In a production environment where

methods themselves take time, the absolute overhead is expected to

stay roughly the same (in the same execution environment), but the

relative overhead will be significantly lower. The overhead depends

on whether monitoring is deactivated, configured for execution

without logging, or fully activated.

DeactivatedMonitoring. For deactivatedmonitoring, OpenTeleme-

try creates a higher overhead than Kieker (at least factor 10). This

overhead does not seem to be caused by ByteBuddy, since Kieker’s

ByteBuddy probe causes much lower overhead. The overhead for

14
https://doi.org/10.5281/zenodo.10607598

15-Dkieker.monitoring.writer.filesystem.FileWriter.maxLogFiles
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a deactivated AspectJ probe is notably higher than for ByteBuddy,

DiSL, Javassist, and source instrumentation (roughly factor 3). Byte-

Buddy, DiSL, Javassist, and source instrumentation do not have

statistically significant differences for compile-time weaving on the

i7-4770. On Raspberry Pi, AspectJ compile-time instrumentation

is slower than load-time. The remaining technologies differ only

slightly.

No Logging. In this configuration the monitoring records are

stored into a queue that discards them [14]. The performance in

this configurations gives an indication how much of the overhead

stems from the data collection itself. This configuration is only

available for the Kieker probes. In this configuration, AspectJ has

a significantly higher overhead than the other instrumentation

technologies, and source instrumentation has a significantly lower

overhead than all other instrumentation technologies. Surprisingly,

we see that ByteBuddy has significantly higher overhead in its

compile-time variant than its load-time variant on the Raspberry

Pi. Since exactly the same final bytecode is executed, we assume

that this is caused by different internal optimizations of the JVM,

which won’t necessarily occur in a production system.

Full Monitoring. In this configuration, the monitoring records

are passed on to the application monitoring framework. Compared

to OpenTelemetry, Kieker allows collecting traces with a lower

overhead. Similarly to no logging and deactivated monitoring config-
urations, we see that AspectJ’s full instrumentation creates higher

overhead than source instrumentation, ByteBuddy, DiSL, and Javas-

sist. As for no logging, we see that source instrumentation has the

lowest overhead, which comes at the cost of requiring the source

code. For the comparison of ByteBuddy, DiSL, and Javassist, we

see that their ranking changes depending on whether load-time

or compile-time instrumentation is used, and whether execution

happens on a the Raspberry Pi or the i7-4700. Therefore, we assume

that these differences are caused by different internal optimizations

of the JVM, which might be different in production systems.

Looking at these values, we can infer that source instrumentation

is the best variant if the source code is available, and that Byte-

Buddy, DiSL, and Javassist are good candidates for low overhead.

Nevertheless, the overhead depends on the execution infrastructure,

indicating that comparisons of instrumentation technologies for

different software might differ.

It is also notable that the values measured for the baseline config-

uration are nearly the same as in our previous experiments [15], but

the values for the full monitoring configuration changed (i7-4470

Kieker: Mean was 3.4, OpenTelemetry: 6.8). Since Kieker did not

have significant changes in its code base, we assume that this is

caused by optimizations that happened either in used libraries or in

the execution environment, including the JVM (which we updated

from OpenJDK 8 to OpenJDK 11) and the Linux Kernel.

3.4 Overhead Scalability
Figure 6 shows the overhead evolution with increasing call tree

depth. It shows a nearly linear increase, which indicates that no in-

strumentation technology causes serious problems such as memory

leaks. We observe that OpenTelemetry (with its ByteBuddy-based

Benchmark Mean Standard Mean Standard

Deviation Deviation

i7-4770 Raspberry Pi

Baseline 0.05 0.00 0.16 0.00

Kieker-java

-aspectj (deactivated) 0.21 0.00 0.93 0.01

-aspectj (nologging) 1.68 0.02 5.63 0.12

-aspectj (full) 3.35 0.07 12.69 2.21

-bytebuddy (deactivated) 0.07 0.00 0.31 0.01

-bytebuddy (nologging) 1.08 0.01 3.42 0.09

-bytebuddy (full) 2.61 0.13 8.10 0.47

-disl (deactivated) 0.07 0.00 0.31 0.02

-disl (nologging) 1.21 0.01 3.94 0.11

-disl (full) 2.75 0.18 8.30 0.67

-javassist (deactivated) 0.06 0.00 0.27 0.01

-javassist (nologging) 1.16 0.01 4.01 0.14

-javassist (full) 2.58 0.17 8.25 0.58

OpenTelemetry-java

-bytebuddy (deactivated) 3.28 0.15 14.29 0.52

-bytebuddy (full) 4.98 0.18 22.41 1.13

Table 1: Monitoring Overhead for Load Time Technologies
(in 𝜇𝑠)

Benchmark Mean Standard Mean Standard

Deviation Deviation

i7-4770 Raspberry Pi

Baseline 0.05 0.00 0.16 0.01

Kieker-java

-aspectj (deactivated) 0.22 0.00 1.17 0.05

-aspectj (nologging) 1.66 0.02 5.88 0.19

-aspectj (full) 3.35 0.12 13.75 3.63

-bytebuddy (deactivated) 0.06 0.00 0.27 0.01

-bytebuddy (nologging) 1.17 0.02 3.83 0.17

-bytebuddy (full) 2.53 0.12 8.44 0.89

-javassist (deactivated) 0.06 0.00 0.27 0.01

-javassist (nologging) 1.17 0.01 3.84 0.13

-javassist (full) 2.50 0.06 8.19 0.58

-sourceinstrumentation

(deactivated) 0.07 0.00 0.28 0.01

(nologging) 1.04 0.01 3.30 0.11

(full) 2.32 0.15 7.20 0.55

Table 2: Monitoring Overhead for Compile Time Technolo-
gies (in 𝜇𝑠)

probes) has a significantly higher overhead. With Kieker, we ob-

serve that AspectJ is slower for all tested call tree depths. For source

instrumentation, we see a slightly smaller standard deviation and

slightly lower average duration than the bytecode instrumentation

technologies.

For performance monitoring, warmup performance is also rele-

vant, as a user might want to detect performance anomalies early

in the runtime of an application. Figure 7 shows the evolution of

the warmup performance. Here, the steady-state performance is
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Figure 6: Steady State Performance on i7-4770
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Figure 7: Warmup Performance on i7-4770

mainly repeated, with even lower differences between ByteBuddy,

DiSL, and Javassist.

4 RELATEDWORK
Related work to the overhead analysis of instrumentation tech-

nologies for APM exists in three fields: Analysis of the monitoring

overhead of APM tools, analysis of the overhead instrumentation

itself, and analysis of overhead of instrumentation for different

infrastructures.

4.1 Overhead of APM Tools
Performance and regression benchmarking are a widespread prac-

tice for monitoring tools. OpenTelemetry
16

and the monitoring

tool GlowRoot
17

provide own benchmarks for their tools. However,

comparisons of monitoring tools or of their instrumentation tech-

nologies rarely exist. ByteBuddy itself provides a comparison of

ByteBuddy, cglib, Javassist, and Java proxies in their basic tutorial.
18

They find that based on different use cases, different instrumenta-

tion technologies are faster. Therefore, it is necessary to compare

the instrumentation technologies in the context of their usage in

monitoring, as we did in this work.

Okanovic et al. [12] already examined the use of AspectJ and

DiSL on Kieker. While they pursued the same goal, they did not

16
For example https://opentelemetry.io/blog/2023/perf-testing/ — OpenTelemetry has

a huge suite of benchmarks for different languages.

17
https://glowroot.org/overhead.html

18
https://bytebuddy.net/#/tutorial

persistently implement their changes into the Kieker code. Addition-

ally, they used a self-implemented benchmark instead of MooBench

and did not examine how manual instrumentation performs in

comparison to AspectJ and DiSL.

Banda analyzedOpenTelemetry’s performance overhead,
19
which

resulted in a commit measuring the span processing overhead.
20

In

his work, he compared the performance of different queue types

(e.g., ArrayBlockingQueue and ConcurrentLinkedQueue) with dif-
ferent configurations. He did this only for the exporting part, i.e., he

created spans inside of a jmh benchmark. Therefore, in contrast to

this work, he focused on the factor of the data processing, whereas

we use a benchmark that includes the data creation, data processing,

and writing, and focus on the instrumentation part.

Shatnavi et al. [17] examine the monitoring overhead for three

human resources and financial management systems, including

their web UIs. The systems are built on GWT-Spring, and the in-

strumentation is done using OpenTelemetry. They evaluate the

overhead of a baseline and two usage scenarios of their systems. In

their setup, they do not find an overhead of the frontend agent as

the frontend is executed at the users’ site. Furthermore, they find an

overhead of about 3 %-4 % at one backend component and an unac-

ceptable overhead in another component; therefore, they decide to

exclude instrumentation for serialization parts of the application.

4.2 Overhead of Instrumentation
Chukri et al. [18] present the BISM (Bytecode-Level Instrumentation

for Software Monitoring) tool that allows, like DiSL, to instrument

source code. They compare the monitoring overhead with AspectJ

and DiSL using the DaCapo benchmark suite and find that BISM

creates a lower overhead than both of them. Since the tool is not

publicly available, a comparison to BISM is not possible.

Horký et al. [7] use DiSL to obtain performance measurements of

performance unit tests. While they also apply DiSL for performance

measurement, they focus on the evaluation of performance unit

test measurements and do not evaluate the overhead caused by the

instrumentation.

Horký et al. [6] examine the monitoring overhead by dynamic

instrumentation, with dynamic instrumentation implemented us-

ing DiSL. They assume that the monitoring overhead emerges from

probe presence, the (byte)code manipulation, the optimization, and

the data storage. This is different from our approach since they

inject probes dynamically, while Kieker’s probes are in the code

all the time and are enabled or disabled through variable values.

Furthermore, they use the SPEC-jbb2015 benchmark instead of

MooBench. Additionally, for their measurement, they consider

the recursive call as one method call and only send one method

call record, whereas Kieker considers each invocation of recur-

sive calls as a single method call record and sends these as single

OperationExecutionRecord. Finally, they find that dynamic in-

strumentation using dynamic injection of probes is a promising

and overhead-reducing approach for dynamic monitoring. Since

they only used DiSL as instrumentation technology, one further

work would be to use the instrumentation technologies we used in

19
https://doordash.engineering/2021/04/07/optimizing-opentelemetrys-span-

processor/

20
https://github.com/open-telemetry/opentelemetry-java/commit/

23ce8fe3929d98aaaa63ab8d5d7ab2b99dcea85b
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this work. Thereby, it could be checked whether instrumentation

overhead can be reduced further, e.g., by using Javassist.

4.3 Overhead of Instrumentation for Different
Infrastructures

Bruening et al. [1] build DynamoRIO, which enables instrumenta-

tion at the processor operation level. They compare it to Intel’s Pin

tool that also allows to instrument applications at the processor

operation level. Using SPEC CPU2006, they find that DynamoRIO

has an overhead of 21 %, whereas Pin has an overhead of 11 %.

Wasabi is an instrumentation technology for Web Assembly

(wasm) [10]. Lehmann and Pradel define it and examine its overhead

using the PolyBench benchmark suite that was originally developed

for benchmarking wasm itself. Based on the instrumented call, they

find that overhead might vary from 2% up to factor 163 when

instrumenting all assembler commands.

For Python, Eghbali and Pradel define DynaPyt for program

analysis [3]. They find that the overhead varies between 20% and

factor 16.

All experiments on other languages were done using predefined

benchmarks, whereas we used a benchmark specifically suited

for monitoring overhead. Therefore, the results are not directly

comparable. One possible future work would be to apply the probes

we created to JVM benchmarks in order to examine the overhead.

5 SUMMARY
In this work, we extended the MooBench benchmark to compare

different instrumentation technologies. We compared five instru-

mentation technologies for the instrumentation framework Kieker:

AspectJ, ByteBuddy, DiSL, Javassist, and source instrumentation.

We found that AspectJ creates the highest overhead for all configu-

rations, and source instrumentation creates lower overhead in most

configurations. For ByteBuddy, DiSL, and Javassist, one or another

is faster, depending on the configuration.

In our experiments, we focused on instrumentation that can be

enabled and disabled at runtime, thus making adaptive monitoring

possible. A static instrumentation that decides on program startup

which methods should be instrumented typically has lower over-

head. In use cases where this is possible, static probes should be

used to obtain minimal overhead.

Reducing the overhead of instrumentation remains a challenge

since available technologies change, and, therefore, the most effi-

cient instrumentation technology might change. In future work, we

plan to execute our measurements on more heterogeneous hard-

ware and repeat the measurements with future versions of underly-

ing technologies, e.g., newer JVMs or JVMs from different vendors.

Furthermore, MooBench’s current implementation focuses on

the overhead in terms of CPU time consumption to measure the

method execution duration. An extension for other aspects of the

overhead (e.g., throughput, CPU, and/or memory usage) and the

overhead of measuring different things (e.g., the overhead of jersey

for HTTP request processing) would be an important extension in

order to minimize performance measurement overhead overall.

Besides monitoring, there are other use cases for instrumenta-

tion technologies, including data serialization, logging, mocking,

and testing. In this work, we focused on performance for monitor-

ing overhead and, therefore, measured the overhead for changing

monitored methods. For other use cases, other aspects of instru-

mentation, like class creation, might be more important. Therefore,

promising future work is also the creation of an instrumentation

technology benchmark covering other use cases of instrumentation.
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