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ABSTRACT 
Large Language Models (LLMs) are advanced natural language 
processing models that are trained on vast amounts of text data to 
understand and generate human-like language. These models are 
designed to understand context, generate coherent and 
contextually relevant text, and demonstrate advanced language 
capabilities. In the dynamic landscape of LLMs, the demand for 
efficient inference benchmarking is crucial. 

Organizations such as TPC and SPEC brought several industry 
standard benchmarks [1][2][3][4]. This publication introduces 
EchoSwift [11], a comprehensive benchmarking framework 
designed to evaluate the real-time performance of LLMs in 
deployment scenarios.  

As LLMs ascend to the forefront of technological innovation, their 
seamless integration into real-world applications demands a 
nuanced understanding of their efficiency, throughput, latency, 
and scalability. It is within this dynamic landscape that our 
publication unveils the EchoSwift, a novel benchmarking 
framework meticulously crafted to address the pressing need for 
comprehensive inference benchmarking, as well as the discovery 
of the right configuration for specific LLM requirements. For 
instance, certain deployments might have 32 tokens as input and 
256 tokens as output, while others might have 256 tokens as input 
and 64 tokens as output. It is crucial to acknowledge that the 
configuration for these two requirements need not be the same for 
an optimal performance, scale and better TCO. The EchoSwift not 
only aids in comprehensive configuration discovery but also 
facilitates robust Performance/Scale testing, ensuring that LLM 
deployments are not only efficient but also finely tuned to their 
specific operational demands. 
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1. INTRODUCTION
 LLMs have become so profound that language comprehension 
and production have transcended traditional boundaries, making it 
imperative to gauge the real-time performance of these models in 
deployment scenarios more crucial than ever. The advent of LLMs, 
exemplified by models like the Llama2 from Meta with varying 
parameters and precision levels, has propelled them into the core 
of applications ranging from natural language processing to AI-
driven services. 

This publication delves into the intricate challenges posed by 
diverse LLM variants. Llama2 is one such open sourced publicly 
available LLM and this benchmarking tool was primarily tested 
with Llama2, however, this tool is applicable to all different LLMs 
deployed with various architectures and technologies. Llama2 is an 
advanced AI platform that combines cutting-edge algorithms, 
extensive data sets, and powerful computational capabilities to 
deliver exceptional results. Llama2 model has various models 
which different in parameters such as 7B, 13B, and 70B, coupled 
with precision nuances in BF16, Int8, and Int4. These intricacies 
make the identification of an ideal and efficient infrastructure for 
serving these models a formidable challenge. Enter EchoSwift – a 
compass guiding practitioners through the delicate balance 
between model complexity and operational efficiency in the realm 
of LLMs. 

In this publication, we embark on a journey to introduce and 
expound upon EchoSwift, a benchmarking framework tailored to 
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assess the real-time performance of LLMs. As we traverse through 
the subsequent sections, we unravel the significance of this 
framework, its methodology, and the pivotal role it plays in 
shaping the deployment landscape for Large Language Models. 
 

2. BACKGROUND 
Before the advent of LLMs, a substantial 70% of the AI Inference 
market was dominated by CPU architectures, highlighting the 
transformative shift brought about by the introduction of LLMs in 
the landscape of inference processing. Within the burgeoning 
landscape of LLMs, this publication unveils EchoSwift – a 
pioneering benchmarking framework meticulously crafted to 
assess the real-time performance of LLMs in deployment 
scenarios. The results presented here reflect out-of-the-box 
performance with currently released software, with the 
anticipation of additional performance gains in upcoming releases. 
 

3. ECHOSWIFT OVERVIEW APPROACH 
The article outlines benchmarking the performance of LLM using 
LLama2-7B as the sample LLM model and measures Token 
Latency, Throughput calculated as tokens per second, and Time To 
First Token (TTFT). 

 
Figure 1: Performance Metrics 

 

Latency is measured of time to output each token when streaming 
the output excluding the first token and is often measured in 
millisecond. 

𝑳𝒂𝒕𝒆𝒏𝒄𝒚 =
𝑻𝒐𝒕𝒂𝒍 𝒕𝒊𝒎𝒆 𝒕𝒐 𝒐𝒖𝒕𝒑𝒖𝒕 − 𝑻𝑻𝑭𝑻

𝑻𝒐𝒕𝒂𝒍 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑻𝒐𝒌𝒆𝒏𝒔 − 𝟏
 

 

TTFT is the time to process the prompt and output the first token 
and is often measured in millisecond. 

 

TTFT=Time To First Token 

 

Throughput is calculated as tokens per second which takes in to 
account the total time taken to output all the tokens and 
normalized to 1 second, i.e., total tokens for the output divided by 
total time taken in seconds. 

𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 =
𝑻𝒐𝒕𝒂𝒍 𝑵𝒐 𝒐𝒇 𝒕𝒐𝒌𝒆𝒏𝒔

𝑻𝒐𝒕𝒂𝒍 𝑻𝒊𝒎𝒆 𝒕𝒐 𝑶𝒖𝒕𝒑𝒖𝒕 (𝒊𝒏 𝒔𝒆𝒄𝒐𝒏𝒅𝒔)
 

 

The EchoSwift Benchmark is used in two modes: 

a) Configuration Discovery Mode 

b) Performance Benchmarking Mode 

In Configuration Discovery mode, we restrict the number of 
parallel requests to 1, 3, or 10 while varying the parameters for 
input token size and output token size based on the specific 
requirements of the application. We employ this approach to test 
different scenarios and identify Token Latency, Throughput, and 
TTFT for various combinations of Input and Output tokens. The 
data obtained is then used to discover the optimal configuration. 

In Performance Benchmarking Mode, we maintain the input token 
and output token size as constants (for example, 32 tokens for 
Input and 256 tokens for output or any other combination specific 
to the application requirement) and scale the number of parallel 
requests (or parallel users) for this fixed combination of a single 
input and output token. This scaling enables a better sizing of the 
environment. 

4.   BENCHMARKING METHODOLOGY AND 
STEPS 

The steps for benchmarking LLM have been discussed below: 
 

4.1. Data Collection 
The Hugging Face Hub consists of the vast amount datasets for 
variety of domains and tasks. The datasets available on Hugging 
Face is continually expanding, and new datasets are consistently 
being added by both the Hugging Face team and the community. 
The Hugging Face Hub hosts a large number of community-
curated datasets for a diverse range of domains, languages, and 
tasks such as translation, automatic speech recognition, and image 
classification. 
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The dataset used here in the benchmark is from ShareGPT Dataset 
from Hugging Face. Dataset has been filtered based on varying 
input token lengths. Considered input token lengths in this 
context range from 32 to 2,000, with variations of approximately 
±10 tokens for each length. The specified lengths include 32, 64, 
128, 256, 512, 1K and 2K tokens, providing a comprehensive 
coverage of input sizes for benchmarking. The dataset contains the 
7 different files that have 1000 prompts for each token length as 
specified. Python file DatasetFiltering.py has been used here for 
Data Processing. 

 

4.2. Configuration Discovery Test 
The objective of the work involves identifying the optimal 
configuration with a single container test.  

The analysis involves determining the optimal latency, throughput 
and TTFT by sending individual requests one at a time with  

 

different input and output tokens. To enhance throughput, parallel 
requests are then dispatched to the endpoint. Figure 2 above 
depicts the sample output capturing the performance metrics 
when a single request for 128 input tokens and with varying 
output token combinations 64, 128, 256 is given as input request. 
Similarly varying combinations of input and output tokens in 
different combinations like 128 output tokens for 128 input and 
256 output tokens for 128 inputs for 5 parallel requests are sent to 
capture the ideal performance parameters. 

The maximum throughput is identified when the model 
consistently provides prompt responses to input requests without 
significant degradation in latency. This approach allows for a 
balanced assessment, ensuring that the system achieves optimal 
performance by striking the right balance between response time 
and concurrent processing capabilities. 

4.3. Scale Testing/Parallel Requests  
Locust Load testing has been used for benchmarking setup. Locust 
is an opensource load testing tool, written in Python and is a 
highly valuable tool for identifying performance bottlenecks, 
testing the scalability of system, and ensuring that the developed 
web applications can handle a specified level of traffic. The tool 
allows to set the Number of Users which indicates the maximum 
no. of users that can run simultaneously, and Spawn Rate denotes 
the number of users that will be spawned per second. 

For deployment, hugging face text-generation inference model 
server 1.1.1 is used. 

The steps below need to be followed to run the load test: 

1. Define the configurations to run the load test. 

2. Listing the parallel users (1, 3, 10, 30) and the Input 
tokens (32, 64, 128, 256, 512) and Output tokens (32, 64, 
128, 256, 512). 

3. TGI endpoint has been used for hosting the model. 

In Section 5 the results are discussed and the generated graphs for 
performance metrics have been explained in detail. 

 

5. RESULT ANALYSIS 
The result analysis involves determining the optimal latency, 
throughput and TTFT by sending individual requests one at a time 
with different input and output tokens. To enhance throughput, 
parallel requests are then dispatched to the endpoint. This section 
gives the detailed observation for Configuration Discovery Result 
analysis and performance test. 

 

5.1. Configuration Discovery Result Analysis 
To identify an optimal Configuration to achieve ideal token 
latency and throughput, the systems are tested with various 
combinations of input and output tokens. The below graphs 

Figure 2: Sample Output for varying combinations of input and output token for Single User 
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illustrate the Throughput, Token latency and TTFT for single user 
sending the requests to the endpoint for 32, 64, 128 input tokens 
and 64,128, 256 output tokens. 

In Figure 3, it can be observed that the throughput varies between 
4.94 tokens/second to 11.88 tokens/second for single user. 

 

 

Figure 3: Throughput for Single User 

Figure 4 depicts tokens latency for single user ranging from 233 
milliseconds/token to 247 milliseconds/token.  

 

 

Figure 4: Token Latency for Single User 

Similarly, Figure 5 depicts the TTFT for single user it varies 
between 363 milliseconds to 859 milliseconds. 

 

 

Figure 5: TTFT for a Single User 

The achieved performance results were obtained through testing 
the model on a hardware configuration featuring a 16-core CPU 
and 128 GB of RAM. It is anticipated that conducting the same 
load testing on more robust hardware configurations will likely 
yield even more substantial improvements in performance. 

 

5.2. Performance Test (with Parallel Requests) 
Result Analysis 
The model can also be tested against multiple users for parallel 
requests sent to the model endpoint for varying input and output 
tokens combinations. Performance testing with parallel requests is 
a critical aspect of evaluating the robustness and scalability of a 
system. When analysing the results of such tests, it is important to 
consider various factors to gain insights into the system’s 
behaviour under intense loads. Therefore, a comprehensive 
analysis of performance test is done by examining throughput and 
token latency against parallel requests sent to the model to get 
some insights for improvement. 

Line graph shown in Figure 6 depicts the relationship between the 
number of parallel requests made to the model endpoint and the 
average latency of those requests. It can be observed that when 
number of parallel requests increases, the average latency also 
increases due to limited system resources. Thus, it is utmost 
important to identify the ideal configuration that can handle 
multiple parallel requests for scale testing. 

 

Figure 6: Latency vs Parallel Requests 
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Graph in Figure 7 shows the relationship between the number of 
parallel requests made to the model endpoint and the throughput 
of the system, measured in tokens per second. It can be inferred 
from the graph that the throughput increases linearly with the 
requests initially and starts slowing down as the resources become 
saturated, and eventually decreases when the system is overloaded 
as the system has limited resources. 

Thus, the specific curve and values will vary depending on the 
specific system and workload, but the general trend is consistent.  

 

 

Figure 7: Throughput vs Parallel Requests 

The above graphs can be used to understand the performance 
limitations of a system under increasing load. It can help the users 
to determine the optimal number of system configurations 
required to handle the concurrent requests to while maintaining 
acceptable throughput and latency. Additionally, it can be used to 
compare the performance of different systems or to track changes 
in performance over time. 

 

6. CONCLUSION 
This benchmark can be used to evaluate a single container, or a 
cluster with thousands or nodes deploying an LLM. This can be 
used to test scale, test latency, throughput and TTFT for any 
environment deploying an LLM. This is not limited to Llama2 but 
any form of LLM, quantized models with lower precisions (int8, 
int4, etc) and different precision and different sizes with and 
without CPU, GPU, Accelerators, or other technology.  

This could also be used for inference benchmarking with Retrieval 
Augmented Generation (RAG) based applications, Fine Tuning 
models or Fully trained LLM models. 

Benchmarking LLMs provides valuable insights for businesses 
aiming to deploy natural language processing applications. To 

make the best decisions, it's crucial to acknowledge the specific 
needs of each application and understand how well LLMs perform 
on different types of CPUs, GPUs and Accelerators to identify the 
ideal throughput, latency and scale and drive the total cost of 
ownership (TCO) lower. Consideration of the specific 
requirements of each application, coupled with an understanding 
of the strengths and weaknesses of LLMs on different software 
and hardware technologies, and architectures empowers 
businesses to make informed and optimised decisions. 

In line with our commitment to standardization and industry best 
practices, we propose this workload to industry standard 
organizations like SPEC to create standards for Inference on Large 
Language Models. Establishing such standards will further 
facilitate benchmarking efforts, promote consistency, and provide 
a solid foundation for the broader adoption of LLMs in various 
applications. 
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