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ABSTRACT

In the modern fast paced and highly autonomous software devel-
opment teams, it’s crucial to maintain a sustainable approach to
all performance engineering activites, including performance test-
ing. The high degree of autonomy often results in teams building
their own frameworks that are not used consistently and may be
abandoned due to lack of support or integration with existing in-
frastructure, processes and tools.

To address these challenges, we present a self-service perfor-
mance testing platform based on open-source software, that sup-
ports distributed load generation, historical results storage and a
notification system to trigger alerts in Slack messenger. In addition,
it integrates with GitHub Actions to enable developers running
load tests as part of their CI/CD pipelines.

We’d like to share some of the technical solutions and the details
of the decision-making process behind the performance testing
platform in a scale-up environment, our experience in building
this platform and, most importantly, rolling it out to autonomous
development teams and onboarding them into the continuous per-
formance improvement process.
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1 INTRODUCTION

Like many other software organizations developing cloud-native
applications, we at Wolt have chosen microservices architecture

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE 24 Companion, May 7-11, 2024, London, United Kingdom

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05

https://doi.org/10.1145/3629527.3652268

242

Oleksandr Kachur
Performance & Observability Team
Wolt
Helsinki, Finland
alexander.kachur@gmail.com

because of the high degree of autonomy in software engineering
teams, that enables feature development and short time to produc-
tion [14]. The downside is that as the size of the organization grows,
it becomes exponentially more difficult to maintain operational
visibility over a system consisting of hundreds of microservices
[5, 19]. This applies not only to functional aspects, but also to non-
functional requirements such as performance and scalability. In a
traditional organization, having a centralized performance team
responsible for these properties may still work, but in a dynamic
scale-up setup, where workloads are constantly increasing and team
staffing is lagging behind, the only viable solution is to distribute the
responsibility to the development teams [5]. However, this decision
can lead to divergent approaches and tools for performance testing,
with each team implementing its own framework that works best
for its particular use case, but may be far from the "global orga-
nizational optimum" [20]. In addition, the groundwork associated
with performance testing can be seen as "less important” by teams
under pressure to develop features, resulting in poor integration
with existing infrastructure and processes [5, 19]. The potential for
such artifacts to be reused by other teams, or to be collaborated
on and pushed toward a standardized platform, remains relatively
low, exacerbating silo problems caused by team communication
overhead [5, 6, 21].

Given these constraints, the scope of a dedicated performance
team is shifting more and more toward standardized tools, devel-
opment experience, knowledge sharing, and the definition of best
practices. Clearly, there are challenges to building a standardized
performance testing platform, but there are also benefits: reducing
engineering effort by streamlined teams, eliminating code duplica-
tion, empowering teams with the necessary tools and knowledge,
and accelerating time to market [21]. Continuous performance test-
ing integrated into CI/CD processes enables shorter feedback loops
for software changes. Ongoing platform support, common tooling,
and new feature development all increase team buy-in, making
performance testing a standard practice rather than an obscure
one-off activity.

2 REQUIREMENTS

The primary purpose of the performance testing platform is to
provide a unified way to conduct repeatable end-to-end system per-
formance tests on existing cloud-native infrastructure. The need to
implement an in-house platform stems from the fact that there is no
tool-agnostic open-source implementation that meets our require-
ments. Existing platforms are often product- or company-specific
[12], making it impossible to reuse them in a different environment.
Other solutions, however, may be too generic [11] and require the
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implementation of missing components and integrations, which
can be as time-consuming as building a solution from scratch. More
specifically, the high-level requirements in our case were:

(1) Cloud-native, cost-effective and scalable solution.

(2) HTTP, WebSocket and gRPC traffic generation.

(3) Easily extensible and configurable.

(4) Support both manual tests and integrate into existing CI
pipelines.

(5) Automation for test execution and results evaluation.

(6) Long-term results storage with possibility to visualize trends.

(7) Results repeatability.

When it came to a build vs. buy decision, it was clear that no
existing Saa$ solution could meet our needs in a cost-effective way.
On the other hand, building a tool from scratch wasn’t a viable
option: different teams were already using different tools, and the
longer it would take to release the first version of the framework,
the harder it would be to migrate existing tools [5].

There are many decent open-source performance testing tools
to integrate with, and this presents the next challenge: choosing
the right tool that meets our needs, but is also suitable for most
engineering teams [3]. Wolt is a multi-language environment with
the main programming languages being Python, Scala and Kotlin,
which makes it impossible to force a tool with a specific language
(e.g. Locust), while tools that lack one (e.g. ab) or are mostly GUI
based (e.g. JMeter) and do not provide the required level of flexibil-
ity. Another hard requirement is load generation efficiency at high
throughput levels, reaching up to 10k RPS. In addition, the tool of
choice should provide decent real-time reporting that is easy to un-
derstand and use for comparison, integration capabilities for CI/CD
pipelines, observability tools and Kubernetes, and extensibility.

Considering all of the above requirements, Gatling seemed like
the optimal choice, see Table 1. Most of the engineers were already
familiar with one of the JVM languages, and the learning curve for
mastering a framework with expressive DSL built on top of Scala
was relatively flat. On the technical side, Gatling convinced us
with reasonable load generation efficiency, measurement precision,
extensibility, and a wide range of supported protocols [8].

During the early development stages of our performance test-
ing platform, we noticed that test results were showing significant
variations that can be attributed to the cloud environment itself
[9, 10]. Since we wanted to measure the actual performance charac-
teristics of our services in shared Kubernetes clusters, the only way
to improve the repeatability of the measurements was to increase
the minimum test duration to collect enough data for a statistically
meaningful measurement during each execution [18].

3 ARCHITECTURE

We now present the high-level architecture of our solution. As
shown in Figure 1, it consists of a Gatling-based load generation
application (wolt-load-test), a results storage and analysis mod-
ule (Witness), custom GitHub Actions to trigger tests from CI/CD
pipelines and Argo Workflows to schedule tests on Kubernetes.
The load test can be triggered either automatically by calling the
corresponding GitHub Action in a CI/CD pipeline or manually by a
user via the Argo WebUI or CLI. In both cases, an Argo Workflow is
triggered to start a Kubernetes job with the wolt-load-test workload
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Figure 1: High-level architecture.

in the target cluster [13]. The wolt-load-test uses a custom reporter
module to send live data to Datadog via the Statsd protocol [7].
Once a load test is complete, the framework generates a report,
persists it to an AWS S3 bucket, and sends a summary of the test
run to our custom results management module, Witness.

Witness stores the summary of the test run in MongoDB, sends
a notification to a predefined Slack channel, and provides a REST
API that can be consumed for further automated processing.

3.1 Load Generation

We use a custom wrapper around the open-source Gatling tool
for load generation, which reduces the learning curve for develop-
ers and provides features for a smoother development experience
such as standard service-to-service authentication, integration with
observability tools (e.g. logs, metrics, traces), and test data man-
agement. At its core, the framework provides load test definition
templates with multiple levels of hierarchy that can be easily com-
bined. At the top of this hierarchy is a Simulation that defines load
levels and durations across one or more Scenarios. Each Scenario
combines Requests from one or more Services into a sequential
execution chain. A Service contains basic configuration elements
such as target host, name, and description, and bundles Requests for
ease of navigation. Finally, a Request combines request templates
with test data providers - Feeders [8].

In addition to standard Gatling feeders, we also implemented cus-
tom Redis-based feeders that support more advanced data structures
such as hashmaps and that can be used to store shared or TTLed
data. This effectively reduced the amount of memory required for
wolt-load-tests with extremely large datasets, and enabled the han-
dling of auto-expiring JWT tokens used for authentication.

The wolt-load-test has its own repository and a CI/CD pipeline
that packages all load simulations in an executable JAR, creates a
Docker image around this JAR and publishes it to an AWS ECR
repository for deployment to respective environments. The load test
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dispatch is handled by Argo Workflows, an open source container-
native workflow engine for orchestrating parallel jobs on Kuber-
netes implemented as a Kubernetes CRD [1]. This engine was al-
ready in place for scheduling other types of jobs, so it was natural
to reuse the existing infrastructure.

Our primary observability platform is Datadog, but Gatling does
not integrate with it out of the box. To get around this limitation
and avoid the overhead of maintaining a fork of Gatling, we created
custom runtime monitoring for load tests by implementing a Statsd
protocol reporter using the Byte Buddy framework. Byte Buddy
is a code generation and manipulation library for creating and
modifying Java classes during the runtime of a Java application and
without the help of a compiler, which is widely used in Java Agents
of APM and observability tools [23]. To instrument the Gatling
code and make the instrumentation as lightweight as possible, we
created our own Java Agent. The agent was included in the manifest
of the executable JAR in the Launcher-Agent-Class to be launched
before the main method of the application is invoked, see Listing 1.

Listing 1: Maven configuration for loading Agent.

<transformers>
<transformer implementation="ManifestResourceTransformer">
<manifestEntries>
<Main-Class>io.gatling.app.Gatling</Main-Class>
<Premain-Class>com.wolt.Agent</Premain-Class>
<Can-Retransform-Classes>true</Can-Retransform-Classes>
<Launcher-Agent-Class>com.wolt.Agent</Launcher-Agent-Class>
</manifestEntries>
</transformer>
</transformers>

In this configuration, the JVM first attempts to invoke the agent-
main method on the agent class, as shown in Listing 2.

Listing 2: Agentmain implementation.

public static void agentmain(String args, Instrumentation inst) {

ByteBuddyAgent.install();

new AgentBuilder.Default()
.with(AgentBuilder.Listener.StreamWriting.toSystemOut()
.withTransformationsOnly())
.type(named(Transformers.STATS_ENGINE.label))
.transform(Transformers.STATS_ENGINE. transformer)
. type(named(Transformers.RESULT_PROCESSOR. label))
.transform(Transformers.RESULT_PROCESSOR. transformer)
.installOn(inst);

Our agent uses Byte Buddy Advice to transform the Gatling
classes and inject the custom code for Statsd monitoring. The high-
level workflow of the agent is shown as a sequence diagram in
Figure 2.

With this agent in place, we were able to send real-time test
data to Datadog and provide an integrated developer experience
for both load test results and system-under-test metrics, traces, and
profiling data in one place. A dashboard with live test data is shown
in Figure 3.

The results we got with the custom agent were quite promising,
and we found a few more uses for it. In our reporting pipeline,
we relied on Gatling reports, which contain statistics calculated
over the entire duration of a load test, including a ramp-up and
a steady load period. In some cases, e.g. when running tests in
CI/CD pipelines, it’s extremely beneficial to calculate statistics over
measurements taken only in the second phase, during the steady
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Figure 2: Sequence diagram for custom runtime monitoring.

load period. This filters out the cold-start effects that occur in re-
cently deployed applications, and the measurement results are more
accurate, reliable, and repeatable. We initially considered develop-
ing a custom simulation log processor, but this would have meant
rewriting the logic already present in Gatling and introducing a
potentially recurring maintenance effort. Instead, we decided to
write another ByteBuddy Advice that would skip all data before a
specified timestamp during the native Gatling report processing
step, see Listing 3.

Listing 3: Advice for skipping ramp-up period.
public class ResultHolderAdvice {
@Advice.OnMethodEnter(skipOn = Advice.OnNonDefaultValue.class)
public static boolean skipRecordProcessing(
@Advice.FieldValue("minTimestamp") Long startTime,
@Advice.Argument(value = @, readOnly = false) Object o) {

if (o
if (o

instanceof RequestRecord r) return r.start() < startTime;
instanceof GroupRecord r) return r.start() < startTime;

if (o instanceof ErrorRecord r) return r.timestamp() < startTime;
if (o instanceof UserRecord r) return r.timestamp() < startTime;
return true;

We found another useful application for the Byte Buddy Agent.
At the end of each test, wolt-load-test reports a summary of the
results to our storage service - Witness. Instead of developing and
maintaining separate scripts that are not part of the main code-
base, we decided to implement yet another Advice attached to
io.gatling.charts.report.ReportsGenerator that makes an appropri-
ate HTTP call to Witness once the report data is available.

3.2 Test Execution

In our setup, load tests are run as pods in a shared Kubernetes cluster.
This allows us to simulate service-to-service traffic in the exact same
environment used by our applications, including concurrency of
resource allocation, possible network shenanigans, etc. [19]. At
the same time, we benefit from using existing infrastructure for
configuration and secret management, resources provisioning, and
generate no additional maintenance overhead. The downside of this
approach is the potential for load generation to interfere with other
workloads - or vice versa - the common “noisy neighbor problem”
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Figure 3: Wolt-load-test Live Dashboard.

[24]. This is mitigated by applying anti-affinity rules to specific
pods, and by exposing the Kubernetes resource configuration for
the wolt-load-test pod as part of the test run configuration. The
latter enables a more granular resource management: regular CI
load tests get the bare minimum to run, while larger production-
sized workloads can allocate much more resources. Actual usage
can be monitored using the standard Kubernetes dashboards in
Datadog.

One of the alternatives we considered was an external load gen-
eration point, such as a separate Kubernetes cluster dedicated to
running load test workloads. This would allow us to exercise all
components along the external path, including firewalls, external
load balancers, etc. However, this would come at a significant cost,
both in terms of running an additional Kubernetes cluster and the
traffic between the clusters. Given the rate limiters and firewall
rules set on the external route, this initiative would require even
more effort to invest in workarounds, so it was left out of the scope
for now.

Starting a test execution with our solution is possible in several
ways. The simplest and most straightforward is to trigger an Argo
Workflow via WebUTI or CLI by specifying several run parameters,
such as simulation class name, maximum target load level, ramp-up
and test durations, and some optional custom parameters. It’s also
possible to specify how many pods should be scheduled for a given
workload - we call them shards - and how much resource should
be allocated to each shard.

In fact, the original implementation had no sharding support
and was quite simple: it just started a single pod with the desired
simulation and post-processing step.

After running this setup for some time, we realized that con-
ducting load tests from a single pod can produce results of insuf-
ficient quality in terms of connection patterns, load distribution,
and resource allocation. Since Argo Workflows also supports more
sophisticated DAGs, we split the simple two-step "run test - collect
results" job into a multi-step workflow. This new workflow included
a preparation step to transform input data and generate a common
test run ID, a fan-out step to launch multiple wolt-load-test pods
in parallel, and a post-processing step to collect and combine all
results into an aggregated test report, as shown in Figure 4. This
change not only allowed for more accurate load generation, but also
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greatly improved the scalability characteristics of our load testing
platform, making it suitable for conducting large-scale performance
tests.
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Figure 4: Argo Workflow for wolt-load-test with multiple
shards.

There is a caveat to the fan-out approach: the start times of the
pods may not be perfectly synchronized due to possible scheduling
delays in Kubernetes. However, in practice, these delays are usually
insignificant and can be ignored for most tests. To further miti-
gate this, we are considering having a dedicated pool of nodes for
running load tests and introducing a synchronization checkpoint
during test startup.

Integrating performance testing into services’ CI/CD pipelines
was as simple as writing a reusable GitHub Action that triggers the
appropriate Argo Workflows. This allowed engineering teams to
store load test configurations in their respective service-under-test
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GitHub repositories and have full control over how and when they
run load tests in CI.

A special case is the production environment: in some cases, it’s
the only environment where meaningful performance measure-
ments can be made due to size, cost, or data volume constraints
[19]. In order to support the performance testing in production, we
had to implement additional safety measures to avoid any negative
impact on the live system, to remain compliant, and to provide au-
ditability of production changes. To this end, the production Argo
Workflow instance was hardened to prevent users from running
workflows via the WebUI or CLI. Instead, a pull request to a central
GitHub repository and a config deployment is required to start any
type of load test in production. The downside of this approach, of
course, is the reduced user experience compared to the interactive
WebUI, but it was accepted by the engineering community as a
reasonable compromise.

3.3 Data Store and Feedback Loop

Upon completion of the test, a Gatling report is generated by wolt-
load-test and stored in an S3 bucket with a unique run ID. Searching
and exploring reports directly in the S3 bucket was acceptable in the
early stages of adoption with a relatively small number of reports,
but proved to be quite cumbersome in the long run. Unfortunately,
there are no established open-source results tracking tools that
would meet our needs and provide all the integrations we were
looking for. So we decided to develop our own service that would
simplify the management of test results. To reduce the resource
footprint and keep the service minimalistic, we chose Golang as
the programming language. Since the concept of test results and
the expected access patterns fit well into the document-oriented
paradigm, we chose MongoDB for the storage layer.

Listing 4: Data structure representing a test report.

type GatlingReport struct {

ID primitive.ObjectID “bson:"_id" json:"id,omitempty""

SimulationName string ~json:"simulation_name,omitempty"™

ServiceName string " json:"service_name,omitempty"”

StartedAt int64 " json:"started_at,omitempty""

Version string " json:"version,omitempty""

Tag string "~ json:"tag,omitempty""

Params SimulationParams " json:'"params,omitempty""

Stats GatlingStats ~json:"stats,omitempty""

Assertions AssertionsResult ~json:"assertions,omitempty""

The initial Witness implementation included an HTTP REST
interface to accept test result summaries with all aggregated per-
request and global statistics: response time percentiles, assertions,
request and failure rates, along with test metadata that allowed
each test run to be uniquely identified [18]. The latter included
run ID, simulation class name, load profile details such as max RPS
and duration, test start timestamp, service name, version, and tags -
see Listing 4. This information is used to group test runs by type
for historical comparisons, for example, to distinguish between
CI-triggered runs, low-, medium-, and high-load tests, and so on.

Just keeping this information in Witness and providing an HTTP
REST interface to read it didn’t add much value by itself. Not many
people outside of the performance team were using it. To get more
traction, we introduced some integrations, the most important of
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which is a Slack bot: Witness sends a notification to a predefined
Slack channel when a test starts, and another message when a test
finishes. The latter provides a brief summary and links to relevant
information, as shown in Figure 5, which can be used as an initial
entry point for detailed analysis based on the metrics, tracing, logs,
and profiling information available in Datadog.
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DataDog - Service
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Figure 5: Witness run summary in Slack.

This message also provides historical values for that specific
combination of simulation class name, load profile, and tag, as well
as assertion evaluation results - if any are defined for the simulation.
If there are any assertion failures, an additional alert message is
generated. This Slack integration has been extremely useful for
engineering teams to get an early indication of performance degra-
dation when running load tests as part of their CI/CD pipelines. As
a side effect, the Witness Slack channel now acts as a global log of
all performance tests, with quick links to all relevant details.

On the other hand, searching for messages in Slack and manually
comparing them was not ideal for evaluating long-term trends for
specific simulations. To address this, Witness was enhanced with a
Statsd integration with Datadog to plot measurement trends.

4 ORGANIZATIONAL CHALLENGES

One of the biggest challenges with the self-service performance test-
ing platform was not on the technical side of things, but rather on
the organizational side. With multiple development teams having
a different vision [5, 6, 19, 21] of how performance testing should
look like and what tools should be used, and given the high degree
of autonomy in these teams, it was not possible to force any one
solution. A much better approach was to first build a foundation by
making it as easy and straightforward to use as possible, integrating
it with existing processes and infrastructure, and providing the core
functionality common to all teams and departments.

In our case, the first step was to make the framework cloud-
native, running as a container in Kubernetes with standard infras-
tructure tools, as opposed to the more common practice of spinning
up dedicated EC2 instances for load testing. The next step was to
integrate authentication and user management, which had been an
integral part of the first release of the platform. With this feature
set as a solid foundation, we began to seek out teams that were
maintaining their own load tests and interviewed them about their
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pain points and desired improvements. By implementing these in
our platform, we were able to gradually migrate their homegrown
solutions to the common platform. Using this gradual adoption
approach and promoting the platform in internal meetings and
workshops, wolt-load-test/Witness became the de facto standard
for running load tests across the company.

A special case were teams using non-JVM based languages for
development, such as Python or Javascript. These teams were un-
derstandably reluctant to introduce an entirely new language just
for the sake of writing tests. To make it a success story, we provided
even more support and guidance to get started, more concrete refer-
ence test implementations, and finally, more thorough PR reviews.
In the end, the benefits of having great developer experience, tool-
ing support, and a fully integrated solution outweighed the burden
of setting up the project and learning the few bits and pieces of
Gatling DSL and Scala.

The best part that both product engineering and the performance
teams like about the established collaboration is that there’s no
gatekeeping or heavy reliance on the framework maintainers, since
all engineering teams own their load testing code and can run any
experiments they want. CI checks on pull requests ensure that the
platform is always in a runnable state, and for complex changes or
larger feature requests, engineering teams can always get support
from the performance team [21].

The rollout of the testing platform was accompanied by a detailed
set of guidelines and best practices for systematically addressing
performance activities. These guidelines were marketed internally
as a "Performance Engineering Framework" with actionable items
and tracking for individual teams.

The overall methodology of platform adoption at Wolt can be
described in the following steps:

(1) The performance team reaches out to development teams
that are not yet onboarded to discuss their needs. This activ-
ity can be scheduled on a regular basis for specific teams to
increase their engagement. The ultimate goal is to make de-
velopment teams proactive and ensure that they go through
this process on their own, without external requests. Alter-
natively, development teams can contact the performance
team with support requests.

(2) The two teams work through the action items in the "Perfor-
mance Engineering Framework" and determine if the service
should be enrolled for the platform. This depends primarily
on the service’s APIs, expected load and criticality, as well
as any third-party dependencies, data volumes, and overall
complexity.

If a service is deemed eligible for enrollment, the two teams

evaluate how well it fits into the existing feature set of the

platform. If any deficiencies are identified, the performance
team proceeds with the implementation of new features.

Once all requirements are met, the development team im-

plements load tests and bindings for integration into their

CI/CD process. The entire process is well documented with

many examples and detailed step-by-step instructions. If

the development team has little or no prior experience with
the platform, the performance team can support them with
thorough reviews of the changes or draft PRs.

®)

©
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(5) Once the initial implementation is complete, the develop-
ment team gains full ownership of their load tests and can
evolve them as needed. If questions arise during the evalu-
ation of the results, the performance team can assist with
root cause analysis.

In rare cases, some services may be excluded in step 2. This
usually happens for applications that do not fit well into the current
platform paradigm, such as stream processing applications [11]. For
these applications, alternative solutions can be considered, such
as canary releases or traffic mirroring in production to evaluate
performance without impacting real users [4, 22].

Ultimately, addressing these organizational challenges influ-
enced the way engineers approached load testing and helped foster
a healthy performance engineering culture, making performance
testing a standard part of the development process rather than an
obscure one-off exercise. Other notable impacts include freeing up
engineering resources by retiring existing scattered testing solu-
tions, improving the efficiency of resource allocation in the cloud
and reducing associated costs based on performance testing results,
and increasing reliability KPIs in various parts of the Wolt system.

5 RELATED WORK

At the time we started developing the platform, there were a few
similar end-to-end performance testing tools and publications. How-
ever, most of them either target a specific technology or provide a
different subset of features.

One example is the MongoDB’s Distributed Systems Infrastruc-
ture [12]. This framework is used to conduct fully automated per-
formance testing in a CI environment for MongoDB clusters, as
well as to provision and deploy the clusters. While it has some
similarities to our solution, such as the cloud-native approach and
support for both manual and automated CI benchmarks, it can only
be used to generate loads for MongoDB and integrates only with
the Evergreen CI system [16].

Dell Technology uses Jaa$S - JMeter as a Service - a performance
testing solution built on top of JMeter, Docker, Elastic and Axon -
to validate Dell servers before shipping them to customers [17]. It
provides distributed load generation for multiple workloads, includ-
ing HTTP and database traffic, live dashboards and results storage.
JaaS does not support running tests natively in Kubernetes and
does not provide automated results analysis in the feedback loop.

Theodolite is a framework for benchmarking the scalability of
cloud-native applications, running on Kubernetes. It automates the
benchmarking process by deploying the system under test (SUT)
on a Kubernetes cluster, generating load on the SUT, and collecting
performance metrics during load generation [11]. This advanced
framework is similar to our solution in many ways, and it provides
a set of out-of-the-box benchmarks for streaming processing appli-
cations such as Apache Kafka Streams and Apache Flink. For all
other types of traffic generation - including HTTP and gRPC - it
requires a custom implementation to be provided externally. Test
execution is triggered by deploying a custom resource definition
(CRD) to a Kubernetes cluster, which is similar to our approach
of using Argo Workflows to schedule load generating pods. The
distinguishing feature of Theodolite is how it runs isolated experi-
ments for different load intensities and provisioned resources for
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the SUT. It provides a set of search strategies to evaluate possible
combinations of resources and loads based on configurable service
level objectives (SLOs). To store and analyze results, it utilizes a
persistent volume, a Grafana server, and a set of Jupyter notebooks.

6 FUTURE WORK AND CONCLUSION

The platform we have presented in this submission, is still a work
in progress and there are several features and improvements in the
works.

One of these improvements touches on the currently used thresh-
old based alerts via assertions: these tend to be flaky, and we have
considered using one of the change-point detection algorithms
to introduce outlier detection and reduce false positives, e.g. by
implementing E-Divisive with Means or similar approaches [15].

In addition, we plan to collect aggregated statistics on application-
side metrics such as CPU and memory utilization, profiling and
tracing data, etc. and bundle them with the results summary to
provide resource utilization comparisons and regression analysis.

Developer experience with the platform can be further enhanced
by introducing an interactive integration with Slack, e.g. by pro-
viding an easy way to re-run a failed load test directly from the
Slack message (party implemented), or by introducing a chat bot
functionality to manage load tests without the need for the Argo
WebUI or CLL

Another improvement to the developer experience is planned
integration with the internal development portal based on Back-
stage [2]. This would allow performance measurement data to be
embedded into a service health scorecard, to track the progress on
"Performance Engineering Framework" action items and provide a
single point of entry for all interactions with the platform directly
from Backstage.

To address the scheduling delays, completely separate load gen-
eration from the system under test, and have a way to stress all
components via external endpoints, we had considered setting up
an additional Kubernetes cluster dedicated to load testing. However,
this would add significant fixed costs and maintenance overhead. At
this point, we don’t have a specific use case that would justify this
effort, but we may revisit this idea in the future. A more efficient
solution would be to have a dedicated pool of nodes for running
load tests and introduce a synchronization checkpoint.

In this submission, we have presented our solution for a self-
service performance testing platform for microservices. This is
a scalable, fully integrated performance testing framework built
from open-source components by a platform performance engi-
neering team that has been widely adopted in a large engineering
organization.
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