EchoSwift

An Inference Benchmarking and Configuration Discovery Tool for Large Language Models (LLMs)

Karthik Krishna
CTO
InfobellIT Solutions Pvt. Ltd
Bengaluru, Karnataka, India
karthik@infobellit.com

ABSTRACT

Large Language Models (LLMs) are advanced natural language
processing models that are trained on vast amounts of text data to
understand and generate human-like language. These models are
designed to wunderstand context, generate coherent and
contextually relevant text, and demonstrate advanced language
capabilities. In the dynamic landscape of LLMs, the demand for

efficient inference benchmarking is crucial.

Organizations such as TPC and SPEC brought several industry
standard benchmarks [1][2][3][4]. This publication introduces
EchoSwift
designed to evaluate the real-time performance of LLMs in

[11], a comprehensive benchmarking framework

deployment scenarios.

As LLMs ascend to the forefront of technological innovation, their
seamless integration into real-world applications demands a
nuanced understanding of their efficiency, throughput, latency,
and scalability. It is within this dynamic landscape that our
the EchoSwift,
framework meticulously crafted to address the pressing need for
comprehensive inference benchmarking, as well as the discovery
of the right configuration for specific LLM requirements. For

publication unveils a novel benchmarking

instance, certain deployments might have 32 tokens as input and
256 tokens as output, while others might have 256 tokens as input
and 64 tokens as output. It is crucial to acknowledge that the
configuration for these two requirements need not be the same for
an optimal performance, scale and better TCO. The EchoSwift not
only aids in comprehensive configuration discovery but also
facilitates robust Performance/Scale testing, ensuring that LLM
deployments are not only efficient but also finely tuned to their
specific operational demands.

*Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

ICPE Companion 24, May 7-11, 2024, London, United Kingdom

© 2024 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0445-1/24/05

https://doi.org/10.1145/3629527.3652273

158

Ramana Bandili
CEO
InfobellIT Solutions Pvt. Ltd
Bengaluru, Karnataka, India
braman@infobellit.com

CSS CONCEPTS

* Computer Systems Organization - Artificial Intelligence
- Natural Language Processing.

KEYWORDS

Large language models, Text generation Inference, Llama2, LLM
Performance, Al Benchmarking

ACM Reference format:

Karthik Krishna and Ramana Bandili 2024. EchoSwift: An Inference
Benchmarking and Configuration Discovery Tool for Large Language Models
(LLMs), 2024. In Companion of the 15th ACM/SPEC International Conference on
Performance Engineering. May 7-11, 2024, London, United Kingdom. ACM,
New York, NY, USA. https://doi.org/10.1145/3629527.3652273

1. INTRODUCTION

LLMs have become so profound that language comprehension
and production have transcended traditional boundaries, making it
imperative to gauge the real-time performance of these models in
deployment scenarios more crucial than ever. The advent of LLMs,
exemplified by models like the Llama2 from Meta with varying
parameters and precision levels, has propelled them into the core
of applications ranging from natural language processing to Al-
driven services.

This publication delves into the intricate challenges posed by
diverse LLM variants. Llama2 is one such open sourced publicly
available LLM and this benchmarking tool was primarily tested
with Llama2, however, this tool is applicable to all different LLMs
deployed with various architectures and technologies. Llama2 is an
advanced AI platform that combines cutting-edge algorithms,
extensive data sets, and powerful computational capabilities to
deliver exceptional results. Llama2 model has various models
which different in parameters such as 7B, 13B, and 70B, coupled
with precision nuances in BF16, Int8, and Int4. These intricacies
make the identification of an ideal and efficient infrastructure for
serving these models a formidable challenge. Enter EchoSwift — a
compass guiding practitioners through the delicate balance
between model complexity and operational efficiency in the realm
of LLMs.

In this publication, we embark on a journey to introduce and
expound upon EchoSwift, a benchmarking framework tailored to

mailto:karthik@infobellit.com
mailto:braman@infobellit.com

ICPE Companion 24 , May 7-11, 2024, London, United Kingdom

assess the real-time performance of LLMs. As we traverse through
the subsequent sections, we unravel the significance of this
framework, its methodology, and the pivotal role it plays in
shaping the deployment landscape for Large Language Models.

2. BACKGROUND

Before the advent of LLMs, a substantial 70% of the Al Inference
market was dominated by CPU architectures, highlighting the
transformative shift brought about by the introduction of LLMs in
the landscape of inference processing. Within the burgeoning
landscape of LLMs, this publication unveils EchoSwift - a
pioneering benchmarking framework meticulously crafted to
assess the real-time performance of LLMs in deployment
scenarios. The results presented here reflect out-of-the-box
with software, with the
anticipation of additional performance gains in upcoming releases.

performance currently released

3. ECHOSWIFT OVERVIEW APPROACH

The article outlines benchmarking the performance of LLM using
LLama2-7B as the sample LLM model and measures Token
Latency, Throughput calculated as tokens per second, and Time To
First Token (TTFT).

“What is the capital of India?” . .
Time To First
Token (TTFT)
First Token
Response
“The” Total time
— taken for the
Final Token .
Response

Figure 1: Performance Metrics

Latency is measured of time to output each token when streaming
the output excluding the first token and is often measured in
millisecond.

Total time to output — TTFT
Total Number of Tokens — 1

Latency =

TTFT is the time to process the prompt and output the first token
and is often measured in millisecond.

159

Karthik Krishna & Ramana Bandili

TTFT=Time To First Token

Throughput is calculated as tokens per second which takes in to
account the total time taken to output all the tokens and
normalized to 1 second, i.e., total tokens for the output divided by
total time taken in seconds.

Total No of tokens
Total Time to Output (in seconds)

Throughput =

The EchoSwift Benchmark is used in two modes:
a) Configuration Discovery Mode
b) Performance Benchmarking Mode

In Configuration Discovery mode, we restrict the number of
parallel requests to 1, 3, or 10 while varying the parameters for
input token size and output token size based on the specific
requirements of the application. We employ this approach to test
different scenarios and identify Token Latency, Throughput, and
TTFT for various combinations of Input and Output tokens. The
data obtained is then used to discover the optimal configuration.

In Performance Benchmarking Mode, we maintain the input token
and output token size as constants (for example, 32 tokens for
Input and 256 tokens for output or any other combination specific
to the application requirement) and scale the number of parallel
requests (or parallel users) for this fixed combination of a single
input and output token. This scaling enables a better sizing of the
environment.

4. BENCHMARKING METHODOLOGY AND

STEPS
The steps for benchmarking LLM have been discussed below:

4.1. Data Collection

The Hugging Face Hub consists of the vast amount datasets for
variety of domains and tasks. The datasets available on Hugging
Face is continually expanding, and new datasets are consistently
being added by both the Hugging Face team and the community.
The Hugging Face Hub hosts a large number of community-
curated datasets for a diverse range of domains, languages, and
tasks such as translation, automatic speech recognition, and image
classification.

https://github.com/Infobellit-Solutions-Pvt-Ltd/EchoSwift

EchoSwift

ICPE Companion 24 , May 7-11, 2024, London, United Kingdom

Latency per token = (latency — TTFT) / (output tokens -1)

throughput(tokens/second) time_per_token(ms/tokens) TTFT(ms)

10164.167228969745
6698.907856014557
10499.014172004536
10188.46081092488
10187.930912012234
15509.653392946348
20098.91493699979
19571.4472719701
20293.855173047632
20033.219030010514
40229.331478942186
40152.020766050555
40425.17778498586

request start_time end_time input_tokens output_tokens latency(ms)
1 1970-01-08 17:25:27.448310 1970-01-08 17:25:37.612477 131 66
2 1970-01-08 17:25:37.638074 1970-01-08 17:25:44.336981 130 40
3 1970-01-08 17:25:44.338007 1970-01-08 17:25:54.837021 127 66
4 1970-01-08 17:25:54.838166 1970-01-08 17:26:05.026627 125 66
5 1970-01-08 17:26:05.027506 1970-01-08 17:26:15.215437 131 66
1 1970-01-08 17:26:27.510252 1970-01-08 17:26:43.019906 132 94
2 1970-01-08 17:26:43.041832 1970-01-08 17:27:03.140747 126 130
3 1970-01-08 17:27:03.141985 1970-01-08 17:27:22.713432 122 130
4 1970-01-08 17:27:22.714595 1970-01-08 17:27:43.008450 127 130
5 1970-01-08 17:27:43.010358 1970-01-08 17:28:03.043577 127 129
1 1970-01-08 17:28:25.104480 1970-01-08 17:29:05.333811 127 258
2 1970-01-08 17:29:05.355198 1970-01-08 17:29:45.507219 124 258
3 1970-01-08 17:29:45.508864 1970-01-08 17:30:25.934042 128 258
4 1970-01-08 17:30:25.936447 1970-01-08 17:31:06.918849 122 258

1970-01-08 17:31:06.920197

1970-01-08 17:31:43.705990

243

40982.402284047566

36785.79278790858

19.381814128216405
25.37727099013117
18.382678300847676
18.746698205404545
19.336605410989208
14,571569994129126
12.737005992733142
12.87590010580925
12.663931904930658
12.778775074365353
9.570131688654236
9.513842459530448
9.548504698063754
9.272272458950395

9.922308922480932

147.5228992004234
151.86879279700895
149.71888535297833
147.41419543010684
146.22517707757652
160.0505927632693
150.68639124032515
147.0961459531528
152.5422360237269
151.77725606190506
154.1136843813692
153.54457519837956
154.579172443584
157.11764341622504

149.59577474337118

575.178780942224
776.0249369312078
767.2866240609437
606.5381079679355
683.2944019697607
624.9482659623027
660.370466997847
596.044444013387
615.9067259868607
605.7302540866658
622.114592930302
691.0649400670081
698.3304669847712
603.167926077731

583.6153000127524

Figure 2: Sample Output for varying combinations of input and output token for Single User

The dataset used here in the benchmark is from ShareGPT Dataset
from Hugging Face. Dataset has been filtered based on varying
input token lengths. Considered input token lengths in this
context range from 32 to 2,000, with variations of approximately
£10 tokens for each length. The specified lengths include 32, 64,
128, 256, 512, 1K and 2K tokens, providing a comprehensive
coverage of input sizes for benchmarking. The dataset contains the
7 different files that have 1000 prompts for each token length as
specified. Python file DatasetFiltering.py has been used here for
Data Processing.

4.2. Configuration Discovery Test
The objective of the work involves identifying the optimal
configuration with a single container test.

The analysis involves determining the optimal latency, throughput
and TTFT by sending individual requests one at a time with

different input and output tokens. To enhance throughput, parallel
requests are then dispatched to the endpoint. Figure 2 above
depicts the sample output capturing the performance metrics
when a single request for 128 input tokens and with varying
output token combinations 64, 128, 256 is given as input request.
Similarly varying combinations of input and output tokens in
different combinations like 128 output tokens for 128 input and
256 output tokens for 128 inputs for 5 parallel requests are sent to
capture the ideal performance parameters.

The maximum throughput is identified when the model
consistently provides prompt responses to input requests without
significant degradation in latency. This approach allows for a
balanced assessment, ensuring that the system achieves optimal
performance by striking the right balance between response time
and concurrent processing capabilities.

4.3. Scale Testing/Parallel Requests

Locust Load testing has been used for benchmarking setup. Locust
is an opensource load testing tool, written in Python and is a
highly valuable tool for identifying performance bottlenecks,
testing the scalability of system, and ensuring that the developed
web applications can handle a specified level of traffic. The tool
allows to set theNumber of Userswhich indicates the maximum
no. of users that can run simultaneously, andSpawn Rate denotes
the number of users that will be spawned per second.

For deployment, hugging face text-generation inference model
server 1.1.1 is used.

The steps below need to be followed to run the load test:
1. Define the configurations to run the load test.

2. Listing the parallel users (1, 3, 10, 30) and the Input
tokens (32, 64, 128, 256, 512) and Output tokens (32, 64,
128, 256, 512).

3. TGI endpoint has been used for hosting the model.

In Section 5 the results are discussed and the generated graphs for
performance metrics have been explained in detail.

5. RESULT ANALYSIS

The result analysis involves determining the optimal latency,
throughput and TTFT by sending individual requests one at a time
with different input and output tokens. To enhance throughput,
parallel requests are then dispatched to the endpoint. This section
gives the detailed observation for Configuration Discovery Result
analysis and performance test.

5.1. Configuration Discovery Result Analysis

To identify an optimal Configuration to achieve ideal token
latency and throughput, the systems are tested with various
combinations of input and output tokens. The below graphs

160

ICPE Companion 24 , May 7-11, 2024, London, United Kingdom

illustrate the Throughput, Token latency and TTFT for single user
sending the requests to the endpoint for 32, 64, 128 input tokens
and 64,128, 256 output tokens.

In Figure 3, it can be observed that the throughput varies between
4.94 tokens/second to 11.88 tokens/second for single user.

I 64 Output Tokens [l 128 Output Tokens

B 256 Output Tokens

Throughput (tokens/second)

32_Input_Token 64_Input_Token 128_Input_Token

Figure 3: Throughput for Single User

Figure 4 depicts tokens latency for single user ranging from 233
milliseconds/token to 247 milliseconds/token.

0 64 Output Tokens [l 128 Output Tokens [l 256 Output Tokens

250
200
150
100

50

Token Latency (ms/tokens)

32_Input_Token

64_Input_Token 128_Input_Token

Figure 4: Token Latency for Single User

Similarly, Figure 5 depicts the TTFT for single user it varies
between 363 milliseconds to 859 milliseconds.

161

Karthik Krishna & Ramana Bandili

[64 Output Tokens [l 128 Output Tokens [l 256 Output Tokens

1000

~
[4)]
o

500

TTFT (ms)

260

32_Input_Token

64_Input_Token 128 Input_Token

Figure 5: TTFT for a Single User

The achieved performance results were obtained through testing
the model on a hardware configuration featuring a 16-core CPU
and 128 GB of RAM. It is anticipated that conducting the same
load testing on more robust hardware configurations will likely
yield even more substantial improvements in performance.

5.2. Performance Test (with Parallel Requests)

Result Analysis

The model can also be tested against multiple users for parallel
requests sent to the model endpoint for varying input and output
tokens combinations. Performance testing with parallel requests is
a critical aspect of evaluating the robustness and scalability of a
system. When analysing the results of such tests, it is important to
consider various factors to gain insights into the system’s
behaviour under intense loads. Therefore, a comprehensive
analysis of performance test is done by examining throughput and
token latency against parallel requests sent to the model to get
some insights for improvement.

Line graph shown in Figure 6 depicts the relationship between the
number of parallel requests made to the model endpoint and the
average latency of those requests. It can be observed that when
number of parallel requests increases, the average latency also
increases due to limited system resources. Thus, it is utmost
important to identify the ideal configuration that can handle
multiple parallel requests for scale testing.

1200

1000

Latency (in ms)
N B (<2 -]
o o o o
o o o o

o

40 60 80 100 120 140 160

Parallel Users

Figure 6: Latency vs Parallel Requests

EchoSwift

Graph in Figure 7 shows the relationship between the number of
parallel requests made to the model endpoint and the throughput
of the system, measured in tokens per second. It can be inferred
from the graph that the throughput increases linearly with the
requests initially and starts slowing down as the resources become
saturated, and eventually decreases when the system is overloaded
as the system has limited resources.

Thus, the specific curve and values will vary depending on the
specific system and workload, but the general trend is consistent.

120
100
80
60
40

20

Throughput (Tokens/seconds)

40 60 80 100 120 140

Parallel Requests
Figure 7: Throughput vs Parallel Requests

The above graphs can be used to understand the performance
limitations of a system under increasing load. It can help the users
to determine the optimal number of system configurations
required to handle the concurrent requests to while maintaining
acceptable throughput and latency. Additionally, it can be used to
compare the performance of different systems or to track changes
in performance over time.

6. CONCLUSION

This benchmark can be used to evaluate a single container, or a
cluster with thousands or nodes deploying an LLM. This can be
used to test scale, test latency, throughput and TTFT for any
environment deploying an LLM. This is not limited to Llama2 but
any form of LLM, quantized models with lower precisions (int8,
int4, etc) and different precision and different sizes with and
without CPU, GPU, Accelerators, or other technology.

This could also be used for inference benchmarking with Retrieval
Augmented Generation (RAG) based applications, Fine Tuning
models or Fully trained LLM models.

Benchmarking LLMs provides valuable insights for businesses
aiming to deploy natural language processing applications. To

16l

162

ICPE Companion 24 , May 7-11, 2024, London, United Kingdom

make the best decisions, it's crucial to acknowledge the specific
needs of each application and understand how well LLMs perform
on different types of CPUs, GPUs and Accelerators to identify the
ideal throughput, latency and scale and drive the total cost of
(TCO) of the
requirements of each application, coupled with an understanding
of the strengths and weaknesses of LLMs on different software
and hardware technologies, empowers

ownership lower. Consideration specific

and architectures
businesses to make informed and optimised decisions.

In line with our commitment to standardization and industry best
practices, we propose this workload to industry standard
organizations like SPEC to create standards for Inference on Large
Language Models. Establishing such standards will further
facilitate benchmarking efforts, promote consistency, and provide
a solid foundation for the broader adoption of LLMs in various
applications.

ACKNOWLEDGEMENTS

Authors would like to thank Anna Joseph, Gogula Akhil Reddy ,
Arun Kumar Tiwary , Bhavana k, Divya Singh, Harshitha T, Vadla
Sai Charitha, Sarthak Dwivedi, Kammara Prasad Achari, Arunima
Divya, who are engineers from InfobelllT who helped test and
develop this benchmark.

REFERENCES
(1]
(2]
(3]

https://spec.org/

https://tpc.org/

Raghunath Nambiar, Tilmann Rabl, Karthik Kulkarni, Michael
Frank:

Enhancing Data Generation in TPCx-HS with a Non-uniform
Random Distribution. TPCTC: 2015: 94-129

Meikel Poess, Raghunath Nambiar, Karthik Kulkarni, Chinmayi
Narasimhadevara, Tilmann Rabl, Hans-Arno Jacobsen: Analysis of
TPCx-IoT: The First Industry Standard Benchmark for IoT Gateway
Systems. ICDE 2018: 1519-1530
https://www.intel.com/content/www/us/en/developer/articles/techn
ical/accelerate-llamaz2-ai-hardware-sw-optimizations.html
https://huggingface.co/NousResearch/Llama-2-7b-
hf?ref=blog.truefoundry.com
https://github.com/huggingface/text-generation-inference
https://locust.io/

Llama 2: Open Foundation and Fine-Tuned Chat Models -
https://arxiv.org/pdf/2307.09288.pdf
https://www.anyscale.com/blog/reproducible-performance-metrics-

—
o)
=

[10]
for-llm-inference
[11] EchoSwift: https://github.com/Infobellit-Solutions-Pvt-Ltd/EchoSwift

https://spec.org/
https://tpc.org/
https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-llama2-ai-hardware-sw-optimizations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/accelerate-llama2-ai-hardware-sw-optimizations.html
https://huggingface.co/NousResearch/Llama-2-7b-hf?ref=blog.truefoundry.com
https://huggingface.co/NousResearch/Llama-2-7b-hf?ref=blog.truefoundry.com
https://github.com/huggingface/text-generation-inference
https://locust.io/
https://arxiv.org/pdf/2307.09288.pdf
https://www.anyscale.com/blog/reproducible-performance-metrics-for-llm-inference
https://www.anyscale.com/blog/reproducible-performance-metrics-for-llm-inference
https://github.com/Infobellit-Solutions-Pvt-Ltd/EchoSwift

