A Systematic Configuration Space Exploration of the Linux Kyber
1/0 Scheduler

Zebin Ren
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

ABSTRACT

NVMe SSDs have become the de-facto storage choice for high-
performance I/O-intensive workloads. Often, these workloads are
run in a shared setting, such as in multi-tenant clouds where they
share access to fast NVMe storage. In such a shared setting, ensuring
quality of service among competing workloads can be challeng-
ing. To offer performance differentiation to I/O requests, various
SSD-optimized I/O schedulers have been designed. However, many
of them are either not publicly available or are yet to be proven
in a production setting. Among the widely-tested I/O schedulers
available in the Linux kernel, it has been shown that Kyber is one
of the best-fit schedulers for SSDs due to its low CPU overheads
and high scalability. However, Kyber has various configuration op-
tions, and there is limited knowledge on how to configure Kyber to
improve applications’ performance. In this paper, we systematically
characterize how Kyber’s configurations affect the performance of
I/0 workloads and how this effect differs with different file systems
and storage devices. We report 11 observations and make 5 guide-
lines that indicate that (i) Kyber can deliver up to 26.3% lower read
latency than the None scheduler with interfering write workloads;
(i) with a file system, Kyber can be configured to deliver up to
35.9% lower read latency at the cost of 34.5%-50.3% lower write
throughput, allowing users to make a trade-off between read latency
and write throughput; and (iii) Kyber leads to performance losses
when Kyber is used with multiple throughput-bound workloads
and the SSDs is not the bottleneck. Our benchmarking scripts and
results are open-sourced and available at: https://github.com/stonet-
research/hotcloudperf24-kyber-artifact-public.

CCS CONCEPTS

« Software and its engineering — Secondary storage; Operating
systems.

KEYWORDS

Linux storage schedulers, Kyber, Measurements

ACM Reference Format:

Zebin Ren, Krijn Doekemeijer, and Animesh Trivedi. 2024. A Systematic
Configuration Space Exploration of the Linux Kyber I/O Scheduler. In Com-
panion of the 15th ACM/SPEC International Conference on Performance En-
gineering (ICPE °24 Companion), May 7-11, 2024, London, United Kingdom.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3629527.3651416

ICPE 24 Companion, May 7-11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0445-1/24/05.
https://doi.org/10.1145/3629527.3651416

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Krijn Doekemeijer
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

167

Animesh Trivedi
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

1 INTRODUCTION

Modern high-performance solid-state drives (SSDs) are able to de-
liver millions of I/O operations per second (IOPS) with single-digit
microsecond-level latency [5, 11, 12]. These devices are widely used
in multi-tenant cloud environments for their improved performance
over hard disks [30, 36, 46]. Cloud providers need to provide quality
of service (QoS) guarantees for I/O services such as throughput or
tail latency service-level objectives across multiple tenants. These
guarantees are usually achieved by scheduling I/O requests with
an I/O scheduler [29, 34].

However, existing Linux I/O schedulers designed for hard disks
do not work well with these high-performance SSDs and induce
significant CPU and scalability overheads [38, 42]. To reduce these
overheads, there are many state-of-the-art I/O schedulers designed
for SSDs [21, 24, 26, 27, 31-33, 35, 39, 41, 43]. Despite these studies
on I/O schedulers for SSDs, using these past published I/O sched-
ulers is challenging. Many of them do not have their source code
public or are written for a specific kernel version, or assume specific
hardware support from SSDs [24, 43]. Thus, users need to imple-
ment these I/O schedulers in the Linux kernel, which is not trivial,
preventing their widespread use.

Compared to these state-of-the-art 1/O schedulers, the state-of-
the-practice plug-and-play Linux I/O schedulers [7], Kyber [6], MO-
Deadline [8], and BFQ [2], are the most accessible schedulers. In our
past studies, we demonstrate that Kyber has a low CPU overhead
and high scalability on fast SSDs and recommend using Kyber on
high-performance SSDs for its low CPU overhead and high scalabil-
ity [37, 38]. We also identify that Kyber’s configuration significantly
impacts workload performance in terms of latency and throughput,
and this impact also differs between different workloads [37]. Kyber
provides two configurable parameters, read and write target latency,
allowing users to set the target latencies that Kyber should try to
deliver. The effect of Kyber’s configurations and the difference of
this effect on different workloads create challenges in using Kyber
in practice. There is no existing study on configuring Kyber for
specific software and hardware settings. Specifically, how to find an
optimized Kyber configuration with a specific setting for different
(1) workloads, (2) file systems, and (3) types of SSDs.

In our study, we cover these three aspects to show the effect of
Kyber’s configurations on its performance. Firstly, workloads have
different I/O patterns and latency/throughput requirements [23, 24].
Existing studies of Kyber focus on its CPU and latency overhead,
scalability, and its ability to deliver low latency for foreground
workloads [23, 33, 38, 42]. There is a lack of systematic studies
on how Kyber’s configurations affect the performance of inter-
fering concurrent workloads with diverse demands in terms of
expected read/write latencies and throughputs. Moreover, predict-
ing the achieved performance with the latency targets is not trivial

https://orcid.org/0000-0003-1466-0002
https://orcid.org/0009-0007-7530-4438
https://orcid.org/0000-0003-3586-7168
https://github.com/stonet-research/hotcloudperf24-kyber-artifact-public
https://github.com/stonet-research/hotcloudperf24-kyber-artifact-public
https://doi.org/10.1145/3629527.3651416
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629527.3651416

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

since the user-specified latency targets are not guaranteed by Ky-
ber. Thus, there is a gap between the target performance (Kyber’s
configurable parameters of read/write latencies) and the achieved
performance (latency and throughput), which is not obvious from
the latency targets configured. Secondly, real-world workloads usu-
ally work with file systems instead of directly accessing the storage
device. File systems change the I/O patterns of the workloads. Thus,
the effect of Kyber on workload performance with different file
systems is unknown. Thirdly, different types of SSDs have signifi-
cantly different performance properties such as peak throughput,
latency, and read/write interference behavior [23, 35]. For example,
flash-based SSDs have unpredictable performance and read/write in-
terference, but non-flash-based ultra-low latency (UUL) SSDs such
as Intel Optane SSDs have stable performance and no read/write
interference [44, 47].

In conclusion, the lack of understanding of how Kyber’s config-
urations affect the achieved performance with different workloads,
file systems, and types of SSDs makes it unclear how to optimize
Kyber in practice. Specifically, we investigate the following research
questions (RQs) around how Kyber’s configurations affect the work-
loads’ performance with different workloads, file systems and types
of SSDs:

(RQ1) How does Kyber affect the performance of workloads
when workloads run concurrently and interfere with
each other? We investigate how Kyber affects the perfor-
mance of different workloads by studying the relation be-
tween target latency and the workloads’ achieved perfor-
mance.

How to configure Kyber’s parameters for diverse types
NVMe SSDs and diverse file systems to meet workloads’
requirements? The key motivation is to find out if and how
our findings on Kyber’s configurations performance effects
can be generalized to different file systems and types of SSDs.
We also provide guidelines on how to configure Kyber to
meet the workloads’ requirements in practice with diverse
software and hardware environments.

(RQ2)

To address these questions, we conduct a first-of-its-kind sys-
tematic study of Linux’ Kyber I/O scheduler with various kinds of
workloads, file systems, and types of SSDs to establish guidelines
on how to configure Kyber in practice. Our key contributions in
this work include:

o We extensively study how Kyber with different configura-
tions affects workload performance using different combina-
tions of latency-sensitive and throughput-bound workloads
on 2 types of SSDs, resulting in 11 observations. To the best
of our knowledge, we are the first to investigate the effect of
Kyber’s configurations on workloads.

e Based on our observations, we provide 5 guidelines on how
to configure Kyber in practice with various workloads, file
systems, and types of SSDs.

e We open-source all artifacts, datasets, and scripts for this pa-
per as FAIR data sets at https://github.com/stonet-research/
hotcloudperf24-kyber-artifact-public.

168

Zebin Ren, Krijn Doekemeijer, & Animesh Trivedi

1/0 Request

Latency
histogram

@ Update

Global
read/write tokens

Dispatch

Figure 1: Architecture of the Linux Kyber 1/O scheduler.

2 BACKGROUND

NVMe SSDs. Non-volatile memory express (NVMe) is an interface
for accessing storage devices through PCle. NVMe is widely used
by high-performance SSDs. In this paper, we evaluate two kinds of
NVMe SSDs: flash-based SSDs and non-flash-based SSDs with the
3D Xpoint technology [1].

Flash-based SSDs are composed of a controller that is connected
to an array of flash chips. Each flash chip is organized in a hier-
archy of dies, planes, blocks, and pages. SSDs have high internal
parallelism as both dies and planes can operate in parallel. The
NVMe protocol [10] exposes this parallelism to workloads with
a multi-queue interface that allows SSDs to execute multiple I/O
requests in parallel. Nevertheless, to fully utilize this parallelism,
workloads need to issue multiple concurrent I/O requests to the
SSD. A challenge here is that a plane can not execute different types
of commands (read or write) in parallel. If a read is issued to a die
where a write is already being executed, the read is blocked until
the write finishes, leading to a 10-40x longer read latency. This
performance degradation is called read/write interference [17, 45].
Moreover, the physical constraints of flash chips do not allow in-
place updates or intra-block random writes. Pages in a block can
only be written sequentially, and written pages need to be erased
before they can be rewritten. Erasures happen at the unit of blocks,
not at the unit of pages. To imitate the block interface provided by
hard disks, the Flash Translation Layer (FTL) in SSD controllers
maps logical addresses provided in the block interface to physical
addresses in the flash chips. On an update, the data of the update is
written to a new page, and the old page is marked invalid. The inter-
nal operations lead to additional interference with user I/O requests,
leading to unpredictable performance. In conclusion, flash-based
SSDs have (1) high parallelism, (2) unpredictable performance, and
(3) read/write interference.

There are also non-flash-based SSDs such as Intel Optane SSDs [4],
made with 3D Xpoint technology [1, 44]. 3D Xpoint has two big
differences from flash: (1) it is byte-addressable, thus an I/O request
can be broken into smaller pieces and processed in parallel by mul-
tiple channels to achieve low latency; and (2) it supports in-place
updates and can, thus, provide stable performance without internal
translation operations needed such as flash-based SSDs [47].
Kyber Internals. Kyber is an I/O scheduler designed for fast and
highly parallel storage devices inspired by active queue manage-
ment techniques from network routing [6, 13]. Kyber prioritizes
reads over writes based on the heuristic that a process that issues a
read request usually waits for the issued read to finish. In contrast,
a process that issues a write request usually continues executing

https://github.com/stonet-research/hotcloudperf24-kyber-artifact-public
https://github.com/stonet-research/hotcloudperf24-kyber-artifact-public

A Systematic Configuration Space Exploration of the Linux Kyber 1/0 Scheduler

Table 1: Benchmarking environment.

Component Configuration

CPU Single socket Intel(R) Xeon(R) Silver 4210R CPU 10 cores @ 2.40GHz, Hyper-
threading disabled, Turbo disabled.

Memory 256 GiB, DDR4.

Storage Samsung 980 PRO 1 TiB (Flash-based SSD); Intel SSD 900P (Optane SSD)

Software Ubuntu 20.04 with Linux kernel v6.3.8, fio v3.35.

without waiting for the write to finish. Figure 1 shows the architec-
ture of the Linux Kyber I/O scheduler. Kyber maintains two queues
for each CPU core, one for reads and one for writes. Kyber inserts
I/O requests into the queues on the same core where the application
issued the requests. These read/write queues are associated with
a global token bucket. These tokens are used to limit the number
of concurrent requests issued to the SSD to achieve high respon-
siveness. An I/O request is dispatched to the NVMe device driver
only when there are available tokens. The number of tokens re-
mains the same if both read and write target latencies are satisfied,
and is increased if read or write P99 latency exceeds the target
latency. Increasing the number of tokens increases the priority of
that workload. The number of NVMe tokens for a particular type of
request (read or write) is reduced when (1) the achieved P90 latency
for that request type is lower than the target latency; and (2) the
achieved P99 latency for the other type is higher than the target
latency. Kyber aims to deliver the user configured target latencies.
However, there is no guarantee that Kyber achieves the target laten-
cies. Further on, it is not studied how these target latencies affect
the achieved workload throughput and latency. The default read
and write target latencies are 2 ms and 10 ms, respectively. However,
achievable latencies for NVMe SSDs range from 10 to 80 us and
differ between different types of SSDs [4, 11]. Therefore, there is a
huge gap between the default target latencies and the best latencies
that NVMe SSDs can deliver. It is unknown how this gap and the
performance difference of SSDs affect workload performance on
NVMe SSDs when using Kyber. The aim of this paper is to investi-
gate how Kyber’s target latencies and the performance of different
SSDs affect the achieved workload throughput and latency.

3 METHODOLOGY

Hardware and Software. Our benchmarking environment is shown
in Table 1. We use fio [3] as a workload generator with the io_uring
interface [14]. All the I/O requests are issued with the O_DIRECT
flag so the I/O requests bypass the page cache. We use two met-
rics to evaluate performance: throughput and latency. We measure
throughput in I/O operations per second (IOPS) and latency in 99
percentile operation tail latencies (P99 latency). Before running the
experiments, we precondition the flash SSD according to [16]—by
sequentially writing the entire SSD, then writing 2 TiB of 4 KiB
random writes. We run each experiment on the Samsung 980 PRO
for 12 minutes (6 minutes warm-up time + 6 minutes run time)
with five repetitions. For each experiment, we report the average(s)
of these five runs. On the Intel Optane SSD, we run each experi-
ment with one repetition for 2 minutes and 30 seconds (30 seconds
warm-up time + 2 minutes run time). We use a shorter run time
for the experiments on the Optane SSD because it delivers stable
performance.

Synthetic Workloads and Methodology. Workloads in cloud en-
vironments have diverse I/O requirements, such as latency-sensitive
workloads (e.g., online database query) and throughput-bound

169

ICPE ’24 Companion, May 7-11, 2024, London, United Kingdom

Table 2: Baseline performance of Samsung 980 PRO SSD with
the None scheduler.

& Workload(s) RTP W TP R P99 Lat W P99 Lat
(in KIOPS) | (in KIOPS) (in ps) (in ps)
1 R1 17.0 - 77.5 -
2 R256 364.3 - 793.8 -
3 w1 - 62.3 - 23.1
4 W256 - 70.0 - 15,794.2
5 R1-W1 4.0 65.0 1,879.2 26.8
6 R1-W256 0.3 68.9 15,217.5 15,558.2
7 R256-W1 302.6 61.5 3,044.1 32.1
8 R256-W256 83.2 93.1 15,283.0 15,938.4

workloads (e.g., batch processing systems) [24]. We use two syn-
thetic workloads: latency-sensitive workloads (L-app) and throughput-
bound workloads (T-app). Both only issue 4 KiB read or write re-
quests. For the L-apps, we issue a single outstanding request (we
use queue depth, or QD to represent ‘the number of outstanding
requests’ for simplicity in later sections). The T-apps issue 256 out-
standing requests to saturate the SSDs. In the following sections,
we use R1 and W1 to represent L-app read and write workloads
respectively and R256 and W256 to represent T-app read and write
workloads respectively. The number after R and W represents the
QD of the workload.

4 BASELINE PERFORMANCE WITH THE
NONE SCHEDULER

As we explained in §2, flash-based SSDs have read/write interfer-
ence, which means that a write blocks concurrent reads to the same
die. In this section, we establish the baseline performance of the
evaluated flash SSDs with and without interference. We report the
read/write throughput and latency with different workload com-
binations (i.e., L-app, T-app). We use the None scheduler, a no-op
scheduler, which passes the I/O requests to the NVMe device driver
in a first-in-first-out manner. Each workload is pinned to a ded-
icated CPU core to avoid interference by the process scheduler.
Table 2 shows the throughput (in KIOPS) and P99 tail latency (in
us) of different workload combinations. We show the (combination)
of workloads in the second column and we show the throughput
and latency of the read and write workloads in the third to sixth
columns. We have three observations:

Asymmetric read/write performance. The flash SSDs have asym-
metric read/write performance (Observation 1, O-1). With a single
CPU core and no interfering workloads, the flash SSD delivers up
to 364.3 KIOPS random read throughput at QD=256 and 77.5 s
P99 random read latency at QD=1 (row 1). When fio issues ran-
dom writes, the flash SSD delivers up to 70.0 KIOPS throughput at
QD=256 (row 4) and 23.1 us P99 latency at QD=1 (row 3). In short,
the flash SSD has different throughput and latency for reads and
writes without interference. Next, we show how this performance
changes with the interference of a second workload.

Writes have a huge impact on read performance. A concur-
rent write workload significantly degrades the performance of a
co-running read workload. When a latency-sensitive read work-
load R1 is mixed with a latency-sensitive write workload W1 (row
5), the read throughput drops 76.5% (from 17.0 to 4.0 KIOPS) and
the latency increases 24.2X (from 77.5 to 1,879.2 yus) compared
to R1 without interference (row 1). The read performance degra-
dation is more significant with a throughput-bound write work-
load W256 (row 6), showing 98.2% lower throughput (from 17.0 to

https://ark.intel.com/content/www/us/en/ark/products/197098/intel-xeon-silver-4210r-processor-13-75m-cache-2-40-ghz.html
https://semiconductor.samsung.com/consumer-storage/internal-ssd/980pro/
https://www.intel.com/content/www/us/en/products/sku/123623/intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-xpoint/specifications.html

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

Table 3: Evaluated workloads combinations with Kyber.

L-app with write (W1)
R1-w1
R256-W1

T-app with write (W256)
R1-W256
R256-W256

L-app with read (R1)
T-app with read (R256)

0.3 KIOPS) and 200.8% higher latency (from 77.5 to 15,217.5 ps) than
R1 without interference. When a read throughput-bound work-
load and a write throughput-bound workload compete for through-
put (row 8), the read workload has 77.2% lower throughput (from
364.3 to 83.2 KIOPS) than without the interference of concurrent
writes. To conclude, the read performance is highly sensitive to the
write workload, changing the write workload leads to a significant
effect on read throughput and latency (0-2).

Reads have a less significant impact on write performance. A
co-running read workload has less impact on the write performance
than the impact write workloads have on read workloads. When
W1 runs with R1 in the background (row 5), the write workload
has comparable throughput (from 62.3 to 65.0 KIOPS), and the la-
tency only increases by 16.0% (23.1 to 26.8 ys) compared to running
W1 in isolation. With a throughput-bound workload R256 on the
background (row 7), the write latency increases 39.0% (from 23.1
to 32.1 ps), much lower than the latency increase of reads in this
setting (200.8x). Thus, the write performance is less sensitive to
the read workload than the interference of writes on reads (O-3).

The key finding here is that the None scheduler can not mitigate
read/write interference. When a latency-sensitive read workload
runs concurrently with a write workload, the read workload has
a significantly higher P99 tail latency than the read workload run-
ning in isolation. When there are two throughput-bound read and
write workloads competing for throughput, None does not pro-
vide any functionality to tune the throughput share between the
read and write workloads. Kyber offers configuration options that
let the users prioritize reads or writes over each other. Thus, in
the following sections, we investigate if and how Kyber affects
read/write interference and how it affects the throughput share be-
tween throughput-bound read and write workloads under different
configurations.

We repeat the same benchmark on an Intel Optane P900 SSD (the
results are not plotted in the paper). We have two observations.
Firstly, the Optane SSD have symmetric read/write performance.
Unlike the flash SSD, the Optane SSD deliver comparable through-
put and latency for both reads and writes. Secondly, the Optane
SSD have less read/write interference. R1 has up to 65.6% higher
latency (15.4 vs. 44.8 us) with a concurrently running W256 com-
pared to running R1 in isolation, which is significantly lower than
the Samsung 980 PRO (24.2x lower). We show how Kyber and it’s
configurations affect the performance of these workloads in §5.

5 PERFORMANCE EFFECT OF KYBER’S
CONFIGURATIONS WITHOUT A FILE
SYSTEM

We start our analysis with a performance characterization of the im-

pact of different Kyber configurations on fio-based micro-benchmarks.

We run these micro-benchmarks without any file system. Specifi-
cally, we investigate how different Kyber configurations affect the
P99 latency of L-apps and throughput of T-apps when concurrent

170

Zebin Ren, Krijn Doekemeijer, & Animesh Trivedi

250
z z
E 25 00
= >
g 20 B
5 5 150
= 15 =
£0.50 & 100
3 10 5§
50 Zo.
5] 2
Zo. 05 20.10 0

L SOEVMmMD NIV 5990 O EDHD N Y 5O
AR S AR O

Write target latency (ms) Write target latency (ms)

(a) R1 P99 latency (in ms) (b) W256 throughput (in KIOPS)
Figure 2: Performance of L-app (read-only) and T-app (write-
only) workload combinations with different Kyber configu-
rations.

200

150

100

target latency (ms)
ad target latency (ms)

50

1848

2653

LOEDMD N Y S5
SRRSO SN

RN
Q NS RINGN A

Write target latency (ms) Write target latency (ms)

(a) R256 throughput (in KIOPS) (b) W256 throughput (in KIOPS)
Figure 3: Performance of T-app read and write workload
combinations with different Kyber configurations.

read and write workloads interfere with each other, see Table 3 for
all combinations. Such a setup is common in the multi-tenant cloud.
For each benchmark, we start two concurrent fio processes. One
fio process issues reads and one process issues writes. Each fio
process is pinned to a separate and dedicated CPU core to prevent
them from competing for CPU resources. We do a grid search to
investigate how Kyber’s configurations affect the achieved perfor-
mance of fio workloads in the search space. We set the lowest read
and write target latency to 50 ys and 20 us respectively, based on
the minimum P99 latency of the flash SSD (§4), and we gradually
increase the target latency to 100 ms. We report our performance
results in Figure 2 and Figure 3 as heatmaps where the x-axis rep-
resents the write target latency and the y-axis represents the read
target latency. The temperature in the heatmaps is the measured
performance with read and write target latencies set to correspond-
ing values in y- and x-axis.

How does Kyber affect the performance of different combi-
nations of workloads? We report that Kyber’s configurations do
not have a significant effect on the performance of workload com-
binations R1-W1 (thus they are not plotted in the paper) (0O-4). We
do not observe a relation between the P99 read/write latencies and
Kyber configurations. The P99 read latency varies between 1.3 and
1.6 ms and the P99 write latency varies between 23.4 and 27.3 ps.
The reason that Kyber does not have a significant effect on R1-W1 is
that Kyber’s mechanism is only effective with multiple outstanding
1/0 requests. Yet, with R1-W1, there is only 1 outstanding read and
write request. Since Kyber allows at least one read and one write
to be sent to the SSDs, thus Kyber does not throttle the request
with R1-W1. We report that Kyber is effective when there is at least

A Systematic Configuration Space Exploration of the Linux Kyber 1/0 Scheduler

more than one outstanding read or more than one outstanding
write (Guideline 1, G-1).

Can Kyber provide bounded P99 latency for the L-app when
an L-app interferes with a T-app? Figure 2 shows how Kyber’s
configuration affects fio-workload performance when a read L-
app (R1) and a write T-app (W256) run concurrently. The temper-
ature in Figure 2a shows the read P99 latency (in ms, darker is
better) of the read L-app and the temperature in Figure 2b shows
the throughput (in KIOPS, lighter is better) of the write T-app. In
our experiments, Kyber mitigates read/write interference at the cost
of write throughput (O-5). When the read target latency is set to
50 us and the write target latency is set to 100 ms, the achieved read
P99 latency is 1.4ms, 26.3% lower (1.8 ms) than the read latency
of R1-W1 with the None scheduler (row 5, Table 2). Thus, Kyber
delivers low read latency with background throughput-bound write
workloads by setting the read target latency to the lowest read P99
latency that the SSD can achieve (50 ys in our case) and the write
target latency to a value higher than the achieved write latency
with the None scheduler (15.6 ms, row 6, Table 3). However, the
cost of achieving low read latency is lower write throughput (from
peak 152.1 to 74.6 KIOPS, 50.9% lower throughput). We suggest
using Kyber in multi-tenant situations when low read latency is
considered more important than high throughput (G-2).

How do Kyber’s configurations affect the throughput share
of two throughput-bound fio-workloads? Figure 3 shows how
Kyber’s configurations affect the interference between a read T-
app and a write T-app. The temperature in Figure 3a shows the
read throughput and the temperature in Figure 3b shows the write
throughput (in KIOPS, lighter is better). Firstly, decreasing the read
target latency leads to higher read throughput. With a fixed write
target latency (fixed x value), as the read target latency decreases,
the read throughput increases (0O-6). For example, with the write
target latency is set to 20 us (first column in Figure 3a), as the read
target latency decreases from 100 ms to 50 s, the read throughput
increases from 2.6 KIOPS to 181.1 KIOPS, a 69.7X increase. Secondly,
when the read target latency is lower than 10 ms and the write tar-
get latency is lower than 5 ms, changing Kyber configurations does
not lead to a statistical difference in read and write throughput.
The reason is that the achieved read and write latencies are 5ms
and 18 ms (not visualized). Tuning the target latencies in a configu-
ration space where all the candidate values are much lower than
the lowest achievable latency, all the configurations in this configu-
ration space lead to comparable performance (we call this space the
dead configuration space). In conclusion, by tuning Kyber’s configu-
ration, the throughput between reads and writes can be distributed.
We suggest that the users (1) run this grid search micro-benchmark
in Figure 2 and Figure 3 to find out how the target latencies affect
the performance of a specific SSD and (2) avoid tuning Kyber in the
dead configuration space (G-3).

How does this effect change with different SSDs? We repeat
our experiments on the Intel Optane SSD to investigate how this
effect varies across different SSDs. Firstly, similar to the Samsung
SSD, we observe that with R1-W256, prioritizing reads by setting
low read target latency and high write target latency leads to lower
P99 read latency at the cost of write throughput. When Kyber is
configured to prioritize reads, it delivers 62.5% lower latency (from
44.8 to 16.8 ps) than it does with the None scheduler at the cost

171

ICPE ’24 Companion, May 7-11, 2024, London, United Kingdom

of 67.1% lower write throughput (from 228.2 to 75.0 KIOPS) (O-7).
Secondly, when two throughput-bound workloads interfere with
each other (R256-W256), we report that prioritizing reads leads to
lower write throughput (from 202.5 to 68.9 KIOPS) and comparable
read throughput when prioritizing writes. However, when neither
reads nor writes are prioritized, setting the read and write latency to
the same value leads to high read and write throughputs (215.4 and
203.1 KIOPS, respectively) at the same time. The explanation for this
phenomenon is that the Optane SSD has low read/write interfer-
ence [44]. When the SSD is not saturated, adding a concurrent write
workload with a read workload does not have a significant effect
on the performance of the read workload. In this setting (R256—
W256), the SSD is not saturated. In short, limiting read (or write)
throughput does not increase the write (or read) throughput on the
Optane SSD. With the Optane SSD, a misconfiguration when the
SSD is not saturated leads to a throughput drop for reads or writes
without any throughput increase for writes or reads (O-8). Thus,
we suggest using Kyber with Optane SSDs only when the SSDs are
the bottleneck.

6 PERFORMANCE EFFECT OF KYBER’S
CONFIGURATIONS WITH FILE SYSTEMS

In the previous section, we investigate how Kyber affects the perfor-
mance of fio-workloads without using any file system. However,
real-world workloads usually access SSDs via file systems. In this
section, we characterize how Kyber’s configuration affects the I/O
performance with three different file systems: ext4 [9], f2fs [28],
and xfs [22]. The goal is to investigate if the observations of our
microbenchmarks (§5) generalize to file systems. We evaluate two
workload combinations: R1-W256 and R256-W256 in Table 3 with
four Kyber configurations where the target read and write latency is
set to (50 us R, 20 us W), (50 s R, 100 ms W), (100 ms R, 20 us W) and
(100 ms R, 100 ms W), the four extreme configurations in the con-
figuration search space in the previous section. The performance
of the fio workloads is reported in Figure 4.

How does Kyber affect the I/O performance with the use
of a file system? We first investigate how Kyber’s configurations
affect the performance of R1-W256 with different file systems. Fig-
ure 4a and Figure 4b show the P99 read latency (in ps, the lower
the better) and write throughput (in KIOPS, the higher the better)
respectively with workload R1-W256. Kyber delivers the lowest
read P99 latency with configuration (50 us R, 100 ms W), 13.0%—
35.9% lower latency than the worst configuration (160.4-160.8 us
vs. 184.9-249.9 pis) . This lower P99 read latency comes at the cot
of lower write throughput (72.9-75.5 KIOPS or 34.9%-50.1% lower)
compared to the highest write throughput (116.0-147.0 KIOPS) (O-
9). If the workloads access the SSD via a file system, Kyber can be
configured to deliver up to 35.9% lower read P99 latency than the
P99 read latency delivered in other configurations with concurrent
background writes (G-4).

Next, we investigate how Kyber’s configurations affect the through-
put when a read throughput-bound workload and a write throughput-
bound workload run concurrently. Figure 4c and Figure 4d show
the read and write throughput with workload setting R256-W256.
We have two observations. Firstly, the workloads with ext4 and xfs
have similar performance. Configuring Kyber to prioritize read (e.g.,

ICPE *24 Companion, May 7-11, 2024, London, United Kingdom

Zebin Ren, Krijn Doekemeijer, & Animesh Trivedi

P99 latency (us)

0

f2fs

ext4 xfs

xfs

ext4d f2fs

(a) R latency in R1-W256 (b) W throughput in R1-W256

(c) R throughput in R256-W256

300

W (50 s, 20 ps)

(100 ms, 20 us)

BN (50 us, 100ms) W (100 ms, 100 ms)

0 0

f2fs

ext4

(d) W throughput in R256-W256

Figure 4: Performance of R1-W256 and R256-W256 combinations with different Kyber configurations and ext2, f2fs and xfs.

50 us read latency and 100 ms write latency, the second bar in each
group) does not lead to significantly higher read throughput com-
pared to the other three settings (from 227.7 and 228.1 KIOPS to
231.1 and 234.6 KIOPS, 1.3% and 2.8% higher read throughput). How-
ever, the write throughput is significantly decreased (from 127.6
and 132.6 KIOPS to 65.6 KIOPS, 48.6% and 50.5% lower through-
put). The same occurs when we configure Kyber to prioritize writes
over reads (e.g., 100 ms write latencies and 20 ys read latencies,
the third bar in each group) (0-10). Secondly, Kyber’s configura-
tions do not have a significant effect on the read throughput of
f2fs (the read throughput is 229.7-239.3 KIOPS). However, prioritiz-
ing reads causes the write throughput to decrease from 108.7 KIOPS
to 67.9KIOPS, a 37.5% lower write throughput (0O-11). Thus, we
recommend that users should configure Kyber with the same read
and write target latencies. In our setup, the read and write target
latencies are set to (50 ys R, 20 us W) and (100 ms R, 100 ms W) to
achieve both read and write peak throughput (G-5).

In conclusion, when a latency-sensitive workload runs concur-
rently with a throughput-bound write workload via a file system,
Kyber can be configured to deliver low read P99 latency by setting
low read target latency and high write target latency to prioritize
reads. When there are read and write throughput workloads run-
ning concurrently, we suggest setting the read and write target
latencies to similar values to achieve high read and write through-
put.

7 RELATED WORK

I/0 schedulers for flash SSDs. Our study focuses on the state-of-
the-practice Linux I/O scheduler Kyber. However, there are many
start-of-the-art 1/O schedulers for SSDs for Linux.

Designing fair-sharing I/O schedulers has been extensively stud-
ied with SSDs [15, 18, 21, 35, 39, 40, 43, 48]. MQFQ [21] utilizes the
multi-queue interface to increase its scalability. D2FQ [43] further
increases the performance of fair-sharing I/O schedulers by elimi-
nating the “stage” step and offloading the scheduling to SSDs using
the weighted round-robin feature [25].

There are also I/O schedulers that are optimized to deliver low
latency for latency-sensitive workloads in shared environments [24,
31, 33]. K2 [33] strictly prioritizes high-priority requests and trades
throughput for latency. blk-switch [24] provides low latency for
high-priority workloads and preserves high total throughput at the
same time. FastResponse [31] co-designs the I/O scheduler with the
storage stack to reduce the I/O interference.

Flash-based SSDs have many idiosyncrasies because of their
complex internal architectures. Various I/O schedulers are built to

172

utilize these idiosyncrasies to increase SSDs’ write performance
and lifespan by using fine-grained access [41], reducing SSD GC
overhead [19, 20, 26] and reducing read/write interference [27, 35].
Performance characterization of Linux I/O schedulers. Many
studies characterize the performance of Linux I/O schedulers with
NVMe SSDs [37, 38, 42]. Whitaker et al. [42] characterize the per-
formance of the Linux I/O schedulers on ULL SSDs based on 3D
XPoint technology. Their findings include that Linux I/O sched-
ulers lead to higher latency, lower throughputs, and higher energy
overhead than without the I/O schedulers. Ren et al. [37] extended
this work by characterizing the performance overhead, scalability,
QoS with more common flash-based SSDs. Additionally, they char-
acterize how Kyber’s configurations affect the interference between
foreground read workloads and background write workloads. We
extend this work on Kyber by characterizing the performance of
Kyber with different combinations of workloads and how these
effects can be generalized to different file systems. We presented an
in-depth, systematic study to give guidelines on how to configure
Kyber with specified SSDs and workloads.

8 CONCLUSION AND FUTURE WORK

In this paper, we investigate how Kyber’s configurations affect the
performance of different workloads with various file systems and
storage devices. Our results show that Kyber can be configured
to deliver low read latency when there is a concurrently running
write workload. Kyber can also be used to balance the throughput
share between read and write throughput-bound workloads when
the applications directly run on the top of block devices.

This work can be expended in (1) evaluating how Kyber’s con-
figuration affects the performance of applications with mixed read
and write workloads, (2) designing an automatic tool that can find
the best Kyber configuration automatically, and (3) designing al-
gorithms that dynamically configures Kyber when the workload
changes.

Acknowledgments This work is partially supported by Netherlands-
funded projects from the Dutch Research Council (NWO) grants
(OCENW.KLEIN.561 and OCENW.KLEIN.209) and GFP 6G FNS, and
EU-funded projects MCSA-RISE Cloudstars and Horizon Graph-
Massivizer. Krijn Doekemeijer is funded by the VU PhD innovation
program. We thank the anonymous HotCloudPerf’24 reviewers for
their invaluable and constructive feedback. We would also like to
thank Jesse Donkervliet, Sacheendra Talluri, Matthijs Jansen, and
the AtLarge group at VU Amsterdam for their help with the paper.

A Systematic Configuration Space Exploration of the Linux Kyber 1/0 Scheduler

REFERENCES

(1]
(2]

3
[4

ey
A=A

[12]

(13

[14]

[15

[16]

(17

[19

[20

[21]

[22]

[24

[25]

[26

[27

Accessed: 2024-03-13. 3D XPoint. https://insidehpc.com/2015/07/intel-and-
micron-announce-3d-xpoint-non-volatile-memory/

Accessed: 2024-03-13. BFQ Budget Fair Queueing Document.
kernel.org/doc/html/latest/block/bfq-iosched.html

Accessed: 2024-03-13. fio. https://github.com/axboe/fio
Accessed: 2024-03-13. Intel Optane 900P Techinical Specification.
https://www.intel.com/content/www/us/en/products/sku/123623/intel-optane-
ssd-900p-series-280gb- 2-5in-pcie-x4- 20nm-3d-xpoint/specifications.html
Accessed: 2024-03-13. Intel® Optane™ SSD DC P5800X Series.
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-
ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html

Accessed: 2024-03-13. Kyber Multiqueue I/O Scheduler. https://lwn.net/Articles/
720071/

Accessed: 2024-03-13. Linux I/O Schedulers. https://wiki.ubuntu.com/Kernel/
Reference/IOSchedulers

Accessed: 2024-03-13. MQ-Deadline Implementation. https://elixir.bootlin.com/
linux/latest/source/block/mq-deadline.c

Accessed: 2024-03-13. The New ext4 Filesystem: Current Status and Future Plans.
https://www.kernel.org/doc/ols/2007/0ls2007v2-pages- 21-34.pdf

Accessed: 2024-03-13. NVM Express. https://nvmexpress.org

Accessed: 2024-03-13. Samsung 980 PRO PCle 4.0 SSD. https://semiconductor.
samsung.com/consumer-storage/internal-ssd/980pro/

Accessed: 2024-03-13. Toshiba Memory Introduces XL-FLASH Storage Class
Memory Solution. https://americas.kioxia.com/en-us/business/news/2019/
memory-20190805-1.html

Accessed: 2024-03-13. Two New Block I/O Schedulers for 4.12. https://lwn.net/
Articles/720675/

Jens Axboe. Accessed: 2024-03-13. Efficient I/O with io_uring. https://kernel.
dk/io_uring.pdf

Alan J. Demers, Srinivasan Keshav, and Scott Shenker. 1989. Analysis and Simu-
lation of a Fair Queueing Algorithm. In Proceedings of the ACM Symposium on
Communications Architectures & Protocols, SIGCOMM 1989. ACM, 1-12.

Diego Didona, Nikolas Ioannou, Radu Stoica, and Kornilios Kourtis. 2020. Toward
a Better Understanding and Evaluation of Tree Structures on Flash SSDs. Proc.
VLDB Endow. 14, 3 (2020), 364-377.

Nima Elyasi, Mohammad Arjomand, Anand Sivasubramaniam, Mahmut T. Kan-
demir, Chita R. Das, and Myoungsoo Jung. 2017. Exploiting Intra-Request Slack
to Improve SSD Performance. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2017. ACM, 375-388.

Pawan Goyal, Harrick M. Vin, and Haichen Cheng. 1996. Start-Time Fair Queue-
ing: A Scheduling Algorithm for Integrated Services Packet Switching Networks.
In Proceedings of the ACM SIGCOMM 1996 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, 1996. ACM, 157-168.
Jiayang Guo, Yimin Hu, and Bo Mao. 2015. Enhancing I/O Scheduler Performance
by Exploiting Internal Parallelism of SSDs. In Algorithms and Architectures for
Parallel Processing - 15th International Conference, ICA3PP 2015. Proceedings, Part
IV (Lecture Notes in Computer Science, Vol. 9531). Springer, 118-130.

Jiayang Guo, Yiming Hu, Bo Mao, and Suzhen Wu. 2017. Parallelism and Garbage
Collection Aware I/O Scheduler with Improved SSD Performance. In 2017 IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2017. IEEE
Computer Society, 1184-1193.

Mohammad Hedayati, Kai Shen, Michael L. Scott, and Mike Marty. 2019. Multi-
Queue Fair Queuing. In 2019 USENIX Annual Technical Conference, USENIX ATC
2019. USENIX Association, 301-314.

Christoph Hellwig. 2009. XFS: The Big Storage File System for Linux. login
Usenix Mag. 34, 5 (2009).

Tejun Heo, Dan Schatzberg, Andrew Newell, Song Liu, Saravanan Dhakshina-
murthy, Iyswarya Narayanan, Josef Bacik, Chris Mason, Chungiang Tang, and
Dimitrios Skarlatos. 2022. IOCost: Block IO Control for Containers in Datacenters.
In ASPLOS °22: 27th ACM International Conference on Architectural Support for
Programming Languages and Operating System 2022. ACM, 595-608.

Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agarwal. 2021.
Rearchitecting Linux Storage Stack for ps Latency and High Throughput. In 15th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2021.
USENIX Association, 113-128.

Kanchan Joshi, Kaushal Yadav, and Praval Choudhary. 2017. Enabling NVMe
WRR Support in Linux Block Layer. In 9th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 17). USENIX Association.

Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah, Joonhyuk Yoo, and Mahmut T.
Kandemir. 2014. HIOS: A Host Interface I/O Scheduler for Solid State Disks. In
ACM/IEEE 41st International Symposium on Computer Architecture, ISCA 2014.
IEEE Computer Society, 289-300.

Jieun Kim, Dohyun Kim, and Youjip Won. 2022. Fair I/O Scheduler for Alleviating
Read/Write Interference by Forced Unit Access in Flash Memory. In HotStorage
’22: 14th ACM Workshop on Hot Topics in Storage and File Systems, 2022. ACM,

https://www.

173

[28

[29

[30

w
=

[32

[33

[34

[35

[36

[37

(38]

[39

[40

[41

[42

[43]

[44

[45

[46

[47]

(48]

ICPE ’24 Companion, May 7-11, 2024, London, United Kingdom

86-92.

Changman Lee, Dongho Sim, Joo Young Hwang, and Sangyeun Cho. 2015. F2FS:
A New File System for Flash Storage. In Proceedings of the 13th USENIX Conference
on File and Storage Technologies, FAST 2015. USENIX Association, 273-286.
Shaohong Li, Xi Wang, Xiao Zhang, Vasileios Kontorinis, Sreekumar Kodakara,
David Lo, and Parthasarathy Ranganathan. 2020. Thunderbolt: Throughput-
Optimized, Quality-of-Service-Aware Power Capping at Scale. In 14th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2020. USENIX
Association, 1241-1255.

Heiner Litz, Javier Gonzalez, Ana Klimovic, and Christos Kozyrakis. 2022. RAIL:
Predictable, Low Tail Latency for NVMe Flash. ACM Trans. Storage 18, 1 (2022),
5:1-5:21.

Mingzhe Liu, Haikun Liu, Chencheng Ye, Xiaofei Liao, Hai Jin, Yu Zhang, Ran
Zheng, and Liting Hu. 2022. Towards Low-Latency I/O Services for Mixed Work-
loads Using Ultra-Low Latency SSDs. In ICS "22: 2022 International Conference on
Supercomputing, 2022. ACM, 13:1-13:12.

Hui Lu, Brendan Saltaformaggio, Ramana Rao Kompella, and Dongyan Xu. 2015.
vFair: Latency-Aware Fair Storage Scheduling via per-IO Cost-Based Differentia-
tion. In Proceedings of the Sixth ACM Symposium on Cloud Computing, SoCC 2015.
ACM, 125-138.

Till Miemietz, Hannes Weisbach, Michael Roitzsch, and Hermann Hértig. 2019.
K2: Work-Constraining Scheduling of NVMe-Attached Storage. In IEEE Real-Time
Systems Symposium, RTSS 2019. IEEE, 56-68.

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-
ishnan. 2019. Shenango: Achieving High CPU Efficiency for Latency-Sensitive
Datacenter Workloads. In 16th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2019. USENIX Association, 361-378.

Stan Park and Kai Shen. 2012. FIOS: A Fair, Efficient Flash I/O Scheduler. In
Proceedings of the 10th USENIX conference on File and Storage Technologies, FAST
2012. USENIX Association, 13.

Bo Peng, Haozhong Zhang, Jianguo Yao, Yaozu Dong, Yu Xu, and Haibing Guan.
2018. MDev-NVMe: A NVMe Storage Virtualization Solution with Mediated
Pass-Through. In 2018 USENIX Annual Technical Conference, USENIX ATC 2018.
USENIX Association, 665-676.

Zebin Ren, Krijn Doekemeijer, Nick Tehrany, and Animesh Trivedi. 2024. BFQ,
Multiqueue-Deadline, or Kyber? Performance Characterization of Linux Storage
Schedulers in the NVMe Era. To Appear in the Proceedings of the 2024 ACM/SPEC
International Conference on Performance Engineering, ICPE 2024. (2024).

Zebin Ren and Animesh Trivedi. 2023. Performance Characterization of Modern
Storage Stacks: POSIX I/O, libaio, SPDK, and io_uring. In Proceedings of the 3rd
Workshop on Challenges and Opportunities of Efficient and Performant Storage
Systems, CHEOPS 2023. ACM, 35-45.

Kai Shen and Stan Park. 2013. FlashFQ: A Fair Queueing I/O Scheduler for
Flash-Based SSDs. In 2013 USENIX Annual Technical Conference, 2013. USENIX
Association, 67-78.

Matthew Wachs, Michael Abd-El-Malek, Eno Thereska, and Gregory R. Ganger.
2007. Argon: Performance Insulation for Shared Storage Servers. In 5th USENIX
Conference on File and Storage Technologies, FAST 2007. USENIX, 61-76.
Mingyang Wang and Yiming Hu. 2014. An I/O Scheduler Based on Fine-Grained
Access Patterns to Improve SSD Performance and Lifespan. In Symposium on
Applied Computing, SAC 2014. ACM, 1511-1516.

Caeden Whitaker, Sidharth Sundar, Bryan Harris, and Nihat Altiparmak. 2023.
Do We Still Need IO Schedulers for Low-latency Disks?. In Proceedings of the
15th ACM/USENIX Workshop on Hot Topics in Storage and File Systems, HotStorage
2023. ACM, 44-50.

Jiwon Woo, Minwoo Ahn, Gyusun Lee, and Jinkyu Jeong. 2021. D2FQ: Device-
Direct Fair Queueing for NVMe SSDs. In 19th USENIX Conference on File and
Storage Technologies, FAST 2021. USENIX Association, 403-415.

Kan Wu, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2019. To-
wards an Unwritten Contract of Intel Optane SSD. In 11th USENIX Workshop on
Hot Topics in Storage and File Systems, HotStorage 2019. USENIX Association.
Suzhen Wu, Weiwei Zhang, Bo Mao, and Hong Jiang. 2019. HotR: Alleviating
Read/Write Interference with Hot Read Data Replication for Flash Storage. In
Design, Automation & Test in Europe Conference & Exhibition, DATE 2019. IEEE,
1367-1372.

Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Tameesh Suri, Manu Awasthi,
Zvika Guz, Anahita Shayesteh, and Vijay Balakrishnan. 2015. Performance
Analysis of NVMe SSDs and Their Implication on Real World Databases. In
Proceedings of the 8th ACM International Systems and Storage Conference, SYSTOR
2015. ACM, 6:1-6:11.

Jinfeng Yang, Bingzhe Li, and David J. Lilja. 2020. Exploring Performance Char-
acteristics of the Optane 3D Xpoint Storage Technology. ACM Trans. Model.
Perform. Evaluation Comput. Syst. 5, 1 (2020), 4:1-4:28.

Minhoon Yi, Minho Lee, and Young Ik Eom. 2017. CFFQ: I/O Scheduler for
Providing Fairness and High Performance in SSD Devices. In Proceedings of
the 11th International Conference on Ubiquitous Information Management and
Communication, IMCOM 2017. ACM, 87.

https://insidehpc.com/2015/07/intel-and-micron-announce-3d-xpoint-non-volatile-memory/
https://insidehpc.com/2015/07/intel-and-micron-announce-3d-xpoint-non-volatile-memory/
https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://github.com/axboe/fio
https://www.intel.com/content/www/us/en/products/sku/123623/intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-xpoint/specifications.html
https://www.intel.com/content/www/us/en/products/sku/123623/intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-xpoint/specifications.html
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://lwn.net/Articles/720071/
https://lwn.net/Articles/720071/
https://wiki.ubuntu.com/Kernel/Reference/IOSchedulers
https://wiki.ubuntu.com/Kernel/Reference/IOSchedulers
https://elixir.bootlin.com/linux/latest/source/block/mq-deadline.c
https://elixir.bootlin.com/linux/latest/source/block/mq-deadline.c
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://nvmexpress.org
https://semiconductor.samsung.com/consumer-storage/internal-ssd/980pro/
https://semiconductor.samsung.com/consumer-storage/internal-ssd/980pro/
https://americas.kioxia.com/en-us/business/news/2019/memory-20190805-1.html
https://americas.kioxia.com/en-us/business/news/2019/memory-20190805-1.html
https://lwn.net/Articles/720675/
https://lwn.net/Articles/720675/
https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	4 Baseline Performance with the None Scheduler
	5 Performance Effect of Kyber's Configurations without a File System
	6 Performance Effect of Kyber's Configurations with File Systems
	7 Related Work
	8 Conclusion and Future Work
	References

