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ABSTRACT
Go-Network is a Go language package for network generation and
sampling. The core package provides basic data structures represent-
ing undirected graphs. Go-Network currently supports only integer
values on graph nodes and edges. The library implements (a) data
loading utilities supporting frequent graph formats, (b) algorithms
for synthetic graph generation (e.g., Erdős-Rényi graphs), and thirty
implementations of graph sampling algorithms. Among the many
benefits the library inherits from Go (designed as a replacement for
C++) are the compilation and execution speed (compiles directly to
machine code) and its great support for concurrency while being
memory savvy. These factors make the library a powerful tool for
scientific purposes. We briefly describe the existing functionality,
compare it against another graph sampling library (Little Ball of
Fur), describe our design decisions, and draw attention to future
work. Go-Network is publicly available and can be imported from
https://github.com/graph-massivizer/go-network.
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• Software and its engineering→ Software libraries and repos-
itories; • Computing methodologies→ Artificial intelligence.
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1 INTRODUCTION
Our environment is full of systems for which it is challenging to de-
rive collective behavior based on the knowledge of its components.
Such systems are known under the term complex systems. They
can be modeled as networks to capture the interactions between
the system’s components of relevance to analyze the actual behav-
ior or make predictions. Networks may require modeling billions
of nodes and their relationships [3]. Nevertheless, when graphs
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get very large, working with them becomes challenging. Among
techniques that reduce their size while preserving properties of rel-
evance, we find graph sampling and graph summarization [14, 24].
While graph sampling considers a subset of nodes and edges from
the original graph, graph summarization reduces the graph to a
smaller data structure that maintains the relevant properties. With
the increasing relevance of graph neural networks, graph sampling
has regained new relevance: sampling methods have become an
indispensable strategy to speed up their training [6, 23, 34].

When applying graph sampling techniques, attention must be
devoted to whether particular sampling techniques preserve rele-
vant aspects and information of the graph relevant to downstream
tasks. While some research was devoted to understanding how
graph sampling techniques affect a specific graph, the variety of
tasks and aspects to be considered make it an open and relevant
research question [20, 23, 29, 39].

Motivation. Multiple libraries have been developed for network
analysis and operation. NetworkX [13] has long been a reference
library for graph processing, implementing a wide range of genera-
tors and graph processing algorithms. In the same line, the Stanford
Network Analysis Project (SNAP) library [21] has been developed
to provide efficient implementations for graph processing at scale
and collecting relevant network datasets. Among distributed pro-
cessing implementations, we find the GraphX module, which was
implemented on the top of Apache Spark [11]. Nevertheless, in
contrast to the abovementioned libraries, it provides a narrow se-
lection of implementations of graph processing algorithms. More
recently, standards have been developed for graph frameworks to
ensure standard building blocks for expressing graph algorithms in
the language of linear algebra (e.g., GraphBLAS [4]), and several
implementations were developed for them (e.g., SuiteSparse [7] or
GraphBLAST [37]). In addition, multiple libraries have been devel-
oped for deep learning on graphs (e.g., Deep Graph Library [36]
and PyTorch Geometric [8]. Nevertheless, when it comes to graph
sampling, while particular sampling algorithms have been released
(e.g., GraphSAINT [40]), few libraries gather graph sampling algo-
rithms in a single package. One such library is Little Ball of Fur [32],
which provides a Python interface and implementations for over
twenty sampling techniques. We propose Go-Network, a library
for efficient network generation and sampling, to address this void
in the Go language.

Contribution. We present Go-Network, an open-source graph
generation and sampling library implemented in Go. We describe
the library design and implementation, highlighting particular goals
and choices.

Outline. The paper has four sections. Section 2 briefly describes
our choice for the Go language. Section 3 reviews graph sampling
methods. Section 4 describes the library implementation, design
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choices, and the implemented graph sampling algorithms. Finally,
Section 5 concludes the paper and outlines future research.

2 GO LANGUAGE FOR MACHINE LEARNING
DEVELOPMENT

The Go programming language was designed and introduced by
Google in 2009 as a statically typed and compiled programming lan-
guage, prioritizing simplicity, safety, and concurrency. While faster
than, e.g., Python, it is currently an overlooked language for the
development of machine learning libraries, mainly due to its lack
of native support for CUDA and the limited amount of specialized
libraries focused on statistics, calculus, and matrix manipulation -
key to efficient machine learning implementations. Nevertheless,
its simplicity and ease of implementing concurrency make it an
attractive option for developing multi-threaded implementations
requiring overly complex code, e.g., if developed in C++. We ex-
pect that, with time, the current shortcomings of the Go language
ecosystemwill be overcome, making it the go-to option for machine
learning library development.

3 RELATEDWORK
This section briefly describes graph sampling algorithms, focusing
on the subset considered in two graph sampling libraries: Little Ball
of Fur [32] and Go-Network.

3.1 Graph sampling
We consider graph sampling methods to be divided into categories
based on two aspects: (a) the node/link selection criteria and (b)
the operation applied to the graph upon node/link selection. The
node/link selection criteria are usually divided into node-, link-,
exploration-based, and hybrid methods. On the other hand, three
operations can be applied to the graph: node/link preservation,
contraction, or deletion. Following this taxonomy, we briefly sum-
marize thirty graph sampling methods (see Table 1), and present
them in detail in the following subsections.

Much effort has been invested into characterizing the graph
sampling methods to understand what properties from the source
graph are preserved in the graph sample [19, 20, 35, 38]. In particular,
Krishnamurthy et al. [16] have shown that deletion or contraction
methods allow resampling graphs to about 70% of their original
size while keeping some original graph properties (e.g., the power-
law distribution is respected). The author highlighted that among
the benefits of resampling are simulation speed-ups: the authors
estimated that reducing a graph to up to 70% of the original size
can lead to simulation speed-ups of 11x or 37x for O(n2) or O(n3)
simulations. For a detailed overview of sampling techniques and
their properties, we defer the reader to the surveys by Hu et al. [14]
Qi [28], and Liu et al. [23].

3.1.1 Node/link contraction. Sampling by node/link contraction
involves iteratively merging edges in a large graph, reducing its
size while preserving key properties. This process continues until
a representative sample is obtained, enabling efficient analysis and
exploration of the original graph’s structure and characteristics.
We depict the procedure in Fig. 1.

Figure 1: Graph sampling by contraction works by incrementally
contracting (merging) nodes/links from a graph. The Figure depicts
two types of contractions node-based (on the left) and link-based
(on the right). The selected node/link is colored in dark gray.

Figure 2: Graph sampling by deletion works by incrementally remov-
ing nodes/links from a graph. The Figure depicts a case of node-based
deletion sampling. The selected node is colored in dark gray.

3.1.2 Node/link deletion. Sampling by node/link deletion is meant
to gradually remove nodes/links from the graph until the desired
graph size is achieved. This technique was introduced by Krishna-
murthy et al. [16], who considered such sampling should follow
three steps: (i) select nodes/links to be removed (only a small per-
centage (3%-5%) of nodes/links) and delete them, (ii) compute the
connected components, preserving the largest and deleting the rest,
and (iii) restart the procedure until achieving the desired graph size.
We consider (ii) to be done to ensure the resulting graph mirrors a
property observed in real-world graphs: that all of their elements
are linked [3]. We depict the procedure in Fig. 2.

Figure 3: The Figure depicts a case of node-based preservation sam-
pling. The selected nodes are colored in dark gray.

3.1.3 Node/link preservation. While the deletion methods select
nodes and edges to delete them from the graph, preservation meth-
ods do the opposite: they retain them. Graph sampling by preserva-
tion works by incrementally adding nodes/links from the source
graph to a new (initially empty) one. While the deletion-based
methods follow a procedure that ensures the resulting graph has
a single connected component, the preservation methods cannot
provide such guarantees. We depict the procedure in Fig. 3.
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Node/link Selection criteria Operation applied to node/link selection
Contraction Deletion Preservation

Node

Breadth First Search
Circulated Neighbors RandomWalk [41]
Common Neighbor Aware RandomWalk [22]
Community Structure Expansion [25]
Depth First Search
Diffusion [33]
Diffussion Tree [33]
Forest Fire [20]
Frontier [30]
Inclusive Random Neighbour [26]
Loop Erased RandomWalk [17]
Metropolis Hastings RandomWalk [15]
Non-Back Tracking RandomWalk [18]
PageRank [20]
Random [16] [35]
Random Degree [16] [1]
Random Neighbour [5]
RandomWalk [20]
RandomWalk With Jump [20]
RandomWalk With Restart [20]
Shortest Path
Snowball [12]
SpikyBall [31]

Link

Hybrid of RL and RNL [16]
Inclusive Random Node/Link [26]
Random Link [16] [16]
Random Link With Induction [2]
Random Link With Partial Induction [2]
Random Node/Link [16] [16]
RandomWalk [20]

Table 1: The table lists various graph sampling methods, referencing
the scientific works in which they were introduced.

3.1.4 Node/link selection strategies. Multiple strategies have been
devised to perform node/link selection. In this section, we introduce
some of them. In Table 1, we reference the scientific works in
which they were introduced, considering their intersection with
the operations applied upon node/link selection. Below, we briefly
introduce each of them:

• Breadth-First Search: starting at a random node, it per-
forms breadth-first search, including all of the nodes/links
traversed until achieving the desired size;

• Circulated Neighbors RandomWalk: simulates a random
walker where the nodes of a neighborhood are randomly
shuffled to ensure the walker can escape from closely knit
communities;

• Common Neighbor Aware RandomWalk: simulates a
random walker that has a preference for neighbors with a
lower number of common neighbors;

• Community Structure Expansion: given a random node
from the graph, it chooses a node already connected to ex-
isting sampled nodes, always generating a connected graph;

• Depth First Search: starting at a random node, it performs
depth-first search, including all of the nodes/links traversed
until achieving the desired size;

• Diffusion: simulates a diffusion process, sampling nodes/links
affected by the process;

• Diffussion Tree: is initiated by selecting a random node and
expanding via random walks to neighboring nodes. It aims
to efficiently capture local neighborhood structures while
preserving connectivity, yielding a representative subgraph
for analysis or further sampling;

• Forest Fire: simulates the fire spread through a forest, where
each node represents a tree and edges represent potential
paths of fire propagation. Starting from a randomly chosen
node, it iteratively spreads fire to neighboring nodes based

on a predefined probability parameter, typically resulting in
a graph structure characterized by clusters and long-range
connections resembling a forest fire propagation pattern;

• Frontier: iteratively expands a frontier set of nodes that
consists of nodes adjacent to the current subgraph. This
method efficiently explores the graph structure, allowing for
the generation of representative subgraphs for various graph
analysis tasks such as clustering, community detection, or
pattern mining;

• Inclusive Random Neighbour: similar to random neigh-
bor sampling, it includes the random node and the sampled
neighbor into the sampled graph;

• Loop Erased RandomWalk: is a stochastic algorithm used
to generate random spanning trees on graphs. It operates
by performing a random walk on the graph, erasing loops
encountered during the walk, and ultimately constructing
a spanning tree of the graph based on the path traversed
without forming cycles;

• Metropolis Hastings RandomWalk: is a Markov Chain
Monte Carlo method for sampling graphs based on a tar-
get distribution. It iteratively explores the space of possible
graphs by proposing changes to the current graph state and
accepting or rejecting these changes based on a probability
criterion derived from the Metropolis-Hastings algorithm,
ensuring convergence to the desired distribution;

• Non-Back Tracking Random Walk: generates random
walks on a graph where the walker does not backtrack to its
previous node at the next step, ensuring a path without rep-
etition. This technique is often employed in graph analysis
and sampling to explore the structure of the graph efficiently
while avoiding redundant traversal;

• Non-Back Tracking Random Walk: samples selecting
nodes with a probability proportional to their PageRank
scores, preserving the structural properties essential for
PageRank calculations;

• Random: randomly selects a node/link from the graph;
• Random Degree: randomly selects a node from the graph
with a probability proportional to their degree, ensuring that
the resulting graph maintains similar connectivity patterns
to the original one;

• Random Node: randomly selects a node from the graph
and then switches it for a randomly sampled neighbor;

• RandomWalk: simulates a random walk through its nodes
and edges. It involves starting from a random node, then
iteratively moving to neighboring nodes according to a sto-
chastic process, resulting in a sequence of visited nodes that
represent a sample from the graph’s structure;

• RandomWalk With Jump: similar to the Random Walk,
but for each step, a decision is made with a probability of
c=0.15 whether to continue the random walk or to jump to
some random node within the graph;

• RandomWalkWith Restart: similar to the RandomWalk,
but for each step, a decision is made with a probability of
c=0.15 whether to continue the random walk or to the start-
ing node;

• RandomWalk With Restart: starts by selecting two ran-
dom nodes to compute the shortest path between them later;
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• Snowball: iteratively samples nodes based on their connec-
tivity to previously sampled nodes, expanding the sampling
radius in a snowball-like manner. It starts with a small set of
seed nodes and gradually adds nodes connected to the sam-
pled nodes, typically used for capturing local neighborhoods
in large graphs efficiently;

• SpikyBall: constructs graphs by placing nodes on the sur-
face of a high-dimensional sphere and connecting them
based on geometric rules, resulting in graphs with a spiky
appearance.

4 LIBRARY DESIGN AND IMPLEMENTATION
4.1 Implemented methods
In Table 2, we provide a matrix describing the implemented graph
sampling methods, grouping them based on whether the sampled
element is a node or link, and two dimensions: (a) graph node/link
selection criteria and (b) the operation applied on the graph upon
the selected node/link.

Node/link Selection criteria Operation applied to node/link selection
Contraction Deletion Preservation

Node

Breadth First Search BoF
Circulated Neighbors RandomWalk BoF
Common Neighbor Aware RandomWalk BoF
Community Structure Expansion BoF
Depth First Search BoF
Diffusion BoF
Difussion Tree BoF
Forest Fire BoF
Frontier BoF
Inclusive Random Neighbour GoN GoN GoN
Loop Erased RandomWalk BoF
Metropolis Hastings RandomWalk BoF
Non-Back Tracking RandomWalk BoF
PageRank BoF
Random GoN GoN BoF, GoN
Random Degree GoN GoN BoF, GoN
Random Neighbour GoN GoN BoF, GoN
RandomWalk GoN GoN BoF, GoN
RandomWalk With Jump GoN GoN BoF, GoN
RandomWalk With Restart GoN GoN BoF, GoN
Shortest Path BoF
Snowball BoF
SpikyBall BoF

Link

Hybrid of RL and RNL GoN GoN BoF, GoN
Inclusive Random Node/Link
Random Link GoN GoN BoF, GoN
Random Link With Induction BoF
Random Link With Partial Induction BoF
Random Node/Link GoN GoN BoF, GoN
RandomWalk

Table 2: The table lists a variety of graph sampling methods, indicat-
ing which ones are supported by Go-Network (GoN) and which ones
by the Little Ball of Fur library.

4.2 Main modules
Overview. Go-Network is written in the Go language. The li-

brary declares a core graph model package and defines a graph
interface. The current release only supports undirected graphs. The
graph nodes and edges are modeled as integer values. Three kinds
of utilities have been made available so far: (a) data loading and
persistence, (b) graph generation, and (c) graph sampling.

Data loading and persistence. Various utilities are provided to
load and persist graphs encoded in various formats. We find edge
lists and adjacency lists among the supported formats.

Graph sampling. Thirty graph sampling algorithms were imple-
mented. To ensure extensibility regarding graph sampling algorithm
implementations, a Visitor pattern [10] was used. Doing so allows
new methods to be seamlessly included without changing existing
graph interfaces.

4.3 Design choices
To support a wide range of graph sampling algorithms while keep-
ing a stable graph interface, we implemented a Visitor pattern [27]
invoked on a graph. In particular, the sampling strategy is imple-
mented as a Visitor and calls upon a graph, which provides itself to
the Visitor to perform the sampling and then return the sampled
graph. Given certain sampling algorithms follow the same structure
(e.g., deletion sampling strategies perform incremental deletions
and select the biggest connected component), such structure was
implemented as a Template pattern [9], ensuring only the relevant
sampling strategy is provided, reusing the rest of the code from
the base struct. In Go-Network, graph sampling is not meant to be
destructive. Therefore, a deep copy of the original graph is created
before a sampling operation starts with deletion or contraction sam-
pling strategies. Each time sampling is invoked on a graph, a new
graph instance will be returned. This choice was made to ensure (i)
immutability, given immutable data is implicitly concurrent-safe,
and each concurrent process may operate on the same data without
modifying it, and (ii) once a graph is loaded, multiple graph sam-
pling algorithms can be applied simultaneously without altering
it while obtaining the corresponding sampled graphs. This design
decision may be reviewed in the future based on our benchmarking
experience performed on massive graphs.

5 CONCLUSION AND FUTUREWORK
In this paper, we have introduced Go-Network and compared it
against another graph sampling library: Little Ball of Fur. Go-Network
does not cover the wide range of node/link selection strategies Lit-
tle Ball of Fur yet provides. Nevertheless, Go-Network can already
boast more sampling strategies, providing implementations that
span graph sampling by contraction, deletion, and preservation,
while Little Ball of Fur provides only implementations considering
graph preservation. We consider supporting graph contraction and
deletion as key to scalable graph sampling while ensuring the graph
nodes remain connected [16]. Future work will focus on three areas:
(a) enrich data loading and graph generation capabilities, (b) imple-
ment additional graph sampling techniques while adding support
for multi-threaded and distributed execution, and (c) benchmark
the graph sampling algorithms while comparing them against other
implementations.
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