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ABSTRACT

We propose a novel approach for resource demand profiling of
resource-intensive monolithic workflows that consist of different
phases. Workflow profiling aims to estimate the resource demands
of workflows. Such estimates are important for workflow sched-
uling in data centers and enable the efficient use of available re-
sources. Our approach considers the workflows as black boxes, in
other words, our approach can fully rely on recorded system-level
metrics, which is the standard scenario from the perspective of data
center operators. Our approach first performs an offline analysis
of a dataset of resource consumption values of different runs of a
considered workflow. For this analysis, we apply the time series seg-
mentation algorithm PELT and the clustering algorithm DBSCAN.
This analysis extracts individual phases and the respective resource
demands. We then use the results of this analysis to train a Hidden
Markov Model in a supervised manner for online phase detection.
Furthermore, we provide a method to update the resource demand
profiles at run-time of the workflows based on this phase detection.
We test our approach on Earth Observation workflows that process
satellite data. The results imply that our approach already works in
some common scenarios. On the other hand, for cases where the
behavior of individual phases is changed too much by contention,
we identify room and next steps for improvements.
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1 INTRODUCTION

As the possibilities for collecting data increase year on year, the effi-
cient processing of these data volumes is becoming an ever-growing
challenge. A frequently used approach for processing large amounts
of data are scientific workflows. Data centers are trying to make
the best possible use of their available resources without causing a
decline in the quality of service. To achieve this, the prediction of
resource demands plays an important role, as these estimates are
the basis for workflow scheduling decisions. The simplest but often
used resource demand estimates focus on determining a worst-
case value for each workflow and do not take into account the
occurrence of different phases with different resource demands
within a workflow. On the other hand, some approaches use the
measured resource utilization history to predict the resource uti-
lization for a future time period of a specified fixed length. Even
more precise predictions are possible using approaches that predict
the resource demand of individual workflows taking into account
different phases. These approaches use unsupervised clustering
methods, such as k-means or Hidden Markov Models (HMMs). In
this paper, we present a new approach that enables supervised
training of a HMM by combining offline and online algorithms. In
this way, as few as just recorded systems-level metrics of about 30
executions are required as training data. Furthermore, we provide a
method that uses the online phase detection of the HMM to update
online the offline-created resource demand profiles.

The use of a method that predicts the resource demand of a
single workflow makes sense for monolithic workflows that have
such a high resource consumption that it is worth predicting each
individual workflow. We select as application domain Earth Obser-
vation (EO) workflows. EO workflows are scientific workflows that
process satellite data and, for example, are used to determine the
condition of forests [11], record the movement of Antarctic ice [2],
or monitor daily changes in global freshwater bodies [7]. Because
of the mentioned characteristics of EO workflows, we use them to
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Resource Demand Profiles

We understand a resource demand profile to be an estimate
of the resource demands of a specific workflow over time.
The profile indicates for the workflow under consideration
how long it is expected to run at maximum and indicates
for each point in time during this period how high the
maximum resource demand is expected to be.

evaluate our approach. We consider the workflows as black boxes,
but we assume that we have a data set of resource consumption
values available for each individual workflow.

The remainder of this workshop paper is organized as follows:
In Section 2, we summarize related work. In Section 3, we describe
our approach and discuss the algorithms we chose for the individ-
ual steps of our approach. In addition, in Section 4, we show the
performed experiments and present the results. Finally, in Section
5, we give a conclusion and discuss future work.

2 RELATED WORK

In the following, we present briefly related work regarding our
approach. Workflow prediction for sets of applications There
are many workflow prediction approaches that use classic time
series prediction methods for resource demand prediction, like
for example, [10], [14] or [13]. This is not an ideal solution in the
scenario we consider, as most time series prediction approaches
are not designed to predict changepoints of time series, but rather,
like ARIMA or ARMA for example, assume that the time series
retains its statistical properties, which is precisely not the case
after a phase transition that can be seen as a change point of the
resource consumption time series. Different papers have also been
published in this area using HMMs, such as the work by Kahn et
al. [6]. They do take phases into account, but only to the extent
that they determine the current phase and predict the resource
demands of the next phase: The approach deals only with intervals
of fixed length (for example 15-minute intervals in their paper). In
addition, their approach assigns a phase only one of five possible
CPU utilization levels. In contrast, we model sequences of phases
of arbitrary lengths and resource demands. Furthermore, we adjust
flexibly our resource demand profiles based on the observed phase
lengths of already completed phases. Another example of the use
of HMMs for workflow prediction is the work of Adel et al. [1]. In
their approach, a HMM is trained for each resource, which is then
used to predict the utilization of the individual resource, whereby
they distinguish between four different load state classes. The goal
of their approach was to use the predictions for autoscaling. The
approach was tested successfully in a simulation.

Resource demand prediction of individual applications
Gupta et al. [5] proposed a relatively simple approach to phase-
based resource demand estimation based on the k-means algorithm.
This is used to cluster the time series into phases. Subsequently, a
phase transition table can be created based on these results. During
operation, the k-means algorithm is also used to identify the current
phase and then the upcoming phases are predicted using the transi-
tion table. Furthermore, in this approach, a table is created to track
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the CPU utilization of phase combinations of different workflows
in order to make scheduling decisions based on this information.

Prats et al. [8] proposed an approach for phase-based prediction
of workflows using HMM to profile individual workloads. However,
unlike us, they train their HMM unsupervised, i.e., they also use it
to extract the phases from the time series of resource consumption
values. In contrast to this, we use deterministic algorithms to extract
the phases from these time series. With the labels created in this
way, we train the HMM in a supervised manner and use it for phase
detection and prediction.

This makes it possible to predict the phase progression of a
workflow from start to finish. This is not possible when using
the unsupervised approaches, as it is not possible to prevent two
separate segments in a run from being assigned to the same phase
type. However, this means that no start-to-finish predictions can
be derived from the phase transition tables resulting from these
segmentations, as circles are possible in the phase sequences.

3 APPROACH

As described in the introduction, the goal of our work is to create a
model for the resource demand estimation of monolithic workflows
that we regard as black boxes. We assume that a dataset of recorded
monitoring data from different example runs for a considered work-
flow type is available.

The first step is to divide the example runs from the data-set
into meaningful phases. This is done in our approach by the PELT
algorithm. Once the example runs are segmented into meaningful
phases, we have to determine which of these segments from dif-
ferent example runs belong to the same phase. It is not possible
to derive this information from the order of the phase segments,
since, for example, some phases can only occur optionally or can
be changed in their properties by contention. For this reason, we
use the DBSCAN clustering algorithm for this task. Each of the
resulting clusters represents one phase type. All identified phase
types can now be characterized in terms of their run durations and
resource demands. With this information, it is possible to estimate
the possible start and end dates of the individual phases. Based
on these estimates, a resource demand profile can be created for a
workflow, which gives at each point in time a maximum resource
demand value of all phases that could possibly be active at that
point in time.

Our approach aims to update the estimates of the start times of
the individual phases at the runtime of the individual workflow
instances. This makes it possible to significantly increase the ac-
curacy of the profiles: For example, if a phase of a workflow has a
high resource demand, the appropriate amount of resources must
be reserved for this phase for the entire time in which it may occur.
This time is usually significantly longer than the actual maximum
runtime of this phase, as we do not know exactly when this phase
actually will start. This means that in this case, the actual resource
demands of a workflow are significantly overestimated by the initial
resource demand profile. However, online phase recognition makes
it possible to narrow down the estimates of the start times of the re-
maining phases. With this information, the resource demand profile
can then be updated and the overestimation of resource demands
can be significantly reduced. For the task of online phase detection,
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we train a HMM in a supervised manner, based on this phase seg-
mentation and labeling. Our code and data artifacts are available
for reproducibility and reusability via a CodeOcean Capsule at [9].

3.1 Resource Demand Profile Creation

Our approach creates a resource demand profile at the start of a
workflow as well as at each recognized phase transition. The first
step of our resource demand profiling approach is to determine all
possible phase sequences that may follow the current phase. This
is done by evaluating the transition probability table of the HMM.

Each of these possible phase sequences is then considered in-
dividually. The minimum possible start time and the maximum
possible end time are calculated for each phase in each sequence.
We assume the minimum duration of a phase to be the mean du-
ration minus two standard deviations and the maximum length to
be the mean duration plus two standard deviations. The earliest
and the latest point in time at which a phase can possibly start in
a considered sequence is given by the sum of either the minimum
or the maximum lengths of all previous phases of this phase. Now,
it is possible to calculate for each phase sequence for any time
step all phases that can possibly occur at this time step. For each
time step, we can now calculate the maximum of all mean resource
consumption values plus two standard deviations of all phases that
may occur in this time step.

If these maximum values are calculated for all time steps of all
possible phase sequences that can follow from the current phase,
the final resource demand profile can be calculated as follows: For
each time step, we iterate through all values at this time step of
the different sequences and take the maximum value for this time
step. In this way, we can create an upper-bound estimation for the
future demand of a specific resource for the considered workflow.

4 PRELIMINARY EVALUATION

We evaluate our approach on the terrabyte platform [3, 4] hosted
at the Leibniz Rechenzentrum. As described in the introduction,
we profile EO workflows to test our approach. In the following, we
present the results of our experiments with the Multi-SAR work-
flow [12] regarding the memory consumption profile of this work-
flow. The Multi-SAR workflow processes data from radar satellites.
We consider a scenario where a set of Multi-SAR workflow in-
stances is to be executed concerning a certain memory limit. We
compare the results of ASAP (as soon as possible) scheduling of
these workflow instances in combination with different resource
demand profile types including our approach. We measure the total
execution times for the entire workflow set, i.e. the time span be-
tween the start of the first workflow instance and the end of the last
workflow instance. The following three profile types are compared
by us:

(1) Constant resource demand profiles, which contain a value
based on the maximum resource consumption of a workflow

(2) Static resource demand profiles, which are non-constant
and take into account the different resource demands of
individual phases but are not updated at the runtime of the
workflows
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(3) Dynamic resource demand profiles, which are created by
our approach and are updated at the runtime of individual
workflow instances

The static profiles correspond to the initial profiles generated by
our model but are not updated at the runtime of the workflows.

In Table 1, the exact number of time steps required to complete 20
instances of the Multi-SAR workflow that were scheduled by ASAP
in combination with the three compared resource demand profile
types. As we can see, the time required in the case of constants
and static profiles does not differ significantly in the scenario un-
der consideration. In contrast, our approach seems to significantly
speed up the execution of the workflows: In this experiment, the
workflows were completed more than 23% faster without exceeding
the resource limit.

limit | number of | profiling ap- | duration in | improvement
workflow proach time steps vs constant
instances
200 GB | 20 constant 650 -
200 GB | 20 static 641 1.38%
200 GB | 20 dynamic 499 23.23%

Table 1: The table shows the results of our experiments on
the terrabyte platform in terms of the time required for 20
workflow instances. The improvement is shown in compari-
son with the constant procedure.

The results of our experiments show that our approach works
for the memory consumption values of the Multi-SAR workflow.
However, additional experiments have shown that our approach
runs into problems if the behavior of individual phases is changed
too much by contention. This is especially the case with time series
of CPU data from multi-threaded workflows, as these time series
exhibit a high variance.

5 CONCLUSION AND FUTURE WORK

In this paper, we present an approach for phase-based workflow
profiling and online phase-detection for monolithic workflows. We
use offline time series segmentation and density-based clustering
to identify individual phases in a resource consumption value time
series dataset. Subsequently, we train a HMM for online phase de-
tection of the corresponding workflow. Furthermore, we present
a method to utilize this phase detection to adjust the generated
resource demand profiles at the runtime of the workflows. We
evaluate our approach using Earth Observation workflows. Our ex-
periments regarding memory consumption show that our approach
works well in scenarios where the behavior of individual phases is
not changed too much by contention.

However, if contention changes the behavior of individual phases
too much, our approach has problems creating a consistent phase
model. Here it seems to be a problem to call the PELT algorithm
with the same hyper-parameters for highly different time series.
Therefore, we aim to optimize our approach in this respect. In addi-
tion, further experiments are also needed, especially experiments
that combine our approach with more specialized scheduling algo-
rithms, in order to evaluate how well our approach would work in
practice.
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