
Towards Geo-Distributed Training of ML Models in a Multi-Cloud
Environment

Chetan Phalak
TCS Research, India

chetan1.phalak@tcs.com

Dheeraj Chahal
TCS Research, India
d.chahal@tcs.com

Manju Ramesh
TCS Research, India

manju.ramesh1@tcs.com

Rekha Singhal
TCS Research, India

rekha.singhal@tcs.com

ABSTRACT
Geo-distributed (GD) training is a machine-learning technique that
uses geographically distributed data for model training. Like Feder-
ated Learning, geo-distributed machine learning can provide data
privacy and also benefit from the cloud infrastructure provided
by many vendors in multiple geographies. However, GD training
suffers from multiple challenges such as performance degradation
due to cross-geography low network bandwidth and high cost of
deployment. Additionally, all major cloud vendors such as Amazon
AWS, Microsoft Azure, and Google Cloud Platform provide services
in several geographies. Hence, finding a high-performance as well
as cost-effective cloud service provider and service for GD training
is a challenge. In this paper, we present our evaluation of the perfor-
mance and cost associated with training models in multi-cloud and
multi-geography. We evaluate multiple deployment architectures
using computing and storage services from multiple cloud vendors.
The use of serverless instances in conjunction with virtual machines
for model training is evaluated in this study. Additionally, we build
and evaluate cost models for estimating the cost of distributed train-
ing of models in a multi-cloud environment. Our study shows that
the judicious selection of cloud services and architecture might
result in cost and performance gains.

CCS CONCEPTS
•Computingmethodologies→Model verification and valida-
tion; • Computer systems organization → Cloud computing.

KEYWORDS
Geo-distributed training, multi-cloud, cost model

ACM Reference Format:
Chetan Phalak, Dheeraj Chahal, Manju Ramesh, and Rekha Singhal. 2024.
Towards Geo-Distributed Training of ML Models in a Multi-Cloud Envi-
ronment. In Companion of the 15th ACM/SPEC International Conference on
Performance Engineering (ICPE ’24 Companion), May 7–11, 2024, London,
United Kingdom. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3629527.3651422

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05. . . $15.00
https://doi.org/10.1145/3629527.3651422

1 INTRODUCTION
Many large enterprises have their data servers located across the
globe to store their customer data. The conventional way of training
models in such scenarios involves collecting data at one data center
by transmitting over a wide area network (WAN). However, the
prevailing government regulations such as the General Data Protec-
tion Regulation (GDPR) enforce user data protection by restricting
enterprises from owning data rights [33]. Federated learning [15]
(FL) has emerged as a popular solution to address the problem of
data islands while preserving data privacy.

GD training based on FL involves training models using data re-
siding in multiple geographies. The need for GD training originates
from the distribution and partitioning of data in different regions
of the globe to preserve data privacy, government regulations, com-
pliance laws, etc. One of the popular approaches for distributed
learning is FedAvg [22] which involves local model training by each
client. All participating clients share the gradients with the server
which are aggregated and communicated back to each client. Local
clients use aggregated gradients to update their models. The model
training is a compute-intensive process and requires dedicated re-
sources such as Virtual Machines (VMs) or bare-metal machines
via IaaS offering on cloud. However, GD training imposes multiple
challenges such as

• Cost escalations due to frequent model sharing across ge-
ographies. Additionally, performance degradation and fluctu-
ations are expected as communication overwhelms the low
bandwidth of WAN between participating locations [12].

• Capacity planning is a challenge due to heterogeneity in
data sizes distributed across multiple locations. An optimal
distributed training architecture and placement of resources
such as client VMs, and storage services in various geogra-
phies is necessary for performance and cost advantages.

These challenges can be mitigated by judiciously choosing cloud
resources and services available from cloud vendors. All popular
cloud vendors have unique features such as configurations and
cost models for the corresponding services provided by them [26]
resulting in diverse performance and cost for a given workload.

All cloud service providers share cost models for their services.
However, multi-cloud deployment of an application results in com-
plex cost models. A robust cost for a multi-cloud deployment can
result in estimating the expenses for multiple deployment scenarios.

As discussed above, aggregators perform computations sporadi-
cally when gradients are available from all the clients. Serverless
instances are good options for running aggregators due to pay-as-
you-go cost model. Major Cloud Service Providers (CSPs) provide
serverless platforms known as Function-as-a-Service (FaaS) such as
AWS Lambda [3], Microsoft Azure functions [23], and Google func-
tions [10]. FaaS billing is based on pay-as-you-go such that you pay

211

https://doi.org/10.1145/3629527.3651422
https://doi.org/10.1145/3629527.3651422
https://doi.org/10.1145/3629527.3651422

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Chetan Phalak, Dheeraj Chahal, Manju Ramesh and Rekha Singhal

only for the actual uses of the resources, unlike IaaS where users are
charged for running instances even if they are idle. However, there
are a few limitations of serverless instances such as (a) peer-to-peer
(P2P) communication is not possible between serverless instances
and (b) Serverless instances do not have persistent storage. These
challenges can be addressed in FaaS using cloud storage services
such as AWS S3 [4], and Google Cloud Platform (GCP) storage [9].

Further improvements in performance and cost are possible by
using a hierarchical design of aggregators [5, 19, 29]. An intermedi-
ate layer is added to aggregate the gradients of the workers from a
region or geography before performing a global aggregation.

An in-depth understanding of the performance and cost of GD
training architecture in a multi-cloud environment is essential to
build an efficient system. Also, apriori knowledge of the system
performance and cost of deployment would be advantageous for
making judicious decisions. In this work, we analyze GD training
architectures using IaaS, FaaS, and storage services from AWS, Mi-
crosoft Azure, and Google Cloud Platform (GCP). We also propose a
and cost model for estimating the performance and cost of GD train-
ing in a multi-cloud and multi-geography environment. Succinctly,
our contribution is as follows

• We evaluate multiple Geo-distributed training architectures
using IaaS and FaaS services from multiple-cloud vendors.

• We study a hierarchical architecture for aggregating the
gradients using a serverless platform. An investigation of
the impact on performance and cost due to the placement of
the aggregator in a particular geography is presented.

• We present a model for estimating the cost of training using
multiple cloud services in a multi-cloud environment.

The rest of the paper is structured as follows. We discuss related
work in Section 2. Our architecture and its evaluation are discussed
in Section 3. We discuss our cost model in Section 4. The experimen-
tal setup and analysis are presented in Sections 5 and 6 respectively
followed by the conclusion in Section 7.

2 RELATEDWORK
Geo-distributed training is being explored by researchers in both
academia and industry [1] [12]. Several distributed training frame-
works employing data parallelism, like Horovod [30] and HOG-
WILD [27], have been created.. An efficient communication library
for distributed training of deep learning (DL) models in a public
cloud cluster is presented in [31]. Most of the large-scale distributed
training frameworks are designed for data distributed within a
data center or a region. In very recent work, a framework called
Multi-FedLS is proposed for reducing execution time and manag-
ing resources on a cloud for Federated Learning applications [6].
The framework provides insights into VM instance selection in
multi-cloud but does not consider FaaS serverless platforms.

Previous research has investigated gradient aggregation tech-
niques employing parameter servers [16] and all-reduce meth-
ods [18]. A GD training framework called Cloudless-Training based
on a parameter server-based approach is presented in [32]. Another
framework known as sky computing is designed to accelerate GD
computing in a federated learning [35]. Distributed GraphLab [20]
is an extension of GraphLab [21] and directly targets asynchronous,

dynamic, graph-parallel computation in the shared-memory set-
ting, which leads to network congestion reduction in distributed
ML training. However, the mentioned frameworks focus on perfor-
mance improvement in terms of latency and resource utilization in
multiple geographies but do not consider multi-cloud environments.
The acceleration of communication in a LAN and WAN environ-
ment for geo-distributed learning is presented in [1]. However, the
work is focused on geo-distributed training using a single cloud
data center in different geographies.

A framework called COSTA [7] is designed for cost monitor-
ing and managing the workload migration to the public cloud.
The placement of parameter servers in a wide-area network for
geo-distributed machine learning is discussed in [17]. Finding the
optimal data storage service in a multi-cloud environment using
optimization algorithms is presented in [28]. To the best of our
knowledge, there is no prior study on performance comparison
cost estimation for ML training using IaaS as well as FaaS cloud
services in a multi-cloud and multiple geography environment.

Nebula-I [34] is a framework for collaboratively training DL
models over remote heterogeneous clusters specifically GPU and
NPU connected via low-bandwidth. Nebula-I successfully helps to
launch training tasks over cloud but training the general model
is still a challenge. A geo-distributed ML system called Gaia [13]
decouples the intra and inter-communication between data centers
located in various geographies enabling different communication
and consistency models for each. The advantages of multi-cloud
deployment for AI workflows have been studied in [24–26]. How-
ever, it was primarily for inference workload which had different
characteristics as compared to the long-running model training
process.

Although few frameworks have been proposed for GD training,
very little is known about the performance and cost implications
in a serverless and multi-cloud environment. We believe that this
work is a pioneering effort to study the performance and cost trade-
offs in training models using IaaS, FaaS, and storage services from
multiple cloud vendors.

3 OUR ARCHITECTURE
In this section, we discuss the proposed architecture. As shown in
Fig. 1, GD training involves following steps

• (Step 1)Workers spread over multiple geographies or regions
fetch training data from storage and train the model on a
mini-batch from the data.

• (Step 2) On completion of the mini-batch, by all participating
workers share gradients or local models with the aggregator
or parameter server.

• (Step 3) The aggregator collects the data and sends back the
aggregated gradients or model to all the workers.

• (Step 4) Workers update their models and continue with the
next mini-batch of the data.

Training in Gradient Descent (GD) can be classified into central-
ized and de-centralized architectures. In a centralized architecture,
all the workers from different geographies send their model or
gradients to one master located in one of the geographies (Fig. 2).

212

Towards Geo-Distributed Training of ML Models in a Multi-Cloud Environment ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Figure 1: GD training architecture

However, in a decentralized architecture, local updates are aggre-
gated in each geography and then also shared with the master for
global updates (Fig.2).

Figure 2: (a) Centralized architecture for GD training (b) De-
centralized architecture for GD training

We use LambdaML [14] framework developed for training small
ML/DL models in a distributed environment using a cloud server-
less platform and storage services specifically in AWS. We have
modified the original LambdaML framework to run workers on
VM for training large models as well as aggregators using server-
less instances in conjunction with storage services. Our modified
implementation of LamdaML supports a multi-cloud environment
allowing worker VMs, aggregator, and storage services to run on
AWS, Azure, and Google cloud platforms. We continue using server-
less instances for aggregation for cost savings and high scalability.

In our evaluation, we use an iterative training procedure called
FedAvg [22]. Each participating worker trains the model locally
and communicates its gradients to the serverless aggregator via
cloud storage service. The server aggregates the gradients received
from all the clients and synchronizes with all the workers in various
geographies.

Figure 3: Our architecture for multi-cloud GD training

Ourmulti-cloud GD training deployment architecture, illustrated
in Fig. 3, involves initializing VM instances across various geogra-
phies and clouds (AWS, Azure, and GCP) based on data storage ser-
vice locations and their respective CSPs. Each VM instance acts as

a worker, retrieving training data from associated cloud block stor-
age services like AWS S3, Azure storage, or GCP storage. Workers
share gradients with an aggregator via cloud storage service (GCP
storage or AWS S3) after completing one mini-batch of training
data. A serverless instance (GCP function or AWS Lambda) handles
gradient aggregation due to restrictions on persistent storage and
P2P communication in FaaS. The aggregated gradients are then
saved back into the storage service, and all workers update their
local models accordingly. This process repeats until convergence.

4 COST MODEL
In order to estimate the total cost of our architecture in a multi-
cloud environment for GD training, we developed cost model. The
total cost 𝐶 of multi-cloud geo-distributed training includes the
following components - cost for compute (𝐶𝐶𝑜𝑚𝑝𝑢𝑡𝑒) incurred by
workers and aggregator, cost for storing the gradients in storage
service (𝐶𝑆𝑡𝑜𝑟𝑎𝑔𝑒) and the cost for data transfer (𝐶𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟).
All the rates are cloud vendor-specific and vary with each region.

𝐶 = 𝐶𝐶𝑜𝑚𝑝𝑢𝑡𝑒 +𝐶𝑆𝑡𝑜𝑟𝑎𝑔𝑒 +𝐶𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (1)

4.1 Compute Cost
Compute cost (𝐶𝐶𝑜𝑚𝑝𝑢𝑡𝑒) includes cost due to workers VMs (𝐶𝐼𝑎𝑎𝑆)
and aggregator or FaaS (𝐶𝐹𝑎𝑎𝑆)

𝐶𝐶𝑜𝑚𝑝𝑢𝑡𝑒 = 𝐶𝐼𝑎𝑎𝑆 +𝐶𝐹𝑎𝑎𝑆 (2)

Compute cost for worker VMs (𝐶𝐼𝑎𝑎𝑆): The worker VMs are billed
for the entire duration for which it is used. The cost depends on
the type of machine, region, and the cloud provider. The cost for
IaaS or VMs for 𝑛 workers is given by

𝐶𝐼𝑎𝑎𝑆 =

𝑛∑︁
𝑖=1

𝑇𝑣𝑚_𝑖 ∗ 𝑅𝑣𝑚_𝑖 (3)

where 𝑇𝑣𝑚_𝑖 is the time taken for processing and 𝑅𝑣𝑚_𝑖 is the
cost rate for the 𝑖𝑡ℎ VM. Different cloud service providers offer
different configurations of virtual machines and the cost rates vary
for each cloud region. Compute cost for Aggregator (𝐶𝐹𝑎𝑎𝑆): Each
invocation of the aggregator FaaS function is billed for the memory
configured for the execution duration as follows:

𝐶𝐹𝑎𝑎𝑆 = 𝑇𝐹𝑎𝑎𝑆 ∗𝑀𝐺𝐵 ∗ 𝑅𝑚𝑒𝑚 (4)

where 𝑇𝐹𝑎𝑎𝑆 is the execution time of the function, 𝑀𝐺𝐵 is the
memory configured for the function and 𝑅𝑚𝑒𝑚 is the billing rate
(vendor and geography specific) per memory-time consumed.

4.2 Storage Cost
Storage service is billed for the size of the data stored and the
number of operations performed on the storage objects. These
operations include writes, reads, deletes, lists, etc. Each operation
has a unique billing rate.

Let𝑚 be the model or gradient size to be stored in the storage
service. Each worker writes a gradient file in the storage, and the
aggregator writes the final updated model to storage. Hence the
number of writes is 𝑛 + 1, where 𝑛 is the number of workers. As
mentioned in section 3, the aggregator gets triggeredwhen aworker

213

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Chetan Phalak, Dheeraj Chahal, Manju Ramesh and Rekha Singhal

writes local gradients to the storage. At each of these invocations of
the aggregator, it lists all files present in storage to checkwhether all
workers have written their gradients or not. Hence there are 𝑛 list
operations in each batch. The aggregator function reads the gradient
files from storage created by each of the workers. Similarly, each of
the workers reads the final aggregated gradients from the storage
resulting in 𝑛 ∗ 2 read operations. Each worker sends multiple read
requests to the storage service till the aggregated gradients are
saved by the aggregator and available for download. Although read
requests failed till the aggregated gradients were available, these
𝑙 read requests made to storage incur charges. Hence, there are
(𝑛 ∗ 2 + 𝑙) read requests billed. The aggregator deletes the 𝑛 model
files created by the workers and only the updated model remains
in the storage. Delete operations are free from all cloud providers.
The total cost for storage per iteration is given as,

𝐶𝑆𝑡𝑜𝑟𝑎𝑔𝑒 =𝑚 ∗ 𝑅𝑠𝑡 + ((𝑛 ∗ 2 + 𝑙) ∗ 𝑅𝑟𝑒𝑎𝑑𝑠) + (5)
((𝑛 + 1) ∗ 𝑅𝑤𝑟𝑖𝑡𝑒𝑠) + (𝑛 ∗ 𝑅𝑙𝑖𝑠𝑡𝑠)

where 𝑅𝑠𝑡 is the cost rate per GB per month. 𝑅𝑟𝑒𝑎𝑑𝑠 , 𝑅𝑤𝑟𝑖𝑡𝑒𝑠 , and
𝑅𝑙𝑖𝑠𝑡𝑠 are the rates of reads, writes, and lists respectively. Here Rate
is for 1000 requests and 𝑅𝑠𝑡 is the cost per GB per month.

4.3 Data transfer Cost
In a multi-cloud and multi-geography scenario, data is transferred
across clouds and geographies of various CSPs. Generally, all in-
coming traffic or ingress is free for all cloud providers. However,
all data transfers outside the cloud or geography are billed. The
data transfer is billed for the total size of the data. Based on the
cloud provider and geographies, either inter-geography or outward
traffic rates are applied for the data transfers.
Inter-cloud transfer: When traffic leaves a particular cloud to other
cloud providers or outside the internet, it is billed as per internet
egress or outward transfer rates of the source cloud geography. Cost
of Data transfer (𝐶𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟) during an iteration of multi-cloud
geo-distributed training consists of outward transfer from workers
(𝐶𝐷𝑇 _𝐼𝑎𝑎𝑆), aggregator (𝐶𝐷𝑇 _𝐹𝑎𝑎𝑆) and storage (𝐶𝐷𝑇 _𝑆𝑡𝑜𝑟𝑎𝑔𝑒).

𝐶𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 = 𝐶𝐷𝑇 _𝐼𝑎𝑎𝑆 +𝐶𝐷𝑇 _𝐹𝑎𝑎𝑆 +𝐶𝐷𝑇 _𝑆𝑡𝑜𝑟𝑎𝑔𝑒 (6)

Transfer from workers: Each worker writes the gradients of size𝑚
to the storage. The cost of data transfer for 𝑛 workers is

𝐶𝐷𝑇 _𝐼𝑎𝑎𝑆 =

𝑛∑︁
𝑖=1

𝑚 ∗ 𝑅𝑣𝑚_𝑖_𝑠𝑡 (7)

where 𝑅𝑣𝑚_𝑖_𝑠𝑡 is the cost rate of billing for transfer from the cloud
region of 𝑖𝑡ℎ VM to the storage cloud region.
Transfer from FaaS: Aggregator writes the updated model of size𝑚
to the storage

𝐶𝐷𝑇 _𝐹𝑎𝑎𝑆 =𝑚 ∗ 𝑅𝑎𝑔𝑔_𝑠𝑡 (8)

where 𝑅𝑎𝑔𝑔_𝑠𝑡 is the cost rate of billing for transfer from the cloud
region of the aggregator function to the storage cloud region.
Transfer from Storage: Aggregator reads the gradients from storage,
one gradient file (size 𝑚) per worker. Total 𝑛 gradient files are
transferred to the aggregator FaaS function. Additionally, each of

the 𝑛 workers fetches the updated gradients of size𝑚 from storage.

𝐶𝐷𝑇 _𝑆𝑡𝑜𝑟𝑎𝑔𝑒 = (𝑛 ∗𝑚 ∗ 𝑅𝑠𝑡_𝑎𝑔𝑔) + (
𝑛∑︁
𝑖=1

𝑚 ∗ 𝑅𝑠𝑡_𝑣𝑚_𝑖) (9)

where 𝑅𝑠𝑡_𝑎𝑔𝑔 is the cost rate of billing for transfer from the cloud
region of storage to the aggregator cloud region. 𝑅𝑠𝑡_𝑣𝑚_𝑖 is the
cost rate of billing for transfer from the storage cloud region to the
cloud region of 𝑖𝑡ℎ VM.

5 EXPERIMENTAL SETUP
We conducted a comprehensive study on the GD training archi-
tecture, focusing on two use cases: our in-house recommender
system (NISER) [11] using a Graph Neural Network Algorithm on
the diginetica [8] dataset and sentiment analysis employing LSTM
on the IMDB dataset. The recommender system is trained on 720K
sessions and 43K product items, generating 17MB gradients, while
sentiment analysis uses 50K movie reviews with 49MB gradients.

Models were trained in a distributed environment across Mum-
bai, London, Oregon, and Sydney. Workers ran on VMs from Ama-
zon EC2, GCP, and Azure with consistent configurations (2 cores,
8GB memory). FaaS instances from AWS Lambda and GCP func-
tion deployed gradient aggregators configured with 1GB memory.
Training data was fetched from AWS S3 storage, and gradients were
stored on S3 and GCP storage. Completion time and cost for one
mini-batch were recorded in all experiments, with cost calculated
using CSP billing services.

6 EXPERIMENTAL ANALYSIS
In this section, we perform an analysis of experiments conducted
by placing worker VMs and aggregators in various geographies
and clouds.

6.1 Data transfer bandwidths
We study the bandwidth available when data is transferred from
the worker VMs to a storage service. We consider 4 regions namely
London, Mumbai, Oregon, and Sydney resulting in a total of 16
combinations of source and destination. VMs are from AWS, Azure
and GCP. Storage services are from AWS and GCP. Hence for each
source-destination chosen, there are 6 combinations of VM-storage
service. Right side graph of Fig. 4 gives the bandwidth during an
inter-geographies transfer, while left side graph shows the band-
width when the source and destination are in the same geography.

• As expected, intra-region transfers have higher bandwidth
as compared to inter-region bandwidths

• For inter-region, the transfer to AWS S3 from any of the
three cloud worker VMs (AWS, Azure, GCP) has higher band-
widths than the transfer to GCP cloud storage (Fig. 4).

• For transfers within the same region, transfer to AWS S3 is
better than transferring to GCP cloud storage in the majority
of cases. The only exceptions are - GCP worker VM to GCP
cloud storage transfer in London and Oregon regions (Fig. 4).

214

Towards Geo-Distributed Training of ML Models in a Multi-Cloud Environment ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

Figure 4: Use case NISER: Upload bandwidth for gradient
transfer fromworker VM (AWS, Azure, GCP) in source region
to Storage service (AWS S3, GCP Cloud storage) in a same
and different geography.

6.2 Effect of cloud vendor and aggregator on
mini-batch time distribution

As previously mentioned, the total time for one mini-batch includes
worker training time, gradient uploading, aggregation time, and
aggregated gradient downloading. In this experiment, we inves-
tigate how aggregator placement and cloud vendor choice affect
each aspect of the total mini-batch time. Specifically, we conduct
experiments with all workers in GCP across four geographies: Lon-
don, Sydney, Mumbai, and Oregon. We measure the mini-batch
execution time using Google function and Google storage in each
of these locations (5a). The same experiment is then repeated with
VM workers in the AWS cloud across the same geographies, utiliz-
ing an AWS Lambda instance as an aggregator with AWS S3 storage
(5b). We observe the following

• The maximum time in a mini-batch completion is consumed
by the aggregator in waiting to receive gradients from all
the workers. This is due to the synchronization of workers
by the aggregator. This is followed by time spent in sending
the gradient from the workers to the aggregator and back.

• Minimum time per mini-batch is consumed when worker
VMs, aggregator, and associated storage reside in AWS cloud
(Fig.5b) and the maximum time is consumed when worker
VMs, aggregators, and storage are from GCP.

• While the total time to complete a mini-batch remains con-
stant within a specific cloud, the duration of each phase
varies based on aggregator placement. In Fig. 5a, although
the total mini-batch time remains around 14 seconds regard-
less of the aggregator’s region, there are significant varia-
tions in the time distribution across different stages when
the aggregator’s location is altered.

6.3 Effect of aggregator placement and cloud
vendor

In this experiment, we study the effect of aggregator placement
and the choice of cloud vendor on performance. In this set of ex-
periments, we choose worker VMs for model training in multiple
geographies but all from one cloud vendor at a time. However, the
aggregator for each of these experiments is chosen from a combina-
tion of AWS Lambda, and Google functions with AWS S3 and GCP
storage (GS). For example, Fig.6a shows data for worker VMs in
AWS distributed in four different geographies. The latency and cost

comparison is done by placing aggregator and storage combina-
tions (Lambda+S3, Lambda+GS, GCP+S3, and GCP+GS) in Mumbai,
London, Oregon, and Sydney. We observe the following:

• For both the use cases, we get minimum latency by placing
VMs in the GCP cloud and using Lambda and S3 for aggre-
gator and storage in Mumbai regions (Fig.6c and Fig.7c).

• For both the use cases, we get the minimum cost of deploy-
ment when placing all VMs in AWS and using Lambda and
S3 for aggregator and storage respectively in the Oregon
region (Fig. 6a and Fig. 7a).

• The choice of GCP function and GCP storage as aggregator
results in higher latency in most of the cases irrespective of
the cloud chosen for worker VMs.

• As expected, the use of worker VMs, aggregators, and storage
from the same CSP is cost-efficient. However, the same is
not true for the latency.

These observations can be attributed to the unique cost models
and available network bandwidth between cloud services as well
as cloud vendors.

6.4 Effect of aggregator hierarchy
In this experiment, we analyze how the aggregator’s placement
impacts the cost and performance of training models for the NISER
use case. Fig. 8 illustrates the cost and time required to complete
one mini-batch when using global and regional aggregators with
workers hosted in AWS and GCP clouds. It’s evident that having
a single global aggregator yields lower latency compared to an
architecture employing regional aggregators in each geography
alongside a global aggregator. This is mainly because, for a small
number of workers, network latency overhead outweighs aggregate
computation delays. Also, AWS Lambda instance as an aggregator
results in a lower latency as compared to the GCP function instances.
This is due to the higher compute capacity and network bandwidth
observed in AWS as compared to GCP.

In case we use multiple regional aggregators (Fig. 8), the gra-
dients are aggregated locally and transferred to storage. Hence,
the total cost of gradient transfer is due to aggregator to storage
transfer in each geography. Unlike the case of one global aggregator
where all VMs in each geography transfer data to global storage.
The difference between the overall cost for both of these deploy-
ments depends on participating geographies. For example, the cost
of using only a global aggregator is 50% higher than having regional
aggregators when the aggregator and storage are placed in London
(Fig. 8) in AWS. This is due to the reason that gradients are coming
to London aggregator and storage for aggregation from other ge-
ographies and VM egress cost is 5× and 4× higher in Sydney and
Mumbai respectively compared to London [2].

6.5 Cost Model Validation
To validate our cost model with use case NISER, we execute a multi-
regional training experiment. This involves deploying 4 workers
across distinct geographical regions utilizing AWS EC2 instances.
S3 bucket is used as an intermediate storage with Lambda serving
as an aggregator at one of the locations. Our experimentation en-
compassed 100 batches of training, during which we meticulously
track costs from AWS cost management console. Furthermore, we

215

ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom Chetan Phalak, Dheeraj Chahal, Manju Ramesh and Rekha Singhal

(a) (b) (c)

Figure 5: Use case NISER: Time split for mini-batch execution with various deployment scenarios. (a) Worker VMs (GCP),
Aggregator (GCP Functions) and Storage (GCP) (b) Worker VMs (AWS), Aggregator (AWS Lambda) and Storage (AWS S3) (c)
Worker VMs (GCP), Aggregator (AWS Lambda) and Storage (AWS S3)

(a) (b) (c)

Figure 6: Use case NISER - One mini-batch completion time comparison when worker VMs run in (a) AWS only (b) Azure
(c) GCP cloud. The aggregator (FaaS) and storage combinations are chosen from AWS and GCP and placed in one of the 4
geographies at a time in each of the three clouds

(a) Only AWS VMs (b) Only Azure VMs (c) Only GCP VMs

Figure 7: Use case Sentiment Analysis - One mini-batch completion time comparison when workers VMs run in (a) AWS only
(b) Azure (c) GCP cloud. The aggregator (FaaS) and storage combinations are chosen from AWS and GCP and placed in one of
the 4 geographies at a time in each of the three clouds

Figure 8: Use case NISER: Regional Aggregator Effect in AWS
and GCP

projected costs for an identical experimental configuration using
the cost model elucidated in section 4. Our cost model accurately
forecasts costs with a marginal error of less than 3.5%.

7 CONCLUSION
In this work, we presented our study on geo-distributed training
in a multi-cloud environment. We propose the use of serverless
functions as gradient aggregators in conjunction with storage ser-
vices from multiple CSPs. We study the performance of hierarchical
aggregator architecture. Our experiments show that the choice
of cloud vendor and placement of aggregators in geo-distributed
training has a significant effect on the performance and cost of
deployment. Additionally, we presented a cost model for estimating
the cost of one mini-batch training in a multi-cloud environment.
The proposed cost model predicts the cost of model training with a
significant accuracy. We believe that the proposed cost model can
be used for estimating the cost of a distributed training architecture
in a multi-cloud environment.

216

Towards Geo-Distributed Training of ML Models in a Multi-Cloud Environment ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom

REFERENCES
[1] Syeda Nahida Akter and Muhammad Abdullah Adnan. 2020. WeightGrad:

Geo-Distributed Data Analysis Using Quantization for Faster Convergence
and Better Accuracy. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (Virtual Event, CA, USA)
(KDD ’20). Association for Computing Machinery, New York, NY, USA, 546–556.
https://doi.org/10.1145/3394486.3403097

[2] Amazon. [n. d.]. AWS Data Transfer. Accessed Sept. 30, 2023. https://docs.aws.
amazon.com/cur/latest/userguide/cur-data-transfers-charges.html

[3] Amazon. [n. d.]. AWS Lambda. Accessed Apr. 12, 2023. https://aws.amazon.com/
lambda/

[4] Amazon. [n. d.]. AWS S3. Accessed Apr. 12, 2023. https://aws.amazon.com/s3/
[5] Christopher Briggs, Zhong Fan, and Peter Andras. 2020. Federated learning with

hierarchical clustering of local updates to improve training on non-IID data. In
2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–9.

[6] Rafaela C Brum, Maria Clicia Stelling de Castro, Luciana Arantes, Lúcia Maria
de A Drummond, and Pierre Sens. 2023. Multi-FedLS: a Framework for Cross-Silo
Federated Learning Applications on Multi-Cloud Environments. arXiv preprint
arXiv:2308.08967 (2023).

[7] Leandro Costa da Silva, Robson De Medeiros, and Nelson Rosa. 2023. COSTA: A
Cost-Driven Solution for Migrating Applications in Multi-Cloud Environments.
In Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing (Tallinn,
Estonia) (SAC ’23). Association for Computing Machinery, New York, NY, USA,
57–63. https://doi.org/10.1145/3555776.3577718

[8] GitHub. [n. d.]. Diginetica Dataset. Accessed Sept. 29, 2023. https://darel13712.
github.io/rs_datasets/Datasets/diginetica/

[9] Google. [n. d.]. Google Cloud Storage. Accessed Apr. 12, 2023. https://cloud.
google.com/storage

[10] Google. [n. d.]. Google Functions. Accessed Apr. 12, 2023. https://cloud.google.
com/functions

[11] Priyanka Gupta, Diksha Garg, Pankaj Malhotra, Lovekesh Vig, and Gautam M
Shroff. 2019. NISER: normalized item and session representations with graph
neural networks. arXiv preprint arXiv:1909.04276 (2019).

[12] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R.
Ganger, Phillip B. Gibbons, and OnurMutlu. 2017. Gaia: Geo-DistributedMachine
Learning Approaching LAN Speeds. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). USENIX Association, Boston,
MA, 629–647. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/hsieh

[13] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R
Ganger, Phillip B Gibbons, and Onur Mutlu. 2017. Gaia:{Geo-Distributed}
machine learning approaching {LAN} speeds. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). 629–647.

[14] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso, Ana Klimovic,
Ankit Singla, Wentao Wu, and Ce Zhang. 2021. Towards Demystifying Serverless
Machine Learning Training. In Proceedings of the 2021 International Conference
on Management of Data (Virtual Event, China) (SIGMOD ’21). Association for
Computing Machinery, New York, NY, USA, 857–871. https://doi.org/10.1145/
3448016.3459240

[15] Mashal Khan, Frank G. Glavin, and Matthias Nickles. 2023. Federated Learning
as a Privacy Solution - An Overview. Procedia Computer Science 217 (2023), 316–
325. https://doi.org/10.1016/j.procs.2022.12.227 4th International Conference on
Industry 4.0 and Smart Manufacturing.

[16] Mu Li, David G. Andersen, JunWoo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling Dis-
tributedMachine Learning with the Parameter Server. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14). USENIX Association,
Broomfield, CO, 583–598. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/li_mu

[17] Yongyao Li, Chenyu Fan, Xiaoning Zhang, and Yufeng Chen. 2023. Placement
of parameter server in wide area network topology for geo-distributed machine
learning. Journal of Communications and Networks (2023).

[18] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William Dally. 2018. Deep
Gradient Compression: Reducing the Communication Bandwidth for Distributed
Training. https://openreview.net/pdf?id=SkhQHMW0W

[19] Lumin Liu, Jun Zhang, S. H. Song, and Khaled B. Letaief. 2020. Client-Edge-
Cloud Hierarchical Federated Learning. In 2020 IEEE International Conference on
Communications, ICC 2020 - Proceedings. https://doi.org/10.1109/ICC40277.2020.
9148862

[20] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph M Hellerstein. 2012. Distributed graphlab: A framework for machine
learning in the cloud. arXiv preprint arXiv:1204.6078 (2012).

[21] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin,
and Joseph Hellerstein. 2014. Graphlab: A new framework for parallel machine
learning. arXiv preprint arXiv:1408.2041 (2014).

[22] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Networks
from Decentralized Data. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (Proceedings of Machine Learning Research,
Vol. 54), Aarti Singh and Jerry Zhu (Eds.). PMLR, 1273–1282. https://proceedings.
mlr.press/v54/mcmahan17a.html

[23] Microsoft. [n. d.]. Azure Functions,. Accessed Apr. 12, 2023. https://azure.
microsoft.com/en-in/services/functions/

[24] Chetan Phalak, Dheeraj Chahal, Manju Ramesh, and Rekha Singhal. 2023. mSIRM:
Cost-Efficient and SLO-aware ML Load Balancing on Fog and Multi-Cloud Net-
work. In Proceedings of the 13th Workshop on AI and Scientific Computing at Scale
using Flexible Computing. 19–26.

[25] Chetan Phalak, Dheeraj Chahal, and Rekha Singhal. 2023. SIRM: Cost efficient
and SLO aware ML prediction on Fog-Cloud Network. In 2023 15th International
Conference on COMmunication Systems & NETworkS (COMSNETS). IEEE, 825–829.

[26] Manju Ramesh, Dheeraj Chahal, and Rekha Singhal. 2023. Multicloud Deploy-
ment of AI Workflows Using FaaS and Storage Services. In 2023 15th Interna-
tional Conference on COMmunication Systems NETworkS (COMSNETS). 269–277.
https://doi.org/10.1109/COMSNETS56262.2023.10041365

[27] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:
A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In Advances
in Neural Information Processing Systems 24, Vol. 24. 693–701.

[28] Pankaj Sahu, Shubhro Roy, Mangesh Gharote, Sutapa Mondal, and Sachin Lodha.
2022. Cloud Storage and Processing Service Selection considering Tiered Pricing
and Data Regulations. In 2022 IEEE/ACM 15th International Conference on Utility
and Cloud Computing (UCC). 92–101.

[29] Mehdi Salehi Heydar Abad, E. Ozfatura, Deniz Gündüz, and Ozgur Ercetin. 2020.
Hierarchical Federated Learning ACROSS Heterogeneous Cellular Networks.
8866–8870. https://doi.org/10.1109/ICASSP40776.2020.9054634

[30] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. CoRR abs/1802.05799 (2018). arXiv:1802.05799
http://arxiv.org/abs/1802.05799

[31] Shaohuai Shi, Xianhao Zhou, Shutao Song, XingyaoWang, Zilin Zhu, Xue Huang,
Xinan Jiang, Feihu Zhou, Zhenyu Guo, Liqiang Xie, et al. 2021. Towards scalable
distributed training of deep learning on public cloud clusters. Proceedings of
Machine Learning and Systems 3 (2021), 401–412.

[32] Wenting Tan, Xiao Shi1, Cunchi Lv, and Xiaofang Zhao. 2023. Cloudless-
Training: A Framework to Improve Efficiency of Geo-Distributed ML Training.
arXiv:2303.05330 [cs.DC]

[33] Paul Voigt and Axel von dem Bussche. 2017. The EU General Data Protection
Regulation (GDPR): A Practical Guide (1st ed.). Springer Publishing Company,
Incorporated.

[34] Yang Xiang, Zhihua Wu, Weibao Gong, Siyu Ding, Xianjie Mo, Yuang Liu, Shuo-
huan Wang, Peng Liu, Yongshuai Hou, Long Li, et al. 2022. Nebula-I: A general
framework for collaboratively training deep learning models on low-bandwidth
cloud clusters. arXiv preprint arXiv:2205.09470 (2022).

[35] Jie Zhu, Shenggui Li, and Yang You. 2022. Sky Computing: Accelerating Geo-
distributed Computing in Federated Learning. arXiv preprint arXiv:2202.11836
(2022).

217

https://doi.org/10.1145/3394486.3403097
https://docs.aws.amazon.com/cur/latest/userguide/cur-data-transfers-charges.html
https://docs.aws.amazon.com/cur/latest/userguide/cur-data-transfers-charges.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/
https://doi.org/10.1145/3555776.3577718
https://darel13712.github.io/rs_datasets/Datasets/diginetica/
https://darel13712.github.io/rs_datasets/Datasets/diginetica/
https://cloud.google.com/storage
https://cloud.google.com/storage
https://cloud.google.com/functions
https://cloud.google.com/functions
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh
https://doi.org/10.1145/3448016.3459240
https://doi.org/10.1145/3448016.3459240
https://doi.org/10.1016/j.procs.2022.12.227
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://openreview.net/pdf?id=SkhQHMW0W
https://doi.org/10.1109/ICC40277.2020.9148862
https://doi.org/10.1109/ICC40277.2020.9148862
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://doi.org/10.1109/COMSNETS56262.2023.10041365
https://doi.org/10.1109/ICASSP40776.2020.9054634
https://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1802.05799
https://arxiv.org/abs/2303.05330

	Abstract
	1 Introduction
	2 Related Work
	3 Our Architecture
	4 Cost Model
	4.1 Compute Cost
	4.2 Storage Cost
	4.3 Data transfer Cost

	5 Experimental Setup
	6 Experimental Analysis
	6.1 Data transfer bandwidths
	6.2 Effect of cloud vendor and aggregator on mini-batch time distribution
	6.3 Effect of aggregator placement and cloud vendor
	6.4 Effect of aggregator hierarchy
	6.5 Cost Model Validation

	7 Conclusion
	References

