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ABSTRACT
As contemporary computing infrastructures evolve to include di-
verse architectures beyond traditional von Neumann models, the
limitations of classical graph-based infrastructure and application
modelling become apparent, particularly in the context of the com-
puting continuum and its interactions with Internet of Things (IoT)
applications.

Hypergraphs prove instrumental in overcoming this obstacle
by enabling the representation of computing resources and data
sources irrespective of scale. This allows the identification of new
relationships and hidden properties, supporting the creation of a
federated, sustainable, cognitive computing continuum with shared
intelligence.

The paper introduces the HyperContinuum conceptual platform,
which provides resource and applications management algorithms
for distributed applications in conjunction with next-generation
computing continuum infrastructures based on novel von Neumann
computer architectures. The HyperContinuum platform outlines
high-order hypergraph applications representation, sustainability
optimization for von Neumann architectures, automated cogni-
tion through federated learning for IoT application execution, and
adaptive computing continuum resources provisioning.

KEYWORDS
Hypergraphs, Computing Continuum, Optimisation
ACM Reference Format:
Dragi Kimovski. 2024. Hypergraphs: Facilitating High-Order Modeling of
the Computing Continuum. In Companion of the 15th ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE ’24 Companion), May
7–11, 2024, London, United Kingdom. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3629527.3651423

1 INTRODUCTION
The digital representation of the physical universe is a complex
task that requires understanding the concept of morphism first.
Morphism is a way to describe how different parts of a shape or
structure relate to each other mathematically. It was first introduced
by the French mathematician Henri Poincare in 1895 [1]. More than
seventy years later, in 1968, the American mathematician Haskell
Curry and logician William Alvin Howard applied this concept to
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computer science. They described the Curry-Howard correspon-
dence, which shows that the proof of a computer system and the
model of computation are the same kind of mathematical object
[2]. This means we can model computer programs and systems as
directed graphs commonly used today to represent infrastructures,
data, and applications.

However, graphs have limitations when it comes to modelling
modern computing continuum infrastructures and their interactions
with Internet of Things (IoT) applications involving millions of data
sources, as they can not express the scale of the data sources or
application instances.

The problem of using graphs for modeling of distributed sys-
tems is further aggravated as researchers have recently integrated
novel computing architectures in the computing continuum beyond
the ones based on the traditional stored program von Neumann
model, where the programs and data are stored in a single operat-
ing memory [3]. These novel architectures use different production
processes, processing implementation, data representations and
distributed memory models, known as non-Von Neumann archi-
tectures. They range from power-efficient single-board Artificial
Intelligence (AI) accelerators to Quantum and Neuromorphic com-
puters [4, 5]. While these architectures hold great potential for
revolutionizing data processing and analysis in healthcare, trans-
portation, and entertainment, integrating them with established
cloud and edge computing paradigms remains challenging due to
significant architectural heterogeneity, data representation, com-
munication, and limited modelling tools. Unfortunately, extending
the computing continuum with non-Von Neumann architectures
causes multiple difficulties in application and infrastructure mod-
elling, resource provisioning and execution optimisation [6].

To address the complexity of the computing continuum and the
integration of non-Von Neumann architectures, we discuss the con-
cept of hypergraphs, powerful mathematical objects generalising
graphs [7], as potent tools for modelling. In hypergraphs, hyper-
edges can connect any number of hypervertices. Hypergraphs are
more expressive than pair-wise classical graphs, allowing us to
model the computing continuum and extreme-scale applications
as mathematical objects with higher-order, high-dimensional rela-
tions. They can represent computing resources and data sources,
regardless of their scale. Therefore, we can identify new relation-
ships between resources and data sources by abstracting from the
scale. For example, we can use a hypervertex to represent a set
of computing continuum resources and connect it with a hyper-
edge to another hypervertex representing various data sources,
regardless of their scale. By leveraging hypergraphs, we can expose
previously unknown relations between the resources and identify
hidden properties of the applications. To illustrate the benefits of
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these modelling approaches, let us discuss an example, in which
a distributed application composed of three components intercon-
nected in a specific topology is deterministically deployed on a
given computing continuum infrastructure, which, in continuation,
is connected to multiple sensing devices that monitor the environ-
ment. This implies that for modelling the system using classical
graphs, we have to consider the application, infrastructure and
sensor graphs in isolation and only afterwards to identify their
interactions manually. On the other hand, we can model the ap-
plication, infrastructure, sensing devices, and environment using
hypergraphs as hyperedges. The hypervertices model the inter-
actions between these hyperedges. This allows us to move away
from the fixed size of the application and infrastructure and models
them nevertheless of the scale (how many components, instances,
infrastructures and sensing devices are available).

Therefore, the paper proposes the HyperContinuum concep-
tual platform for sustainable and scalable distributed applications
processing over computing continuum infrastructures based on a
hypergraph (HG) representation of the data, environment, infras-
tructure, and applications.

The paper has four sections. We first survey the related work in
Section 2. Afterwards, we present the proposed conceptual archi-
tecture in Section 3 and Section 4 concludes the paper.

2 RELATEDWORK
This section details the state-of-the-art optimisation of container
orchestration systems.

2.1 Hypergraph applications modelling and
sustainability analysis

The current application analysis approaches rely on pair-wise or-
dinary graphs or state machine representations to model the ap-
plications and the infrastructure below [7]. This limits their ap-
plication for highly adaptive and heterogeneous systems, such as
the computing continuum. From a performance point of view, the
classical workflow and hardware-specific optimization approaches
brought significant improvements in distributed applications execu-
tion, specifically in performance, energy management, and financial
cost [8]. Unfortunately, these approaches primarily support large
data centers with a relatively homogeneous set of resources with
static topologies and performance profiles. They lack functionality
for supporting complex application workflows, which can change
the structure and conditional execution branches based on the in-
put parameters and workload. Concretely, ordinary workflows and
dynamics (i.e., changing the number and content of vertices and
edges) lead to high variability in computational needs [9]. There-
fore, the hypergraph and hyperworkflow models can be intelli-
gently transformed into ordinary workflows for improved perfor-
mance prediction. They demonstrate they can enable conditional
algorithm/execution branch selection and advanced auto-scaling
techniques to ensure better performance. Furthermore, energy con-
sumption is a primary component of a computing infrastructure’s
total cost of ownership. Power consumption and thermal dissipation
limit the achievable peak performance with lower cost.

2.2 Hyperworkflow optimisation and cognition
with federated learning

Federated learning techniques where multiple decentralised devices
or nodes collaborate to train a shared model while keeping data
local to the devices [10]. It can be used to optimise hyperwork-
flows by improving the accuracy and efficiency of the model while
ensuring the privacy and security of data. In hyperworkflows opti-
mization, federated learning can be applied in several ways. One
approach is to use federated learning to optimise decision-making
processes in hyperworkflows, such as determining the next best
task or predicting execution outcomes. Another approach is to use
federated learning to improve the performance of machine learning
models used in workflows. State-of-the-art methods in federated
learning for workflow optimization involve advanced techniques
such as federated transfer learning and federated reinforcement
learning. These methods address challenges such as communication
overhead, data heterogeneity, and model convergence in federated
learning systems. Existing workflow management systems such
as Pegasus [11], Apollo [12], and Askalon are centralised systems
and either do not support machine learning (ML)-based workflow
execution optimization or utilise conventional and centralized ML
approaches. In such systems, ML systems are centralised, and work-
ers periodically send local updates about the workload to a set of
parameter servers, such as Tensorflow and traditional federated
learning systems [13].

2.3 Overlay infrastructure provisioning
The workloads in the distributed computing continuum are often
machine learning and data-intensive and have high requirements
for performance; deployment strategies, e.g., offloading, computing
close to data, and parallelizing the heavy tasks, are required due
to the constraints of capacity, time constraints, and energy [14].
Therefore, infrastructure provisioning and deployment planning
algorithms have been proposed based on critical paths, graph de-
composition, and potential data traffic [15]. Most of the early work
is based on data workflows with a deterministic performance model
of the components on a set of given computing nodes. The data
processing or machine learning workloads heavily depend on the
volume and availability of the data, which results in new challenges
to apply those existing approaches [16]. Machine learning-based
infrastructure provisioning and deployment management, e.g., rein-
forcement learning, has been proposed in the past years; however,
those approaches face challenges of low robustness when the work-
load patterns change.

3 CONCEPTUAL ARCHITECTURE
This section presents a conceptual architecture of the HyperCon-
tinuum framework.

The HyperContinuum high-level framework involves two con-
ceptual layers displayed in Figure 1, creating an automated, sustain-
able loop for managing distributed applications as hypergraphs over
the computing continuum with non-Von Neumann architectures:

• Hypergraph cognition layer covering the creation, optimisa-
tion and analysis of the hypergraphs;
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Figure 1: Conceptual life cycle of the
HyperContinuum framework.

• Federation and management of non-Von Neumann infras-
tructures layer that focuses on provisioning computing con-
tinuum resources as logical overlays.

The hypergraph cognition layer facilitates creating, analysing,
and optimising the applications’ hyperworkflows comprising per-
formance and energy models and optimization techniques. Hyper-
graph creation with sustainability and performance analysis analy-
ses the distributed application’s higher-order interactions with the
environment and infrastructure and represents it as the hypergraph
(See Figure 2a and b). Unlike classical approaches for managing
distributed applications, which model the applications in isolation
from the infrastructure and environment, we generalize the applica-
tions and the infrastructure as hypergraphs [17]. The hypergraphs
allow us to model the distributed application components and all
multi-dimensional interactions, including the interactions with the
environment. This enables us to use a more realistic representa-
tion of the application and its interaction with the environment.
Thereafter, as depicted in Figure 2c, when the data patterns and
directions of the interactions between the application and environ-
ment are known, the hypergraph is transformed into a directed
acyclic hypergraph (DAH). During the transformation from HG
to DAH multiple sustainability metrics are considered, including
energy wastage estimation by creating benchmarks for energy and
performance modelling of non-Von Neumann architectures. The
execution cognition, including the hypergraph transformation and
conditional execution, utilises an intelligent distributed approach
for cognitive optimization of the application DAH considering the
possibility for conditional execution of the application branches
based on external factors, such as users’ location and cached re-
sults [18]. Furthermore, it applies an intelligent data distribution
algorithm to only store the information of the applications and
users on trusted storage infrastructures, thus complying with the
data security standards [19]. Based on the workload, environmental
parameters, input data, and scale of the systems and application,
the system can transform the relevant part of the DAH to a directed
acyclic graph (DAG) specifically tailored for the given execution
depicted in Figure 2d.

The computing continuum federation and management of non-
Von Neumann infrastructures layer focuses on the execution aspect

Figure 2: Transformation from hypergraph to ordinary
graph.

of the DAH by providing automated configuration and provision-
ing of interoperable infrastructures and deployment. Federated
infrastructure knowledge management and overlay provisioning
enable provisioning over multiple computing continuum systems.
It enables the creation of an interoperable resources overlay that
includes heterogeneous hardware resources, including non-Von
Neumann hardware, across multiple computing continuum infras-
tructures by implementing novel infrastructure knowledge man-
agement algorithms and approaches [20]. In addition, the layer
manages the deployment of the given branches of the DAH as
DAG, making it interoperable with any existing system. Lastly, it
identifies suitable storage sites to create a virtualized distributed
data federation and provides continuous infrastructure and later
application monitoring [21].

4 CONCLUSION
This paper introduces a novel conceptual framework for modelling
of the computing continuum and IoT applications as hypergraphs,
with a primary focus on non-VonNeumann systems. The limitations
of classical graph-based modeling in accommodating diverse archi-
tectures beyond traditional von Neumann models are highlighted.
The utilization of hypergraphs emerges as a crucial solution, allow-
ing for the representation of computing resources and data sources
at any scale. This innovation facilitates the identification of new
relationships and hidden properties, laying the foundation for the
development of a federated and sustainable computing continuum.

The HyperContinuum conceptual platform describes novel con-
cepts for resource and applications management algorithms tailored
for distributed applications within next-generation computing con-
tinuum infrastructures based on novel von Neumann computer
architectures. The platform introduces the concepts for high-order
hypergraph applications representation, sustainability optimization
for von Neumann architectures, automated cognition through feder-
ated learning for IoT application execution, and adaptive computing
continuum resources provisioning. Overall, the HyperContinuum
platform not only discusses the challenges posed by diverse comput-
ing infrastructures but also sets the stage for the future development
of intelligent and sustainable systems. The paper underscores the
importance of embracing hypergraph-based models in shaping the
next era of computing, marking a significant step towards creating
a more efficient and interconnected computing environment.
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