
EchoSwift
An Inference Benchmarking and Configuration Discovery Tool for Large Language Models (LLMs)

Karthik Krishna
CTO

 InfobellIT Solutions Pvt. Ltd
Bengaluru, Karnataka, India

 karthik@infobellit.com

Ramana Bandili
CEO

 InfobellIT Solutions Pvt. Ltd
 Bengaluru, Karnataka, India

 braman@infobellit.com

ABSTRACT
Large Language Models (LLMs) are advanced natural language
processing models that are trained on vast amounts of text data to
understand and generate human-like language. These models are
designed to understand context, generate coherent and
contextually relevant text, and demonstrate advanced language
capabilities. In the dynamic landscape of LLMs, the demand for
efficient inference benchmarking is crucial.

Organizations such as TPC and SPEC brought several industry
standard benchmarks [1][2][3][4]. This publication introduces
EchoSwift [11], a comprehensive benchmarking framework
designed to evaluate the real-time performance of LLMs in
deployment scenarios.

As LLMs ascend to the forefront of technological innovation, their
seamless integration into real-world applications demands a
nuanced understanding of their efficiency, throughput, latency,
and scalability. It is within this dynamic landscape that our
publication unveils the EchoSwift, a novel benchmarking
framework meticulously crafted to address the pressing need for
comprehensive inference benchmarking, as well as the discovery
of the right configuration for specific LLM requirements. For
instance, certain deployments might have 32 tokens as input and
256 tokens as output, while others might have 256 tokens as input
and 64 tokens as output. It is crucial to acknowledge that the
configuration for these two requirements need not be the same for
an optimal performance, scale and better TCO. The EchoSwift not
only aids in comprehensive configuration discovery but also
facilitates robust Performance/Scale testing, ensuring that LLM
deployments are not only efficient but also finely tuned to their
specific operational demands.

∗Both authors contributed equally to this research.

__

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ICPE Companion '24 , May 7–11, 2024, London, United Kingdom
© 2024 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3652273

CSS CONCEPTS
• Computer Systems Organization → Artificial Intelligence
→ Natural Language Processing.

KEYWORDS
Large language models, Text generation Inference, Llama2, LLM
Performance, AI Benchmarking

ACM Reference format:

Karthik Krishna and Ramana Bandili. 2024. EchoSwift: An Inference
Benchmarking and Configuration Discovery Tool for Large Language Models
(LLMs), 2024. In Companion of the 15th ACM/SPEC International Conference on
Performance Engineering. May 7–11, 2024, London, United Kingdom. ACM,
New York, NY, USA. https://doi.org/10.1145/3629527.3652273

1. INTRODUCTION
 LLMs have become so profound that language comprehension
and production have transcended traditional boundaries, making it
imperative to gauge the real-time performance of these models in
deployment scenarios more crucial than ever. The advent of LLMs,
exemplified by models like the Llama2 from Meta with varying
parameters and precision levels, has propelled them into the core
of applications ranging from natural language processing to AI-
driven services.

This publication delves into the intricate challenges posed by
diverse LLM variants. Llama2 is one such open sourced publicly
available LLM and this benchmarking tool was primarily tested
with Llama2, however, this tool is applicable to all different LLMs
deployed with various architectures and technologies. Llama2 is an
advanced AI platform that combines cutting-edge algorithms,
extensive data sets, and powerful computational capabilities to
deliver exceptional results. Llama2 model has various models
which different in parameters such as 7B, 13B, and 70B, coupled
with precision nuances in BF16, Int8, and Int4. These intricacies
make the identification of an ideal and efficient infrastructure for
serving these models a formidable challenge. Enter EchoSwift – a
compass guiding practitioners through the delicate balance
between model complexity and operational efficiency in the realm
of LLMs.

In this publication, we embark on a journey to introduce and
expound upon EchoSwift, a benchmarking framework tailored to

158

mailto:karthik@infobellit.com
mailto:braman@infobellit.com

ICPE Companion '24 , May 7–11, 2024, London, United Kingdom Karthik Krishna & Ramana Bandili

assess the real-time performance of LLMs. As we traverse through
the subsequent sections, we unravel the significance of this
framework, its methodology, and the pivotal role it plays in
shaping the deployment landscape for Large Language Models.

2. BACKGROUND
Before the advent of LLMs, a substantial 70% of the AI Inference
market was dominated by CPU architectures, highlighting the
transformative shift brought about by the introduction of LLMs in
the landscape of inference processing. Within the burgeoning
landscape of LLMs, this publication unveils EchoSwift – a
pioneering benchmarking framework meticulously crafted to
assess the real-time performance of LLMs in deployment
scenarios. The results presented here reflect out-of-the-box
performance with currently released software, with the
anticipation of additional performance gains in upcoming releases.

3. ECHOSWIFT OVERVIEW APPROACH
The article outlines benchmarking the performance of LLM using
LLama2-7B as the sample LLM model and measures Token
Latency, Throughput calculated as tokens per second, and Time To
First Token (TTFT).

Figure 1: Performance Metrics

Latency is measured of time to output each token when streaming
the output excluding the first token and is often measured in
millisecond.

𝑳𝒂𝒕𝒆𝒏𝒄𝒚 =
𝑻𝒐𝒕𝒂𝒍 𝒕𝒊𝒎𝒆 𝒕𝒐 𝒐𝒖𝒕𝒑𝒖𝒕 − 𝑻𝑻𝑭𝑻

𝑻𝒐𝒕𝒂𝒍 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑻𝒐𝒌𝒆𝒏𝒔 − 𝟏

TTFT is the time to process the prompt and output the first token
and is often measured in millisecond.

TTFT=Time To First Token

Throughput is calculated as tokens per second which takes in to
account the total time taken to output all the tokens and
normalized to 1 second, i.e., total tokens for the output divided by
total time taken in seconds.

𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 =
𝑻𝒐𝒕𝒂𝒍 𝑵𝒐 𝒐𝒇 𝒕𝒐𝒌𝒆𝒏𝒔

𝑻𝒐𝒕𝒂𝒍 𝑻𝒊𝒎𝒆 𝒕𝒐 𝑶𝒖𝒕𝒑𝒖𝒕 (𝒊𝒏 𝒔𝒆𝒄𝒐𝒏𝒅𝒔)

The EchoSwift Benchmark is used in two modes:

a) Configuration Discovery Mode

b) Performance Benchmarking Mode

In Configuration Discovery mode, we restrict the number of
parallel requests to 1, 3, or 10 while varying the parameters for
input token size and output token size based on the specific
requirements of the application. We employ this approach to test
different scenarios and identify Token Latency, Throughput, and
TTFT for various combinations of Input and Output tokens. The
data obtained is then used to discover the optimal configuration.

In Performance Benchmarking Mode, we maintain the input token
and output token size as constants (for example, 32 tokens for
Input and 256 tokens for output or any other combination specific
to the application requirement) and scale the number of parallel
requests (or parallel users) for this fixed combination of a single
input and output token. This scaling enables a better sizing of the
environment.

4. BENCHMARKING METHODOLOGY AND
STEPS

The steps for benchmarking LLM have been discussed below:

4.1. Data Collection
The Hugging Face Hub consists of the vast amount datasets for
variety of domains and tasks. The datasets available on Hugging
Face is continually expanding, and new datasets are consistently
being added by both the Hugging Face team and the community.
The Hugging Face Hub hosts a large number of community-
curated datasets for a diverse range of domains, languages, and
tasks such as translation, automatic speech recognition, and image
classification.

159

https://github.com/Infobellit-Solutions-Pvt-Ltd/EchoSwift

EchoSwift ICPE Companion '24 , May 7–11, 2024, London, United Kingdom

The dataset used here in the benchmark is from ShareGPT Dataset
from Hugging Face. Dataset has been filtered based on varying
input token lengths. Considered input token lengths in this
context range from 32 to 2,000, with variations of approximately
±10 tokens for each length. The specified lengths include 32, 64,
128, 256, 512, 1K and 2K tokens, providing a comprehensive
coverage of input sizes for benchmarking. The dataset contains the
7 different files that have 1000 prompts for each token length as
specified. Python file DatasetFiltering.py has been used here for
Data Processing.

4.2. Configuration Discovery Test
The objective of the work involves identifying the optimal
configuration with a single container test.

The analysis involves determining the optimal latency, throughput
and TTFT by sending individual requests one at a time with

different input and output tokens. To enhance throughput, parallel
requests are then dispatched to the endpoint. Figure 2 above
depicts the sample output capturing the performance metrics
when a single request for 128 input tokens and with varying
output token combinations 64, 128, 256 is given as input request.
Similarly varying combinations of input and output tokens in
different combinations like 128 output tokens for 128 input and
256 output tokens for 128 inputs for 5 parallel requests are sent to
capture the ideal performance parameters.

The maximum throughput is identified when the model
consistently provides prompt responses to input requests without
significant degradation in latency. This approach allows for a
balanced assessment, ensuring that the system achieves optimal
performance by striking the right balance between response time
and concurrent processing capabilities.

4.3. Scale Testing/Parallel Requests
Locust Load testing has been used for benchmarking setup. Locust
is an opensource load testing tool, written in Python and is a
highly valuable tool for identifying performance bottlenecks,
testing the scalability of system, and ensuring that the developed
web applications can handle a specified level of traffic. The tool
allows to set the Number of Users which indicates the maximum
no. of users that can run simultaneously, and Spawn Rate denotes
the number of users that will be spawned per second.

For deployment, hugging face text-generation inference model
server 1.1.1 is used.

The steps below need to be followed to run the load test:

1. Define the configurations to run the load test.

2. Listing the parallel users (1, 3, 10, 30) and the Input
tokens (32, 64, 128, 256, 512) and Output tokens (32, 64,
128, 256, 512).

3. TGI endpoint has been used for hosting the model.

In Section 5 the results are discussed and the generated graphs for
performance metrics have been explained in detail.

5. RESULT ANALYSIS
The result analysis involves determining the optimal latency,
throughput and TTFT by sending individual requests one at a time
with different input and output tokens. To enhance throughput,
parallel requests are then dispatched to the endpoint. This section
gives the detailed observation for Configuration Discovery Result
analysis and performance test.

5.1. Configuration Discovery Result Analysis
To identify an optimal Configuration to achieve ideal token
latency and throughput, the systems are tested with various
combinations of input and output tokens. The below graphs

Figure 2: Sample Output for varying combinations of input and output token for Single User

160

ICPE Companion '24 , May 7–11, 2024, London, United Kingdom Karthik Krishna & Ramana Bandili

illustrate the Throughput, Token latency and TTFT for single user
sending the requests to the endpoint for 32, 64, 128 input tokens
and 64,128, 256 output tokens.

In Figure 3, it can be observed that the throughput varies between
4.94 tokens/second to 11.88 tokens/second for single user.

Figure 3: Throughput for Single User

Figure 4 depicts tokens latency for single user ranging from 233
milliseconds/token to 247 milliseconds/token.

Figure 4: Token Latency for Single User

Similarly, Figure 5 depicts the TTFT for single user it varies
between 363 milliseconds to 859 milliseconds.

Figure 5: TTFT for a Single User

The achieved performance results were obtained through testing
the model on a hardware configuration featuring a 16-core CPU
and 128 GB of RAM. It is anticipated that conducting the same
load testing on more robust hardware configurations will likely
yield even more substantial improvements in performance.

5.2. Performance Test (with Parallel Requests)
Result Analysis
The model can also be tested against multiple users for parallel
requests sent to the model endpoint for varying input and output
tokens combinations. Performance testing with parallel requests is
a critical aspect of evaluating the robustness and scalability of a
system. When analysing the results of such tests, it is important to
consider various factors to gain insights into the system’s
behaviour under intense loads. Therefore, a comprehensive
analysis of performance test is done by examining throughput and
token latency against parallel requests sent to the model to get
some insights for improvement.

Line graph shown in Figure 6 depicts the relationship between the
number of parallel requests made to the model endpoint and the
average latency of those requests. It can be observed that when
number of parallel requests increases, the average latency also
increases due to limited system resources. Thus, it is utmost
important to identify the ideal configuration that can handle
multiple parallel requests for scale testing.

Figure 6: Latency vs Parallel Requests

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120 140 160

La
te

n
cy

 (
in

 m
s)

Parallel Users

161

EchoSwift ICPE Companion '24 , May 7–11, 2024, London, United Kingdom

Graph in Figure 7 shows the relationship between the number of
parallel requests made to the model endpoint and the throughput
of the system, measured in tokens per second. It can be inferred
from the graph that the throughput increases linearly with the
requests initially and starts slowing down as the resources become
saturated, and eventually decreases when the system is overloaded
as the system has limited resources.

Thus, the specific curve and values will vary depending on the
specific system and workload, but the general trend is consistent.

Figure 7: Throughput vs Parallel Requests

The above graphs can be used to understand the performance
limitations of a system under increasing load. It can help the users
to determine the optimal number of system configurations
required to handle the concurrent requests to while maintaining
acceptable throughput and latency. Additionally, it can be used to
compare the performance of different systems or to track changes
in performance over time.

6. CONCLUSION
This benchmark can be used to evaluate a single container, or a
cluster with thousands or nodes deploying an LLM. This can be
used to test scale, test latency, throughput and TTFT for any
environment deploying an LLM. This is not limited to Llama2 but
any form of LLM, quantized models with lower precisions (int8,
int4, etc) and different precision and different sizes with and
without CPU, GPU, Accelerators, or other technology.

This could also be used for inference benchmarking with Retrieval
Augmented Generation (RAG) based applications, Fine Tuning
models or Fully trained LLM models.

Benchmarking LLMs provides valuable insights for businesses
aiming to deploy natural language processing applications. To

make the best decisions, it's crucial to acknowledge the specific
needs of each application and understand how well LLMs perform
on different types of CPUs, GPUs and Accelerators to identify the
ideal throughput, latency and scale and drive the total cost of
ownership (TCO) lower. Consideration of the specific
requirements of each application, coupled with an understanding
of the strengths and weaknesses of LLMs on different software
and hardware technologies, and architectures empowers
businesses to make informed and optimised decisions.

In line with our commitment to standardization and industry best
practices, we propose this workload to industry standard
organizations like SPEC to create standards for Inference on Large
Language Models. Establishing such standards will further
facilitate benchmarking efforts, promote consistency, and provide
a solid foundation for the broader adoption of LLMs in various
applications.

ACKNOWLEDGEMENTS
Authors would like to thank Anna Joseph, Gogula Akhil Reddy ,
Arun Kumar Tiwary , Bhavana k, Divya Singh, Harshitha T, Vadla
Sai Charitha, Sarthak Dwivedi, Kammara Prasad Achari, Arunima
Divya, who are engineers from InfobellIT who helped test and
develop this benchmark.

REFERENCES
[1] https://spec.org/
[2] https://tpc.org/
[3] Raghunath Nambiar, Tilmann Rabl, Karthik Kulkarni, Michael

Frank:
Enhancing Data Generation in TPCx-HS with a Non-uniform
Random Distribution. TPCTC: 2015: 94-129

[4] Meikel Poess, Raghunath Nambiar, Karthik Kulkarni, Chinmayi
Narasimhadevara, Tilmann Rabl, Hans-Arno Jacobsen: Analysis of
TPCx-IoT: The First Industry Standard Benchmark for IoT Gateway
Systems. ICDE 2018: 1519-1530

[5] https://www.intel.com/content/www/us/en/developer/articles/techn
ical/accelerate-llama2-ai-hardware-sw-optimizations.html

[6] https://huggingface.co/NousResearch/Llama-2-7b-
hf?ref=blog.truefoundry.com

[7] https://github.com/huggingface/text-generation-inference
[8] https://locust.io/
[9] Llama 2: Open Foundation and Fine-Tuned Chat Models -

https://arxiv.org/pdf/2307.09288.pdf
[10] https://www.anyscale.com/blog/reproducible-performance-metrics-

for-llm-inference
[11] EchoSwift: https://github.com/Infobellit-Solutions-Pvt-Ltd/EchoSwift

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160

Th
ro

u
gh

p
u

t
(T

o
ke

n
s/

se
co

n
d

s)

Parallel Requests

162

https://spec.org/
https://tpc.org/
https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-llama2-ai-hardware-sw-optimizations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-llama2-ai-hardware-sw-optimizations.html
https://huggingface.co/NousResearch/Llama-2-7b-hf?ref=blog.truefoundry.com
https://huggingface.co/NousResearch/Llama-2-7b-hf?ref=blog.truefoundry.com
https://github.com/huggingface/text-generation-inference
https://locust.io/
https://arxiv.org/pdf/2307.09288.pdf
https://www.anyscale.com/blog/reproducible-performance-metrics-for-llm-inference
https://www.anyscale.com/blog/reproducible-performance-metrics-for-llm-inference
https://github.com/Infobellit-Solutions-Pvt-Ltd/EchoSwift

