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ABSTRACT
Autotuning is an automated process that selects the best computer

program implementation from a set of candidates to improve perfor-

mance, such as execution time, when run under new circumstances,

such as new hardware. The process of autotuning generates a large

amount of performance data with multiple potential use cases,

including reproducing results, comparing included methods, and

understanding the impact of individual tuning parameters.

We propose the adoption of FAIR Principles, which stands for

Findable, Accessible, Interoperable, and Reusable, to organize the

guidelines for data sharing in autotuning research. The guidelines

aim to lessen the burden of sharing data and provide a comprehen-

sive checklist of recommendations for shared data. We illustrate

three examples that could greatly benefit from shared autotuning

data to advance the researchwithout time- and resource-demanding

data collection.

To facilitate data sharing, we have taken a community-driven

approach to define a common format for the data using a JSON

schema and provide scripts for their collection.

The proposed comprehensive guide for collecting and sharing

performance data in autotuning research can promote further ad-

vances in the field and encourage research collaboration.
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1 INTRODUCTION
Autotuning is an automated process, guided by experiments, that

selects one from among a set of candidate computer program im-

plementations to improve its execution time, energy, or another

performance characteristic [2]. An autotuner refers to a system

that implements this process and may be viewed as having two

main parts: a code generator that can produce a space of possible

implementations; and a search mechanism that explores this space,

using models or automated benchmarking experiments, to find one

that performs well. During this process, an autotuner may generate

and collect a considerable amount of performance data.

These data have value for other researchers, but making them

easily reusable is a complex task. As a focal point for thinking

through data-sharing issues, we selected a research problem that

arises in autotuning research: how to compare search methods

fairly. For instance, there may be differences in how the samples

were measured and the environment in which data were collected.

In benchmarking search methods, it is essential to know if a data set

covers the full configuration space or only some subset (as with a

grid search, for instance). As another example, it might be useful to

know whether or not so-called invalid configurations are included

in the data set and how these can be recognized.

The field of autotuning research would benefit from a thorough

discussion about how and what to collect and share so that other

researchers might be able to find, access, integrate and reuse perfor-

mance data. At the time of this writing, several autotuning systems

are under active development, and data sharing is considered a

prerequisite for better understanding which methods work best,

under what scenarios, and why.

In this paper, we outline principles, guidelines, and mechanisms

to reflect the questions about performance data sharing from the

view of developers, practitioners, and users of autotuning systems.
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It was initiated during ameeting of autotuning researchers inMarch

2022
1
.

Moreover, in collaboration with other researchers, we devised

JSON schema to define a common format for sharing the data and

a script to facilitate their collection. We suggest best practices for

sharing autotuning data specifically while avoiding being overly

prescriptive. We derive a comprehensive checklist of requirements

for shared data using the following analysis: see Checklist for FAIR

Sharing of Data in Autotuning Research or repository
2
for down-

loadable version. We consider these guidelines, the schema, the

script and the checklist to be main contributions of this paper.

Together, they provide a comprehensive view on sharing data in

autotuning, offer a standard format of data and help with the col-

lection.

The value of these data lies in multiple potential use cases. These

can be categorized as:

Reproduction and Verification:
• Reproducing results of other researchers.

• Comparing search methods [17].

• Storing “wisdom” to cache best-results in specific tuning

contexts [5].

Search Method Modifications and Code Generation:
• Using data to drive code generation, a la profile-guided opti-

mizations in compilers.

• Using data to optimize the tuning budget [11].

• Constructing models to guide tuning, either by an expert or

by a machine learning method [6].

Analysis and Insights:
• Running and developing statistical data analysis, machine

learning, and visualization methods “tuned” to autotuning.

• Understanding the impact of individual tuning parameters

and their interactions.

• Developing insights into the behavior of compilers and com-

puter architectures.

• Studying the sensitivity of programs to their inputs and

characteristics.

Curation and Benchmarking:
• Curating of entire tuning spaces used as “ground truth”.

• Curating performance with respect to various metrics, in-

cluding time, energy, storage, and accuracy.

• Making leaderboards or scoreboard reporting for specific

classes of problems.

The rest of the paper is organized as follows. First, we propose

data sharing guidelines in the context of autotuning (see Shar-

ing autotuning data following FAIR principles). We adopted the

doctrine of Findable, Accessible, Interoperable, and Reusable digi-

tal assets, also known as the FAIR Principles,
3
to organize these

guidelines [16]. Second, we outline several use cases that show

how shared performance data can stimulate research in autotuning

1
Generic Autotuning Technology for GPU Applications at the Lorentz Center, March

7–13, 2022:

https://www.lorentzcenter.nl/generic-autotuning-technology-for-gpu-applications

.html

2
https://github.com/odgaard/TuningSchema/tree/T4/checklist.md

3
Developed, coincidentally, by others during a Lorentz Center workshop in 2014

https://www.lorentzcenter.nl/jointly-designing-a-data-fairport.html

(see Use Case Examples). Third, we summarize surveyed work on

scientific data sharing and reproducibility in general, as well as

performance data benchmarking, collection, and sharing in partic-

ular (see Related Work). Fourth, we describe the challenges of data

sharing and lay out future work that would foster the discussion of

these questions and the adoption of our approach (see Challenges

and Future Work).

2 SHARING AUTOTUNING DATA
FOLLOWING FAIR PRINCIPLES

The FAIR Guiding Principles suggest that shared data will be most

useful to the broader scientific community if it is findable, accessi-

ble, interoperable, and resuable [16]. We recommend how to apply

these desiderata to autotuning datasets, focusing on what infor-

mation should be included to enable the use cases mentioned in

Introduction.

For concreteness, other researchers and we devised a JSON

schema for sharing the metadata regarding the autotuning pro-

cess and its results.
4
Moreover, we implemented a script that auto-

matically collects recommended information about software and

hardware involved in autotuning experiments.
5
Several autotuners

under active development already export their outputs in accor-

dance with JSON schema [12, 15]. Additionally, the BAT project [13,

14] supports exporting data from many Python-based tuners that

do not natively support the format.

In this section, we define the terms we use, and then we list

recommendations and guidelines by following FAIR principles.

2.1 Used nomenclature
In this proposal, we adopt the OpenML distinction between raw
datasets and run datasets.6 A raw dataset is an exhaustive search

of a benchmark over the entirety of a searched configuration space.

The dataset of an exhaustive search would contain the global opti-

mum. In some cases, even a dataset of a partial exhaustive search

of the configuration space might be useful to share.

A run dataset consists of data from runs of the search algorithm.

Tuning configurations included in it represent the path of the search

method, as it was going through the searched configuration space,

looking for well-performing configuration. This dataset might not

contain the global optimum.

In a common scenario, a user could download a raw dataset

and evaluate different search techniques using it as a surrogate

for real hardware. We refer to this as a simulated run. Each run

dataset is the full experimental result for how this search would

have performed on the configurations contained in the raw dataset.

A run dataset could also hold the results from a hardware run that

is not simulated.

A raw dataset should include information that could be used

to set up the same environment and run the benchmarks, thereby

reproducing the exhaustive search’s results. For a simulated run

dataset, authors could provide a DOI to the raw dataset and thus

4
https://github.com/odgaard/TuningSchema/tree/T4/metadata.py

5
https://github.com/odgaard/TuningSchema/blob/T4

6
https://openml.org
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simplify the metadata that they need to provide. If the authors pro-

vide a hardware run dataset, there would be additional requirements

to ensure that other researchers can reproduce the results.

We use the term kernel to refer to a unit of autotuned code. A

kernel may be a CUDA kernel, the critical routine of an application,

or an entire application if autotuned as a whole via, for instance,

tuning compiler switches.

2.2 Findable
“Findability” refers to the ability to find and filter data of interest by

other researchers. We strongly recommend that all datasets have

DOIs to make citation possible. We mention other approaches to

make datasets more available to other researchers in section Chal-

lenges and Future Work.

2.3 Accessible
“Accessibility” refers to the ability of other researchers to obtain a

copy of the dataset. We recommend using repositories like Zenodo

to host autotuning datasets. Zenodo data artifacts are citable via

DOI and available for open or closed submission with versioning

of datasets of 50 GB (or bigger if needed). We also recommend

that authors provide contact details of the person responsible for

collecting the data.

2.4 Interoperable
“Interoperability” means providing the information necessary to use

the data in another autotuner or computing environment. Doing

so implies a common data format or an otherwise completely and

precisely described format and provides information related to

invalid data points.

2.4.1 Standard Data Formats. It is a good practice to format data in

standard and widely recognized formats for easy interpretation and

integration. For example, JSON is recommended as it is universally

recognized and easy to parse.

2.4.2 Performance Measurement Recommendations. For accurate
performance measurements, it is necessary to report key details

that align with the metrics for search method comparisons. This

includes:

• Kernel experiment time, or the individual run time of kernel

configurations.

• Time spent validating the output of the kernel configuration.

• Compilation time.

• Overhead details, such as the search method overhead (inclu-

sive of model prediction time) and the autotuner’s overhead.

• The timestamp of the measurement.

2.4.3 Additional Measurements and Metrics. It is beneficial to re-

port supplementary measurements, such as power consumption,

profiling counters, and clock frequencies, whenever possible. De-

rived metrics like compute performance in GFLOP/s or energy

efficiency in GFLOPS/W can provide deeper insights. Importantly,

if there is variability in some measurements due to factors like per-

formance counter acquisition, it is crucial to describe the reasons

and mark the data accordingly.

2.4.4 Detailed Information on Tuning Parameters. Tuning param-

eters should be described in detail. This encompasses the name,

type (like int, float, string), and values or range (valid and used).

Any conditions or restrictions on these parameters, especially com-

plex ones, should be documented. It should be explicitly stated if

there is a relationship between the input problem size and tuning

parameters.

2.4.5 Handling of Invalid Data Points. Including invalid data points,
especially in full configuration space explorations, provides a com-

plete picture. Such data points should be marked based on their

type, whether due to not meeting conditions, failed compilation, or

computational issues during runtime.

2.4.6 Validation. Details about the validation of the results, includ-

ing the benchmarked kernel configurations and their correctness

criteria, must be provided.

2.4.7 Miscellaneous Recommendations. Minor details include the

notation for decimal points (dot or comma). We also advise noting

the timestamp of the experiment’s start, as the GPU’s runtime

duration might influence the performance.

2.5 Reusable
The concept of "Reusability" in the context of dataset manage-

ment extends beyond merely providing the dataset; it involves

furnishing essential and supplementary information that aids in

further research utilizing the dataset. This necessitates compre-

hensive metadata detailing both the data collection and processing

methodologies.

2.5.1 General Dataset Information. Several key elements are in-

tegral to ensuring both clarity and traceability in dataset usage.

These include providing links to associated research and data pa-

pers and offering a license recommendation, such as the Open

Data Commons Open Database License (ODbL) 1.0 (available at

[https://opendatacommons.org/licenses/odbl/1-0/]). Additionally,

it is useful to clarify any data usage restrictions and establish clear

citation guidelines for the dataset.

2.5.2 Computational Problem Description. Explaining the compu-

tational problem in lay terms would aid a broader understanding,

particularly for those not specialized in the field. This should be

complemented by an outline of common programming patterns into

which the problem might fit and a clarification regarding whether

the problem is predominantly memory-bound or compute-bound.

2.5.3 Kernel Implementation Details. Detailing the specifics of the

kernel’s programming aspects is important. This includes informa-

tion on the source code’s location and version, the programming

language employed, details of the compiler and its options, the

kernel’s grid and thread size, and specifics about the kernel’s argu-

ments.

2.5.4 Tuning Parameter Insights. An in-depth exploration of the

tuning parameters and their impacts is recommended. This should

cover the effects of commonly used tuning parameters, details of

the dataset’s configuration space, and information on the dataset’s

run data, including the search methods and models utilized.
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2.5.5 Input Data Details. Providing information on the dataset’s

inputs is suggested. This encompasses detailing the input’s size

and other relevant characteristics and whether this input data is

included within the dataset.

2.5.6 Data Collection and Processing. A comprehensive dive into

data management practices is necessary. This involves outlining the

data acquisition methods, autotuner details, techniques used in data

processing and filtering, visualization and other scripts, execution

environment details, and the software and scripts employed to

ensure reproducibility.

2.5.7 Hardware Specifications. Providing in-depth details about

the hardware utilized in the dataset’s creation and processing is

significant to ensure reproducibility. This should include informa-

tion on device details and model numbers, chipsets and memory

specifics, methods for measuring power consumption, and details

as recommended by the Supercomputing conference environment

script
7
.

2.5.8 Environment and Execution Details. Detailing the ecosystem

surrounding the dataset makes the data actually reusable. This

includes specifics on the software used, including operating systems

and compilers, details of scripts and software for dataset acquisition,

and information related to compilation and execution.

This comprehensive list of recommended shared information

about data may be considered intimidating. Therefore, we encour-

age to use the script
8
we developed in collaboration with other

researchers to automate the collection of bulk of these metadata.

We provide an actual checklist in PDF and MD format for easier

reference in the same repository and in the appendix of this paper.

3 USE CASE EXAMPLES
Shared performance data have many potential use cases; we listed

several in section Introduction. In this section, we elaborate on

three of them in greater detail. With these use cases, researchers

could aim to devise more effective and faster search methods by

better understanding current search methods or by deeper insight

into tuning spaces.

One of the main issues related to the search in autotuning is that

tuning spaces are hard to search. They are discrete, non-convex,

and show little or no locality, i.e. similar configurations usually

have vastly different performance. It means that many traditional

approaches for search in optimization space do not perform well or

they do not perform better than random search [3].

Reusing the performance data might be extremely difficult or

even impossible in all use cases without all the necessary infor-

mation. Our recommendations on sharing autotuning-related data

have been chosen with these use cases (and more) in mind.

3.1 Comparing search methods
Comparing search methods and understanding which work best

and under what scenarios facilitates the development and use of ef-

fective and fast search methods. However, fair comparison presents

7
https://submissions.supercomputing.org/?page=SampleForm&id=PaperArtifactDe

scriptionArticleEvaluationADAEAppendix&site=sc21

8
https://github.com/odgaard/TuningSchema/blob/T4

a difficult task in itself. The simplest way (although it also has its

pitfalls) is to have all the search methods in one autotuner. Then,

one could search for the best configuration of the same computa-

tional problem using the same input on the same hardware and

see which search method finds the solution the fastest. To provide

more robustness and fairness to comparison, one would repeat it

many times to deal with the stochastic nature of the search, change

out the input and hardware to deal with the sensitivity and pos-

sibly even change the parameters of the search method. Even if

we ignore the implementation phase that might be needed, prepar-

ing and executing all of these experiments is heavily time- and

resource-consuming.

Reusing performance data shared by other researchers would

save a lot of time and resources, as someone else has already done

the most consuming part. Clearly, a fair comparison of search meth-

ods implemented within different autotuners poses another set of

challenges. It might even be impossible if the shared dataset does

not include all the information needed, e.g. kernel code to ensure

that we compare the same computational problem; details about

performance measurements (whole experiment time vs. separately

noting kernel time and compilation time and overhead time) to

ensure we can account for the overhead of the search; or execution

environment (hardware and software setup details) to ensure we

compare experiments run on the same or comparable hardware.

Recently,Willemsen et al. [17] published amethod for comparing

search methods in different autotuners fairly. Our list includes all

the data needed to use their comparison metric.

3.2 Creating models to guide tuning
One of the ways to search faster is to give it domain- and problem-

specific information, for example, a performance model created

either by an expert or a machine learning technique. If trained

properly, it can assess the shape of the tuning space of the given

computational problem and guess what configuration would be the

best next step.

In order to create and train the performance model, one needs

performance data above the usual time or energy spent in the ker-

nel. Performance profiling counters, also called hardware counters,

provide more reusable information. However, their collection is

heavily time- and resource-consuming; kernel run with profiling

turned on runs much slower than usual. Thus, reusing the data

collected by others would save many resources. Apart from pro-

filing counters, detailed information about the tuning space and

computing environment is required.

Data from previous runs on other hardware or input have been

used to guide the tuning in [6]. Filipovič et al. gathered all profiling

counters themselves and explicitly noted how demanding it was.

They shared the data in [9]. Machine learning method based on

statistical analysis guides the profiling also in [10].

3.3 Analyzing data to gain insight
Gaining deeper insight into tuning spaces would help researchers

make more informed decisions while developing search methods

or creating performance models to guide the tuning. Via statis-

tical analysis, they can inspect the interactions between tuning

parameters, look at input sensitivity and learn the intricate details
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about hardware and programming models beyond often poorly

documented behaviour.

Running all the experiments "just" for statistical analysis seems

wasteful and worthless. By using shared data, one can build upon

the work of others and move the research further.

4 RELATEDWORK
Several related initiatives have been created for or could be reason-

ably used towards sharing data in autotuning research. For instance,

there are many machine learning and data science competition plat-

forms, such as Kaggle
9
or OpenML

10
, that allow researchers to

publish or share datasets. While the data sharing principles we

have proposed could be implemented using any of these platforms,

our guidelines for autotuning go beyond the typical use case of

these platforms by providing specific recommendations with regard

to what metadata to collect and how datasets can be made FAIR.

Several computer science conferences and journals are currently

trying to improve the reproducibility and replicability of results

by implementing artifact description and evaluation initiatives. We

have drawn inspiration from the questionnaire used for artifact

evaluations in SuperComputing
11

and specialized them to cover

information required to enable FAIR sharing of autotuning perfor-

mance measurement data.

In terms of autotuning research specifically, a set of initiatives by

Grigori Fursin under the names of cTuning
12
, Collective Mind [8],

Collective Knowledge (CK) [7], and work of Cho et al. [4] are prob-

ably the most closely related works. The cTuning initiative started

with a similar goal: to enable or bootstrap sharing of performance

data within the autotuning research community. Collective Mind

aimed to crowd-source such autotuning performance data for many

different computing hardware systems. It seems these systems have

inspired Collective Knowledge, a system for automating research

actions similar to CodaLab.
13

It appears that cTuning can only be

used through the Collective Knowledge workflow. It is unclear

how, where, and in what form the data or metadata is stored. The

main contribution of the initiative appears to be in automating

the experimentation workflow through the Collective Knowledge

system.

Finally, Cho et al. have proposed a JSON database to leverage

historical data for Bayesian optimization and provide CK for meta-

data collection [4].
14
. They also propose a website where users can

upload their results.
15

However, this repository is specific to their

autotuner GPTune (which is limited to integer, real, and categor-

ical types of parameters and the Bayesian optimization process),

whereas what we are proposing tries to be more general and inclu-

sive of other autotuning frameworks. The developers of GPTune

also collect additional metadata, such as software version, machine

information and evaluation data. These are publicly available, with

over 14 thousand evaluations spanning 23 problems. Capitalizing

9
https://www.kaggle.com/

10
https://www.openml.org/

11
https://submissions.supercomputing.org/?page=SampleForm&id=PaperArtifactDe

scriptionArticleEvaluationADAEAppendix&site=sc21

12
https://ctuning.org/

13
https://worksheets.codalab.org/

14
https://github.com/gptune/CK-GPTune

15
https://gptune.lbl.gov

on these data-sharing opportunities is a central goal of our more

general proposal.

5 CHALLENGES AND FUTUREWORK
Many researchers may view data sharing as a hardly feasible task -

it is undoubtedly a challenge. We have addressed a few perceived

barriers in this paper; several remain for future work.

The main challenges of data collection include that researchers

do not know what to collect and how to collect data without too

much effort. Data sharing brings additional worries: where to share

and what to share so that the data can be reused. Moreover, data col-

lection and sharing are usually not at the center of the researcher’s

attention; they are just a byproduct of the ongoing research. There-

fore, anything that makes data collection and sharing quicker and

easier can sway the decision to make public or to keep private.

In our guidelines, we address the question about what data
should be collected, both in terms of actual, primary data and ad-

ditional descriptions of the environment and processes. All these

suggestions have been made with a focus on the future reusability

of data. Having a checklist gives researchers a solid starting point,

ensuring they do not omit anything critically important.

The question of how to collect data can be divided into three

parts: primary data (measurements and tuning space details), envi-

ronment data (hardware information, code location) and process

data (details about the computational problem, search method and

data processing). Collecting the measurements and details about

tuning space in our proposed JSON format is automatic in some

autotuning frameworks. So far, KTT [12] and KernelTuner [15]

export data in this format, and BAT project [13, 14] can export data

from several Python-based tuners, most notably OpenTuner [1]. For

the environment data, we offer the script that automatically collects

most of them. The last part is the most time-consuming; details

about methods and processes need to be written down. However,

this effort pays off later, as these descriptions most probably should

also appear in the research article; they are not relevant only to

data sharing.

We address the question of where to share the data by suggesting
both the repository and licence. To make autotuning data more

readily findable, we foresee a website that could serve as a primary

entry point. For those creating data, it should provide an easy way

to submit links to their datasets and facilitate data sharing. For

those seeking data, it should offer basic filtering on the metadata

properties of the datasets to help look up by criteria of specific

interest in autotuning, such as what hardware or performance

metrics were used. For example, EOSC initiative
16

aims to provide

a venue for such websites.

We realize that even with the guidelines, a checklist and scripts

at our disposal, the feat of data sharing might seem unreachable. A

sample dataset and a sample description of data that would abide by

our guidelines ease the hurdle and make it conceivable to undertake.

We have created a simple example of shared data https://zenodo.org

/records/7212426. It contains only automatically generated data, no

detailed descriptions of all processes. Nevertheless, it can illustrate

how the shared data generated by our scripts and schemas look

like.

16
https://eosc-portal.eu/
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6 CONCLUSION
We have formulated several recommendations and guidelines to

enable sharing FAIR data with the autotuning research community

based on twelve foreseen use cases. Based on the FAIR principles

(Findable, Accessible, Interoperable, and Reusable), we recommend

specific actions the autotuning community can take, including what

metadata to collect to sustain the use cases and ultimately make the

autotuning data FAIR. We hope that the community’s refinement

and ultimate adoption of this proposal will help address data sharing

issues in autotuning. Indeed, we strongly believe such data have

high intrinsic value, not just within the autotuning community but

also for improving our overall understanding of computer system

performance.
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A CHECKLIST FOR FAIR SHARING OF DATA
IN AUTOTUNING RESEARCH

This appendix contains a checklist of recommended information to

share. Information that gets automatically collected by using our

scripts or those that are present in our proposed JSON schemas

available in repository https://github.com/odgaard/TuningSchema/

blob/T4/ is marked by �.

• General information

□ name of the dataset for easier future reference

□ DOI and link to repository

□ contact information to authors

□ how to cite

□ licence and usage restrictions

□ link to related papers

• Measurements

� kernel experiment time

� validation time

� compilation time

� overhead details (search method overhead, autotuner over-

head, model overhead)

� timestamp

� if possible, additional measurements, such as power con-

sumption, profiling counters or clock frequencies

• Tuning space

� names and types of tuning parameters

� values or ranges of tuning parameters

� conditions of tuning parameters

□ details about how different types of invalid data points are

handled

� details about how the results are validated

□ description of the effects of tuning parameters

□ details about search space, i.e. raw dataset or run dataset

• Computational problem and its implementation

□ explanation for non-experts

□ common programming patterns it fits into

□ memory- or compute-bound

□ source code location and version

� programming language used

� grid and thread size

� kernel argument details

• Search method and models

� hyperparameters of the search method

� budget

� performance metric and optimization objective function

□ details about how models were created and trained

• Environment and execution

– Input data

□ size and other relevant characteristics

□ whether it is included within the dataset

– Hardware

� details about the device and the model

� chipsets and memory specifics

□ details about how power consumption is measured

� details provided by the recommended Supercomputing

conference environment script

– Software

� software specifics, OS and compilers

� details about compilation

� details about execution environment

– Data processing

□ details about how data were acquired

□ details about how the autotuner was set and executed

□ details about data processing and filtering

□ if relevant, details about analysis and visualization

□ software and scripts used for dataset acquisition, pro-

cessing, analysis and visualization
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