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ABSTRACT
The development of serverless scientific workflows is a complex
and tedious procedure and opens several challenges in how to
compose workflow processing steps as serverless functions and
how much memory to assign to each serverless function, which
affects not only the computing resources, but also the networking
communication to the cloud storage. Merging multiple processing
steps into a single serverless function (fusion) reduces the number
of invocations, but restricts the developer to assign the maximum
required memory of all fused processing steps, which may increase
the overall costs.

In this paper, we address the aforementioned challenges for the
widely usedMontage workflow.We created three differentworkflow
implementations (fine, medium, and coarse) for two cloud providers
AWS and GCP and deployed workflow functions with different
memory assignments 135MB, 512MB, and 1GB (function deploy-
ments). Our experiments show that many Montage functions run
cheaper and faster with more memory on both providers. Conse-
quently, selecting the most cost-effective memory configuration,
as opposed to the minimal memory, resulted in a reduction of the
makespan by 67.27% on AWS and 10.93% on GCP. Applying the
same to workflow implementations with fewer functions (coarse)
led to a further reduction in the makespan by 24.98 % on AWS and
12.96% on GCP, while simultaneously reducing the total cost by
5.33 % and 1.99 %, respectively. Surprisingly, the fastest implemen-
tation was the medium implementation executed on AWS.
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1 INTRODUCTION
Serverless computing is a scalable and cost-effective execution envi-
ronment for data-intensive applications, such as scientific workflow
applications, whose complexity and scalability grow [18, 23]. Do-
main experts code processing steps as serverless functions and
orchestrate them into serverless workflows [2, 7, 9, 21, 31, 38, 45, 50].
Such workflows include complex applications from astrophysics
(e.g., Montage [5]), bioinformatics (e.g., BWA [27]), earthquake
simulations (e.g., Cybershake [29]), and many more.

Although the heterogeneous nature of federated clouds [3, 28,
34, 40, 44, 49] brings many benefits in terms of cost [14], execution
time [34, 38, 43], and scalability [22, 41], it raises several challenges.
First, developers may map the workflow processing steps in a fine-
grained manner, where each method of the workflow tasks may
be deployed as a separate serverless function or a coarse-grained
approach, in which multiple processing steps are merged in a sep-
arate serverless function. While the former approach offers the
highest level of granularity and usually minimizes the cost, the
latter usually improves the performance as it minimizes data trans-
fers and uses more memory, which often leads to higher costs. We
refer to each of these mappings as a workflow implementation. Once
the functions of the workflow are coded, they are deployed on the
selected provider and assigned with a specific amount of memory,
often known as function deployment.

In this paper, we peek behind the different Montage workflow
implementations and various function deployments to investigate
how they affect the overall cost and performance. We used two
cloud providers AWS and GCP and derived interesting conclusions.
The evaluation showed that many workflow functions benefit both
in terms of cost and performance when assigned withmorememory.
Moreover, the coarse implementations additionally reduce the over-
all cost while improving performance. Surprisingly, the medium
implementation of Montage achieved the fastest makespan on AWS.
While the workflow community [12] recommends that a workflow
orchestrator should make intelligent decisions about the placement
of workflow tasks across different sites in the continuum, our re-
sults show that the workflow orchestrator should consider fusion
and fission of the workflow tasks, as well as the assigned memory
to each newly created task.

The remaining part of the paper is organized in five sections. We
first present details for the Montage workflow and its processing
steps in Section 2. Further on, Section 3 presents various implemen-
tation and deployment challenges and how they affect performance
and cost. In Section 4, we evaluate several deployments of the Mon-
tage workflow functions and determine the cheapest and fastest
implementations on two providers AWS and GCP. In Section 5, we
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position our work compared to the related work and in Section 6,
we conclude the paper and present our plans for future work.

2 INTRODUCTION TO THE MONTAGE
WORKFLOW

Montage [5], created by the NASA/IPAC Infrared Science Archive,
is an open-source toolkit to assemble astronomical images into cus-
tom mosaics. It consists of multiple independent modules indended
to be used in a choreography that exploits the parallelization of
several processing steps. This orchestration of modules is com-
monly referred to as Montage workflow. The Montage workflow
is widely used by the scientist due to its high computation and
communication complexity [1, 2, 13, 23, 31–33].

At a high level, the processing steps to compute a mosaic in-
volve initially calculating the geometry of the mosaic, followed by
re-projecting the input images, stored in Flexible Image Transport
System (FITS) format. Subsequently, background radiation correc-
tion is applied to ensure uniformity across the mosaic. Finally, the
re-projected and background-corrected images are co-added to gen-
erate the mosaic.

The Montage toolkit implements all of these computations with
a higher granularity. Additionally, certain stages necessitate the
dynamic generation of input variables for subsequent stages. There-
fore, a naive fine-grained implementation comprises 19 stages.

(0)-(1) prepare mProjectPP I-II: Prepares the parameters for the
mProjectPP instances.

(2) mProjectPP: Performs parallel fast re-projection of the input
FITS files according to the region header file.

(3)-(6) prepare mDiffFit I-IV: Extracts the header information
from the input FITS files and computes a list of overlap-
ping images. Based on the overlaps, the parameters for the
mDiffFit and mFitPlane instances are created.

(7) mDiff: Performs parallel image difference between a pair of
re-projected images and creates a new FITS file.

(8) mFitPlane: Parallelly fits a plane to the FITS files generated
by mDiff.

(9) prepare mConcatFit: Prepares the parameters for mConcatFit.
(10) mConcatFit: Merges the multiple plane fit parameter into a

single file for mBgModel.
(11) mBgModel: Creates a background radiation model to deter-

mine a set of corrections stored in a table.
(12)-(13) prepare mBackground I-II: Prepares the corrections table

and the parameters for the mBackground instances.
(14) mBackground: Performs parallel corrections on the re-projected

input FITS files.
(15) mImgTbl: Extracts the header information from the corrected

FITS files and stores them in a table.
(16) mAdd: Co-add the corrected FITS files according to the header

region file.
(17) mShrink: Reduces the size of the co-added FITS file.
(18) mViewer: Converts the shrunk FITS file to a PNG or JPEG

format.

3 IMPLEMENTATION AND DEPLOYMENT
CHALLENGES

In this section, we discuss the challenges that developers face when
they decide which implementation of a workflow to use and which
function deployments of that implementation.

3.1 Deployment challenges
Cloud providers offer fine-grained configuration of RAM memory
to their serverless functions. Developers can deploy their functions
starting from 128MB up to tens of gigabytes, depending on the
provider. However, providers use different approaches for the CPU.
AWS claims that the CPU scales linearly as the assigned memory.
Azure configures the memory dynamically based on the need, while
GCP users can configure the CPU, as well, but are additionally
charged for the CPU resources.

Function deployments with more memory usually achieve bet-
ter performance [24] based on the Gustafson’s Law [16]. More-
over, function deployments on AWS with more than 1.5GB achieve
the maximum bandwidth of the underlying virtual machines [47],
thereby transferring data to the collocated storage faster than
the function deployments with lower memory [26, 48]. Still, the
speedup when increasing the resources are limited to the linear
speedup, often reaching the sublinear speedup.

3.2 Implementation challenges
The cost and performance of a workflow is affected by its implemen-
tations. We showed earlier that Montage comprises 19 processing
steps, some of which are nested in a parallel loop. If all processing
steps are merged in a single function, then the invocation overhead
will be minimized as the workflow calls a single function [35], but
in that case, the developers lose parallelism. Therefore, fusion of
the processing steps should be considered mainly for a sequence
of sequential processing steps. Unfortunately, providers limit the
size of the function codes, which additionally restricts the decision
how many processing steps to merge and deploy in a single func-
tion. Another challenge in the fusion of multiple processing steps
is the amount of memory that should be assigned to the equivalent
function. For instance, if a processing step 𝑝𝑠1 needs 128MB and
the subsequent processing step 𝑝𝑠2 requires 2GB, then the fused
function 𝑓12 also needs 2GB, which additionally may increase the
costs since the processing step 𝑝𝑠1 is assigned with more memory
than required.

4 EXPERIMENTAL DESIGN
In this section, we introduce our implementation and assess how
different function deployments and workflow implementations in-
fluence the cost and performance of the Montage workflow on the
two public cloud providers AWS and GCP. Our implementation
is written in Java, utilizing JDK version 17. We encapsulated each
Montage toolkit executable within a method, offering a high-level
interface for the parameters. Upon method invocation, the exe-
cutable is executed in a process. We utilized Montage version 6.0
for this study.

We devised three workflow implementations, denoted as the
fine, medium, and coarse implementations, as presented in Fig. 1.
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Figure 1: Composition of coarse,medium and fine Montage
workflow implementations, depicted with solid, dashed, and
dotted rectangles, respectively.

The fine implementation (dotted boxes in Fig. 1) focuses on di-
viding the Montage computations with the highest granularity,
achieved by segregating each method invocation into individual
functions. The medium implementation (dashed boxes in Fig. 1)
reflects the employed workflow[17] that can be executed with the
xAFCL serverless workflow management system [38]. Lastly, the
coarse implementation (solid boxes in Fig. 1) targets a minimal
granularity approach, also used by Deelman [13] and Berriman [5].
All three implementations and their compositions run the same
work and provide the same output, but their computations are
grouped differently in serverless functions, leading to 19, 12, and 7
functions for the fine, medium, and coarse implementations, respec-
tively. Note that the functions marked with gray boxes are executed
multiple times using data parallelism. Also, there are other imple-
mentations of Montage that use 9 functions [31, 32], which we did
not consider since they are very similar to the coarse implementa-
tion.

4.1 Experiment setup
We deployed the functions of all three workflow implementations
on GCP as 2nd generation functions in the europe-west1 region,
and on AWS in the eu-central-1 region, as the closest regions to
University of Innsbruck to minimize the invocation overhead [35].
Each function was deployed with 135MB, 512MB, and 1GB of
memory. The usage of 135MB was necessary on GCP due to its
minimal memory assignment being 135MiB, roughly equivalent to
135MB. Each function was configured with the maximum timeout
duration to prevent premature failure. The storage, which were
respectively hosted on Amazon S3 and Google Cloud Storage, were

collocated in the same region for both platforms, based on the
recent reports to collocate the functions closer to the data [42, 43].

To conduct these experiments we used a custom workflow ex-
ecution engine written in Python. Parallelization was achieved
using a thread pool, with the number of workers regulating the
concurrency of the execution. Due to account limitations on both
providers, we set the concurrency level to 10 and the block size
to 1. This constraint does not affect the results, as the measured
execution time reflects the function’s internal wall clock time. Thus,
factors such as invocation latency and cold starts do not influence
the measurements.

Each workflow implementation, along with its corresponding
functions deployments, underwent 5 executions like in other recent
works [10, 17, 35], and the median execution time of each func-
tion was considered. For functions invoked in parallel, the median
execution time of all parallel instances was calculated and then
extrapolated to determine the total runtime. We choose the median
over the mean to mitigate the impact of outliers.

The runtime cost is calculated based on publicly available pricing
information from AWS1 and GCP2. Because the storage is collo-
cated, file transfer expenses are confined to the number of file
accesses (downloads and uploads). Both AWS3 and GCP4 adhere to
the same pricing model in this regard.

4.2 Memory impact
We compiled the runtime and its associated cost, excluding file trans-
fer expenses, for each function and function deployment within
the fine workflow implementation into a table. Our objective is to
identify deployments that minimize runtime costs. To make the
detection easier, we computed the cost for 1 million invocations
and highlighted the cheapest deployments in bold. Dash symbols
indicate that the deployment’s memory was insufficient to execute
the function.

4.2.1 AWS. In Table 1 we depicted the results for AWS. Observ-
ing the runtimes of the functions reveals that deployments with
higher memory result in a faster execution. While the cost scales
linearly with both runtime and memory assignment, some func-
tions experience a super-linear speedup due to increased memory
assignment [39]. Consequently, deployments with higher memory
become both more cost-effective and faster compared to their lower-
spec counterparts. Functions 2, 7-8, 11, and 14 highlight that this
phenomenon is not universal but rather dependent on the behavior
of each specific function. Notable are the functions 0, 1, 6, 12-13,
15, and 17, whose deployments with even 1GB dominate the other
deployments with less memory, both in terms of runtime and cost.
Function 6 experiences the highest impact running at just 0.77%
of the time and accounting for 5.76% of the cost compared to its
deployment with 135MB. When comparing the cost-optimal func-
tion deployments to deployments with minimal feasible memory,
we observe a reduction in makespan from 434.96 s to 142.33 s, rep-
resenting a decrease of 67.27 %. Simultaneously, the cost decreased
from $11.57 to $11.19, a reduction of 3.28 %.

1https://aws.amazon.com/lambda/pricing/
2https://cloud.google.com/run/pricing
3https://aws.amazon.com/s3/pricing/
4https://cloud.google.com/storage/pricing
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Table 1: Runtime and cost for different deployments of the
fine workflow implementation on AWS.

f
Runtime (s) Cost ($) for 1M invocations

135MB 512MB 1024MB 135MB 512MB 1024MB
0 0.285 0.055 0.005 0.63 0.45 0.09
1 0.378 0.082 0.005 0.837 0.68 0.08
2 635.943 165.571 84.685 1409.00 1382.79 1412.97
3 - 18.054 7.152 - 150.78 119.33
4 - 7.559 2.187 - 63.13 36.49
5 - 4.859 0.921 - 40.58 15.36
6 11.462 2.830 0.088 25.39 23.63 1.46
7 2409.051 653.139 334.195 5337.54 5454.82 5576.06
8 613.759 159.886 80.283 1359.85 1335.32 1339.52
9 - 4.440 0.672 - 37.07 11.20
10 - 11.178 5.328 - 93.35 88.89
11 17.563 9.893 3.209 38.91 82.62 53.543
12 12.978 3.133 0.124 28.75 26.16 2.06
13 0.514 0.115 0.005 1.14 0.96 0.08
14 - 202.668 101.904 - 1692.61 1700.26
15 116.177 30.065 13.166 257.40 251.09 219.66
16 - 84.068 38.166 - 702.11 636.79
17 87.483 22.823 9.570 193.82 190.60 159.67
18 - 17.204 6.994 - 143.68 116.69

Table 2: Runtime and cost of different deployments of the
fine workflow implementation on GCP.

f
Runtime (s) Cost ($) for 1M invocations

135MB 512MB 1024MB 135MB 512MB 1024MB
0 0.04 0.005 0.006 0.43 0.91 1.63
1 0.085 0.007 0.005 0.43 0.91 1.63
2 - 210.939 115.112 - 1956.21 1916.01
3 - 8.151 5.672 - 75.31 93.34
4 - 4.568 3.57 - 42.24 58.95
5 - 1.878 1.324 - 17.45 22.92
6 1.302 0.190 0.235 6.05 1.83 4.91
7 - 247.796 158.587 - 2330.92 2770.85
8 - 84.89 54.162 - 906.47 923.61
9 1.886 1.683 1.059 8.21 15.61 18.01
10 - 25.667 18.254 - 236.03 299.68
11 - 4.516 2.811 - 42.24 47.49
12 1.384 0.361 0.304 6.05 3.67 6.55
13 0.03 0.005 0.005 0.43 0.91 1.63
14 - 214.309 126.167 - 1983.76 2112.52
15 - 8.863 6.334 - 81.73 104.80
16 - - 38.58 - - 632.12
17 - 23.909 13.083 - 220.41 214.52
18 - 10.436 6.294 - 96.43 103.17

4.2.2 GCP. Table 2 presents the results for GCP, which are com-
parable to, but not as pronounced as for AWS. Only functions 2,
12 and 17 demonstrate cheaper execution with higher memory de-
ployments. Note that the functions 12 and 17 do not experience
this effect on AWS. It is noteworthy that GCP rounds the execution
time to the nearest 100ms increment, which mitigates the speed-up
effect for short-running functions such as 0, 1, and 13. Furthermore,
GCP appears to be more restrictive with memory, as evidenced by

several functions that have sufficient memory on AWS but fail on
GCP. This is particularly apparent for function 16, which requires
a minimum of 1GB to execute. One possible reason for this dis-
crepancy may be that the ephemeral storage, used by the Montage
executables and their input files, scales with assigned memory on
GCP. In contrast on AWS, it is set by default to 512MB, which pro-
vides sufficient storage for most functions. While we still observe a
reduction in makespan comparing the cost-optimal deployments
with the minimal feasible memory deployments from 147.82 s to
131.67 s, equivalent to a 10.93 % reduction, the improvement is con-
siderably smaller compared to AWS.When we apply the same to the
runtime cost, we observe a reduction from $8.64 to $8.59, yielding
a negligible 0.05 % decrease.

4.3 Fine vs. Medium vs. Coarse
We further applied the same approach as described in Section 4.2 to
the medium and coarse implementations of the Montage workflow.

4.3.1 Cost-optimal memory configuration. The optimal function
deployments for cost are presented in Table 3, which indicates
that the optimal memory configuration for fused functions is not
necessarily equivalent to that of separated functions. Two such
examples can be seen when comparing AWS functions 7 and 8
in the medium and coarse implementations. While the separated
functions worked most cost-effectively with 512MB, the merged
function is optimal with 135MB. Conversely, for GCP, the exact
same functionswork optimally at 512MBwhen separated, but when
fused, they are optimal at 1GB. Another notable example is AWS
function 7 in both the fine and medium implementations. Despite
their equivalence, the optimal deployment shifts from 135MB in the
fine implementation to 512MB in the medium implementation. This
discrepancy may be attributed to variations in the performance of
the cloud provider. A similar effect is observed with GCP functions
15 and 18 in the fine and medium implementations. Increasing the
number of iterations may help mitigate such results in the future.

4.3.2 Makespan analysis. To assess the overall impact of the cost-
effective function deployments on the workflow implementations,
we computed the makespan of each workflow along with its asso-
ciated cost. Assuming no account-specific concurrency limit, we
determined the makespan with maximum concurrency for each
parallel function (2, 7, 8, and 14). Consequently, the makespan rep-
resents the total sum of all non-parallel function runtimes and the
maximum runtime of any parallel instances. The different workflow
implementations not only affect the optimal function deployments
but also influence the number of files that need to be transferred.
Fusing multiple sequential functions into one reduces file transfers,
thereby affecting the runtime and cost. Hence, we computed costs
both with and without factoring in file transfers. The makespan re-
sults are visually presented in Figure 2, while the cost is illustrated
in Figure 3. When analyzing the makespan on AWS, the medium
implementation proves to be the fastest, completing in 106.77 s,
which is 93.08% of the time taken by the coarse implementation
(114.70 s), and 75.02 % of the time taken by the fine implementation
(143.33 s). This result is supported by Table 3, where it is evident
that the medium implementation utilizes a function deployment
with either equal or higher memory assignment compared to the
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Table 3: Cost optimal memory configurations in MB.

f Instances
AWS GCP

fine medium coarse fine medium coarse
0 1 1024 1024 512 135 135 1351 1 1024 135
2 30 512 512 512 1024 512 512
3 1 1024

1024 512

512

512 5124 1 1024 512
5 1 1024 512
6 1 1024 512
7 141 135 512 135 512 512 10248 141 512 512 512 512
9 1 1024 1024

512

135 512

512
10 1 1024 512
11 1 135

1024
512

102412 1 1024 512
13 1 1024 135
14 30 512 512 512 512 512 512
15 1 1024 1024

1024

512 1024

102416 1 1024 1024 1024 1024
17 1 1024 1024 1024 1024
18 1 1024 1024 512 1024

fine medium coarse

110
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140

Workflow
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ak
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n
(s)
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GCP

Figure 2: Makespan of cost-optimal Montage implementa-
tions on AWS and GCP.

other implementations. The reason for the coarse implementation
being the second fastest may be attributed to the reduced number
of file transfers, coupled with the utilization of function deploy-
ments with either equal or less memory compared to the medium
implementation. The longer makespan in the fine implementation
can be explained by examining function 7, which has a deployment
of 135MB and its associated runtime in Table 1. Although executed
in parallel with 141 instances, its presence significantly impacts the
critical path, thus extending the makespan.

Contrary to AWS, on GCP, the coarse implementation executes
the fastest, completing in 114.61 s, which is 92.49% of the time
taken by the medium implementation (123.91 s) and 87.04 % of the
time taken by the fine implementation (131.67 s). While there are
minimal changes in the most cost-effective deployments between
the coarse and medium implementations, as depicted in Table 3,

fine medium coarse
8.0
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14.0

Workflow implementation

Co
st
($
)f
or

1T
in
vo

ca
tio

ns

AWS Runtime GCP Runtime
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Figure 3: Runtime cost and total cost for 1000 invocations on
AWS and GCP.

their order may primarily be attributed to the reduced number
of file transfers in the coarse implementation. The discrepancy
between the medium and the fine implementation may result from
functions 9, 13, 15, and 18, each utilizing only a quarter of the
memory compared to the other implementations.

4.3.3 Analize the cost. When evaluating runtime cost, the coarse
implementation stands out as the most economical option followed
by the fine and the medium implementations on both providers.
The primary contributing factor is once again the number of file
transfers, which allows the coarse implementation to utilize func-
tion deployments with equal or less memory compared to the other
implementations, without decisively increasing the makespan. On
AWS, the coarse implementation is 6.71% cheaper than the fine,
whereas, on GCP, the difference is less pronounced, with the coarse
implementation only saving 1.90% in costs compared to the fine
implementation. We suspect that function 7-8 primarily contribute
to this discrepancy, as AWS employs a 135MB deployment com-
pared to GCP’s 1GB and the function is executed on 141 instances
in parallel. Examining the file transfer costs demonstrates that the
coarse implementation saves 2.25 % compared to the fine and 2.02 %
compared to the medium implementation. Since both AWS and
GCP utilize identical pricing structures, this finding is applicable
to both service providers. Evaluating the total cost reveals a 5.33 %
saving on AWS when comparing the fine to the coarse and a 1.99 %
cost saving on GCP.

Overall, the coarse implementation emerges as the most eco-
nomical choice on both providers. On GCP, it even achieves Pareto
optimality, dominating both the makespan and cost. Particularly
for data-intensive workflows like Montage, bundling computations
into single serverless functions, thereby reducing the necessity for
file transfers, substantially enhances cost efficiency. However, the
fact that the fine implementation is cheaper than the medium on
both providers indicates the potential for separation with a higher
granularity at the expense of a longer makespan.
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4.4 Threats to validity
Whenever conducting experiments using public serverless providers
it is important to highlight their opacity with respect to their hard-
ware and software stack. This heterogeneity may lead to disparities
in performance, as noted by Maissen et al. [30] and Copik et al. [11].
Moreover, Container-as-a-Service (CaaS) is reported to be a cheaper
platform than FaaS for long running workflows and a hybrid ap-
proach with FaaS may circumvent service-specific limitations [8].
However, we used FaaS only since we evaluated a short-running
version of montage, which mainly benefits from FaaS. Another
contributing factor is the timeliness of the evaluation, as the cloud
provider experiences load at different points in time, which affects
performance, as reported by Kelly et al. [25]. Furthermore, our
approach relies on the cost-performance ratio currently offered
by the providers in the selected regions. It’s worth mentioning
that both AWS and GCP offer varied pricing for their services de-
pending on the region. Therefore, repeating these experiments in
different regions will likely yield divergent results. Finally, we ran
five repetitions, which may be insufficient for long-running cloud
applications, which can experience high variability in network traf-
fic [46]. However, all evaluatedMontage workflow implementations
are running for a few minutes.

5 RELATEDWORK
In this section we discuss various observations reported by the re-
searchers specifically for the Montage workflow and how serverless
functions, in general, are affected by various deployments of the
functions with different memory.

5.1 Observations for the Montage workflow
Early research was conducted by Jackson et al. [20], who evaluated
the applicability of scientific computing on AWS EC2. Humphrey et
al. [19] investigated a hybrid architecture, using in-house compu-
tational resources alongside virtual machines on Microsoft Azure.
Juve et al. [23] characterized various I/O reads and writes, peak
memory, and CPU utilization of all Montage tasks. Balis [4] imple-
mented Montage using the Hyperflow’s data-flow approach and a
high level of abstraction to run the workflow independently of the
underlying runtime environment. However, all the aforementioned
works used virtual machines as resources, in which the memory is
not fully assigned to the workflow tasks, but rather it is managed
by the guest operating system.

Hyperflow [31] evaluated that serverless implementations of
Montage are cheaper than the classical serverfull implementations
deployed on AWS EC2 virtual machines. However, the authors
also reported high variability in performance for the functions that
are nested in a parallel loop. Hautz et al. [17] reported that func-
tions run the computing part and download data faster using AWS
Lambda and S3, while GCP functions upload data faster on GCP
cloud storage. The authors used the implementation in the Abstract
Function Choreography Language [37] and executed the workflow
with the xAFCL [38] serverless workflow management system. We
used this implementation of the workflow in our evaluation as the
medium implementation.

5.2 Observations for FaaS deployments
Jonas et al. [22] reported huge delays when invokingmore functions
simultaneously. Ristov et al. [38] reported that the overall round trip
time is increased. Moreover, the spawn start affects the performance
of the functions [36].

FaaSt [34] analyzed the performance of various cloud providers
to the same data storage for BWA. Other researchers reported a
speedup when collocating the functions closer to the data rather
than moving data to the function [42, 43]. We followed the latter
approach and always collocated the functions together with the
storage within the same region.

SimLess [35] introduced a deterministic model for the overall
round trip time of serverless functions that are deployed across
multiple regions of the cloud provider. The model estimates the
overall round trip time in one region from the executions in another
region of the same function. SizeLess [15] used an ML approach to
estimate the function execution time by learning from running the
same function with 512MB. However, both approaches consider
a fixed function and workflow setup, while SimLess analyzed the
same implementation of the Montage, but still with a different
problem size.

6 CONCLUSION
In this paper, we conducted a series of experiments to investigate
how different serverless implementations of the Montage workflow
with various function deployments affect its makespan and cost.
Our investigation led to two important observations.

We first observed a superlinear speedup for some functions when
assigning them with more memory, which yielded that they dom-
inated their compatriots with less memory, both for the perfor-
mance and cost. This insight was mainly observed on AWS due to
the fine-grained pricing model down to 1ms compared to GCP’s
coarse-grained of 100ms. With this simple method, we were able
to reduce the overall makespan and cost by 67.27% and 3.28% on
AWS, respectively. On GCP, a smaller improvement was observed
with a 10.93 % reduction in makespan and a marginal reduction of
0.05 % in cost. Secondly, the coarse implementation improves both
performance and cost by 24.98% and 5.33% on AWS, and 12.96%
and 1.99 % on GCP. Surprisingly, on AWS, the medium implemen-
tation achieved the smallest makespan, further reducing the time
by 6.92% compared to the coarse implementation. However, this
improvement came at a disproportionately higher cost.

We believe that these results will be very valuable for the research
community. We will further extend our work in several directions.
We will first investigate other serverless workflows [6, 17] and with
more fine-grained memory setups. Further on, we will develop a
multi-objective scheduler that will determine the optimal setup for
the workflows across different providers, especially since our eval-
uation reported that none of the evaluated providers dominates the
other for all workflow functions. Finally, based on the decisions of
the scheduler, we will automatize the process of fusion of workflow
functions, their packaging, and deployment.
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