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ABSTRACT
While graph sampling is key to scalable processing, little research
has tried to thoroughly compare and understand how it preserves
features such as degree, clustering, and distances dependent on
the graph size and structural properties. This research evaluates
twelve widely adopted sampling algorithms across synthetic and
real datasets to assess their qualities in three metrics: degree, clus-
tering coefficient (CC), and hop plots. We find the random jump
algorithm to be an appropriate choice regarding degree and hop-
plot metrics and the random node for CC metric. In addition, we
interpret the algorithms’ sample quality by conducting correlation
analysis with diverse graph properties. We discover eigenvector
centrality and path-related features as essential features for these
algorithms’ degree quality estimation, node numbers (or the size of
the largest connected component) as informative features for CC
quality estimation and degree entropy, edge betweenness and path-
related features as meaningful features for hop-plot metric. Fur-
thermore, with increasing graph size, most sampling algorithms
produce better-quality samples under degree and hop-plot metrics.
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1 INTRODUCTION
Graphs offer a flexible approach to modeling connected compo-
nents and carry useful information about relationships of the struc-
tured data. However, accessing or processing full graphs in large-
scale scenarios is infeasible or poses considerable challenges. For
example, computing measures such as shortest paths, clusterings,
or betweenness centrality (BC) become impractical [12] on large
graphs. In such scenarios, graph sampling [12] is a popular remedy
that allows for estimating these properties from a small fraction of
its nodes and edges [25]. In addition, sampling can benefit machine
learning tasks, with training more effectively on smaller fractions
of the data. In particular, it can directly influence the robustness
[3] and performance [1] of graph neural networks.

As the graph sampling algorithms becomemore extensive, study-
ing their behavior becomes more demanding, as they perform dif-
ferently depending on desired quality metrics and graphs. Unfortu-
nately, literature remains scarce, and few works address this area,
considering the limited amount of synthetic or real graphs. Fur-
thermore, they do not provide an in-depth analysis of sampling
quality considering graph size and structural features.

To bridge this void, we compare twelve graph sampling meth-
ods across around 2900 synthetic graphs of six types and twelve
real datasets. We assess them using three metrics considered in
the literature [12, 27], i.e., degree, clustering coefficient (CC), and
hop-plots, to evaluate the qualities of samples regarding the orig-
inal graphs. We quantify the dependency of these properties on
graph features (77 features) and find the most relevant ones for
each algorithm and metric. We uncover some important depen-
dencies and highlight the most relevant features for different algo-
rithms regarding each metric. In addition, we evaluate algorithms
on small and large real graphs, confirming some of the relevant
features obtained for synthetic ones.

The paper has seven sections. Section 2 reviews relevant sam-
pling algorithms. Section 3 introduces related studies to our re-
search. Section 4 defines themetrics used for evaluating samplings’
result quality. Section 5 explains the experimental setup, including
datasets, and experimental settings. Section 6 analyzes the results.
Finally, section 7 concludes the paper and outlines future research.

2 GRAPH SAMPLING ALGORITHMS
We characterize graph sampling algorithms for static networks un-
der three categories: node, edge, and traversal-based sampling [12].
This paper contributes to the state-of-the-art by investigating the
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sampling qualities of twelve popular algorithms of the three cate-
gories under various graph properties.

2.1 Node-based sampling
Node-based methods are most intuitive but only weakly preserve
properties of specific graph types [2, 22], possibly losing connectiv-
ity [9]. Random node (RN) can preserve the CC for some graphs [9]
and the degree distribution for randomgraphs [22], however poorly
preserves the power-law degree distribution [14, 22] and average
path length (APL) for non-small samples. Randomdegree node (RDN)
applies probabilistic node selection proportional to the degrees [12],
but loses degree distribution by creating bias over high-degree nodes [22].
Random PageRank nodemitigates this bias [14] using nodes PageR-
ank scores [20].Node samplingwith contraction reduces the graph’s
size by randomly removing nodes [6].

2.2 Edge-based sampling
Edge-based sampling can preserve edge-dependent properties, such
as path length [2]. On the other hand, primary edge-based sam-
plers have bias over high-degree nodes and poorly preserve some
properties, such as connectivity and clustering. Random edge (RE)
has poor preservation of graph structure (higher APLs for larger
samples and lower CC). Random node edge (RNE) randomly se-
lects a node and its edge [12]. RN selection mitigates bias over
high-degree nodes [12]; however it can generate sparse graphs [14]
due to limited edge selection. To solve this problem, hybrid sam-
pling performs RNE or RE steps probabilistically [12], resulting in
less bias towards high-degree nodes than RE. Induced random edge
(IRE), an extension of RE, performs an induction step by adding all
edges between selected nodes in RE, collecting more information
and better preserving the topological properties [2]. Edge sampling
with contraction generates samples by randomly removing an edge
and merging nodes previously joined by that edge [6].

2.3 Traversal-based sampling
Traversal-based methods improve the performance of RN and RE
methods by capturing topological information of graph [2, 6].

Random traversal methods. Random walk (RW) performs sam-
pling initialized from one seed node [21] with a better degree dis-
tribution estimation [18], but can get stuck in a graph region. To
overcome this problem, random jump (RJ) jumps to a random node
with some probability. Metropolis-Hastings random walk (MHRW)
selects the neighboring nodes in RW proportional to degree ratios
[23], but fails to estimate the degree distribution well [18].Multiple
independent random walkers avoid sampling from a specific region
[6], [4], resulting in higher estimation errors [17].

Neighborhood exploration methods. Snowball (SB) traverses the
graph by selecting a fixed number of neighbors of the current node
set [5, 6], which preserves CC for certain graphs [9], but suffers
from boundary bias [9], underestimating power-low degree distri-
bution exponent and lower APL [9]. Forest fire (FF) adapted from
the evolution networkmodel [10]mitigates the local sampling prob-
lem of SB with the neighborhood size following a geometric distri-
bution [6] with a bias over high-degree nodes and getting stuck
in isolated clusters regions [14]. Frontier sampling (FS) performs
probabilistic node selection from the current set according to its

degree and replaces it randomly with one of its neighbors [17];
however, increasing the number of seed nodes (infinitely) results
in uniform node and edge distribution [6]. Expansion sampling (XS)
aims to preserve some graph community structure [13, 27] by start-
ing from a random seed and traversing the neighborhood by select-
ing the node maximizing out-links of the current sample. Rank de-
gree (RD) preserves community structure [27] by ranking the node
neighborhood by degrees [24], randomly selecting a node from a
seed set and its top-k neighbors as sample edges and replacing the
seed set with them. Tight sampling (TS) mitigates the local sam-
pling of SB trying to preserve local clusters around seed nodes [8].
List sampling (LS) tries to solve poor neighborhood exploration us-
ing a list of currently sampled nodes’ neighbors [28] and has a
better APL estimation on graphs with high CC [27].

3 RELATEDWORK
We summarize the studies for graph sampling algorithms analysis
in two sections: analytical and numerical evaluations.

3.1 Analytical evaluations
Stumpf and Wiu [22] analyzed RN on random, exponential and
scale-free graphs and Lee et al. [9] studied RN and RE on Albert-
Barabasi (AB) and real graphs.They characterized the degree distri-
bution of samples dependent on the original graph degree distribu-
tion and sampling rate. Illenberger and Flötteröd [7] analyzed SB
algorithm on Erdos-Renyi (ER) and real graphs and concluded that
the original graphs’ mean degree, degree correlation, and CC esti-
mation quality decrease with the increasing variance of the origi-
nal graph degree distribution. Ribeiro and Towsley [18] analyzed
RN, RE, RW, and MHRW, estimating the graph degree distribution
based on the unbiased Horvitz-Thompson estimator dependent on
sample degrees and distributions and verified on large real graphs.

Limitations. While providing accurate estimations, these analy-
ses study limited sampling algorithms and synthetic graphs and
do not consider various graph properties. We analyze several al-
gorithms (including updated algorithms) under six synthetic and
twelve real graphs, considering several graph features.

3.2 Numerical evaluation
Leskovec and Faloutsos [12] evaluated ten node, edge, and traversal-
based algorithms under scale-down and back-in-time samplings
using nine metrics (i.e., degree, CC, connected components sizes,
hop-plots, and singular values distributions) over four real graphs
concluding that traversal-based algorithms yield better results for
static graphs. Yoon et al. [26] evaluated RW under quality met-
rics, i.e., degree distribution, CC, and degree-degree correlation
for Albert-Barabasi (AB) and three real graphs and found for high
power-law degree distribution exponents, RWpreservesmost topo-
logical properties and reported deviations in small samples’ degree
distribution exponents with increasing the exponent. Lee et al. [9]
studied RN, RE, and SB under degree, BC, APL, assortativity, and
CC and found very different quantities of these properties for these
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algorithms. Zhang et al. [29] studied fourteen samplers of all cate-
gories using random and real graphs under numerical quality met-
rics (degree, BC, and hop-plots distributions), visualization, and ex-
ecution time and discovered that the algorithm’s performance de-
pends on graph type, size, andmeasured property. Yousuf et al. [27]
evaluated five traversal-based algorithms for twelve large real and
three synthetic graphs, i.e., forest fire model (FFM), Watts-Strogatz
(WS) and mixed model under degree, CC, and path length distribu-
tions, global CC (GCC), assortativity and modularity and analyzed
their performance for various graph types and properties, and con-
cluded that algorithms aggressively exploring the sample node’s
neighborhood better preserve structural properties and the selec-
tion of high-degree nodes is beneficial.

Limitations.Despite several studies, none characterize these sam-
pling algorithms thoroughly under diverse graph properties. We
try to fill this gap by analyzing correlations between quality met-
rics and graphs’ size and topological features on six synthetic data
types and twelve real graphs.

4 SAMPLING EVALUATION METRICS
We analyze the performance of a sampling algorithm under quality
metrics, assessing the similarity of the sample to the original graph
under a desired property to preserve.

4.1 Graph Properties
We considered three popular structural graph properties as sam-
pling quality metrics.

(1) Degree distribution captures the overall degree structure in the
graph in terms of the number of edges connected to each node.

(2) CC distribution evaluates the clustering property around every
node formulated as the number of closed triangles divided by
the possible (closed or open) number of triangles.

(3) Hop-plot distribution evaluates the closeness of interconnected
nodes (similar to the shortest path) [12, 15] by counting the
number of pairs separated by a maximum number of hops.

4.2 Distributions Divergence
Among the different distribution divergence metrics in the litera-
ture, we consider the Kolmogorov-Smirnov D-statistic metric used
in previous studies [12, 29] for analyzing samplings:

𝐾𝑆 = |max (𝐹𝐺 (𝑥) − 𝐹𝐺𝑠 (𝑥)) | ,

where 𝐺 and 𝐺𝑠 are original and sample graphs and 𝐹𝐺 (.) is the
cumulative distribution function of graph 𝐺 . We normalize the
distributions to be independent of graph size and capture struc-
tural properties, similar to [12]. We analyze sampling algorithms
using three quality metrics based on this definition: degree (D3),
CC (C2D2), and hop-plots (HPD2) distribution divergences.

5 EXPERIMENTAL DESIGN
We describe the extracted graph features, datasets, and experimen-
tal settings in our experiments.

Type |E| |G| 𝐷𝑒𝑔 𝐷 𝐶𝐶 𝐸𝐵𝐶 |𝑁 |
|𝐸 | 𝐻 (𝐷𝑒𝑔) 𝐻 (𝐶𝐶) 𝐸𝐼𝐶 𝐷𝑖𝑎

AB 196 ∼ 640, 000 460 115 0.13 0.19 2868 0.2 3.60 1.58 0.04 4.70
ER 1 ∼ 800, 479 560 111 0.12 0.12 2298 1.67 2.71 0.65 0.04 5.86
WS 200 ∼ 800, 000 460 135 0.15 0.23 6322 0.20 2.60 1.51 0.04 13.02
PLC 196 ∼ 5991 480 5 0.02 0.32 3552 0.42 1.84 2.32 0.03 6.75
FFM 104 ∼ 1, 801, 233 464 164 0.22 0.45 6013 0.51 2.77 1.99 0.03 14.28
SBM 316 ∼ 404, 879 475 117 0.13 0.29 1726 0.06 3.96 2.43 0.04 3.46

Table 1: Characteristics of synthetic graphs. (|G|: number of graphs).

Dataset |N| |E| 𝐶𝐶 H(deg) H(CC) 𝐶𝐶𝑣𝑎𝑟 𝐸𝐼𝐶𝑚𝑎𝑥 𝐷𝑖𝑎
Bio 924 3239 0.88 2.62 2.62 0.122 0.32 10
Email 1005 16,064 0.54 4.32 3.4 0.063 0.17 7
Pow-1138 bus 1138 1458 0.09 1.68 1.09 0.056 0.41 31
Euroroad 1174 1417 0.02 1.39 0.42 0.007 0.22 62
Soc-Wiki vote 889 2914 0.15 2.7 2.41 0.050 0.29 13
Tech-ISP 2113 6632 0.25 2.55 2.32 0.113 0.20 12
Tech-Topology 34,761 107,720 0.29 1.87 1.64 0.167 0.33 10
Tech-Gnutella 62,586 147,892 0.005 2.08 0.18 0.003 0.04 11
Tech-Caida 190,914 607,610 0.16 2.58 2.06 0.072 0.07 26
Cit-Cora 23,166 89,157 0.27 2.92 2.91 0.082 0.14 20
Cit-HepTh 27,769 352,285 0.31 4.14 3.40 0.049 0.26 15
Cit-HepPh 34,546 420,877 0.28 4.14 3.40 0.043 0.11 14

Table 2: Characteristics of real-world graphs.

5.1 Graph features
We considered several graph size and topology features, their sta-
tistics (minimum, maximum, median, mean, variance), and the fea-
tures’ calculation time. These features consist of node and edge
numbers (|𝑁 | and |𝐸 |), degree (𝑑𝑒𝑔), 𝐶𝐶 , and 𝐺𝐶𝐶 , degree and CC
entropy (𝐻 (.)), degree assortativity, density (𝐷), node and edge
BC (𝑁𝐵𝐶 and 𝐸𝐵𝐶), number and sizes of connected components
(𝐶𝑜𝑛𝐶𝑆), eccentricity (𝐸𝐶𝐶), eigenvector (𝐸𝐼𝐶), PageRank and far-
ness (𝐹𝐶) centralities, maximum spanning tree degrees (𝐷𝑀𝑆𝑇 ),
diameter (𝑑𝑖𝑎) and shortest path length (𝑆𝑃𝐿).

5.2 Datasets
Synthetic graphs. We generated around 2900 graphs of six types,

i.e., AB, WS, ER, power-low-cluster (PLC), stochastic block model
(SBM), and FFM with |𝑁 | of 100 ∼ 2000, summarized in Table 1.
These graph types have different properties, i.e., scale-free (AB
and PLC), clustering (WS and PLC), community structure (SBM),
evolving pattern (FF), and theoretical implications (ER). For fur-
ther analysis, we extracted 77 graph features (size and topology)
and reported average values of the most relevant ones in Table 1.

Real graphs. We considered twelve publicly available1 [11, 19]
real graphs of various sizes of around 1000 to 190.000 nodes and cat-
egories, including power, biological, email, infrastructure, social,
citation, and technology (Internet service provider (ISP)) graphs.
Table 2 represents their characteristics and relevant features.

5.3 Experimental setup
We conducted two sets of sampling experiments in our analysis:
(1) Small synthetic graphs finding correlations between sampling

algorithms’ performance and graphs’ features;
(2) Small and large real-world graphs investigating algorithms’ be-

havior according to the correlation results.
1http://konect.cc/networks/
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We considered sampling rates of 0.1 and 0.3, representing the
approximate percentage of graph nodes sampled from the graph.
We conducted each sampling experiment for five iterations and
reported the average results over different sampling rates, graph
types, and sampling iterations. We used the Pearson correlation co-
efficient 𝜌 [16] for quantifying the relationship between the graph
quality metrics introduced in Section 4.1 and graph features.

6 EVALUATION RESULTS
We provide analysis and evaluations on synthetic and real graphs.

6.1 Synthetic graphs
We summarize the results for the three quality metrics for four
graph types and analyze their dependency on graph properties.

6.1.1 Degree distribution divergence. Figure 1(a) compares only four
graph types (AB, ER, WS, and SBM) with similar average densities
(see Table 1), illustrating the relatively better performance of most
algorithms on AB graphs. XS and FF are the best algorithms.

Correlation analysis. Figure 2(a) represents the highly correlated
sampling algorithms and graph features (i.e., |𝜌 | > 0.5), including
only some statistics of features. The highest correlated features re-
gardless of algorithms are EICmax, H (deg), CCvar and EBCmed . We
also observed a higher correlation of path-related features (FC, SPL,
dia and ECC) with traversal-based algorithms, representing bet-
ter traversing and degree distribution preservation in graphs with
higher path lengths. This feature also impacts RE. 𝐸𝐵𝐶 ,𝐶𝐶𝑣𝑎𝑟 also
are more relevant to traversal algorithms, with 𝐸𝐼𝐶 and 𝐻 (𝑑𝑒𝑔)
being relevant to most traversal algorithms (indicating their poor
degree preservation on graphs with highly randomized degrees,
such as SBM graphs (Figure 1(a))). Density is more relevant to FF
and RJ. There is also a high relevance of 𝐷𝑀𝑆𝑇 to RNE.

6.1.2 Clustering coefficient distribution divergence. Figure 1(b) rep-
resents a better sampling quality in C2D2 than in D3 metric, with
better results for WS graphs. These results indicate the better CC
preservation of RN and RD for most cases.

Correlation analysis. Figure 2(b) represents the highly correlated
graph features with sampling algorithms’ C2D2 results. H (deg),
|N |, ConCSmax and NBC are the most relevant feature for most al-
gorithms. |N |, ConCSmax , and PRC are more correlated with node-
based algorithms i.e., RN and RNE. H (deg) and DMST are most
relevant to RD, MHRW, and FS traversal algorithms that are bi-
ased over higher degree nodes. NBC is important for edge-based
algorithms (RE, IRE, and RNE) and RDN.

6.1.3 Hop-plot distribution divergence. Figure 1(c) reveals FF as
the best algorithm for almost all four graph types. RJ and MHRW
have a low HPD2 for some graph types.

Correlation analysis. Figure 2(c) reveals some interesting high
HPD2 correlations with path-related features and EBC. Decreasing
path-related features results in lower HPD2 for most algorithms,
rising from lost connectivity by sampling (except for SB and FS al-
gorithms).We observed the same pattern for EBC andNBC.Whereas
𝐷 , CC, H (deg), 𝐷𝑀𝑆𝑇 , 𝑑𝑒𝑔 and |𝐸 |/|𝑁 | are negatively correlated
with most algorithms, however, they reverse impact FS and SB.

This indicates better distance preservation by decreasing distances
in dense or highly clustered graphs.

6.2 Real-world graphs
6.2.1 Degree distribution divergence.

Small graphs. Tables 9 and 3 represent that RJ and FF are the
best algorithms. Most traversal-based algorithms have D3 under
0.2 (with below 0.1 for FF) for Road and Bus datasets having high
path lengths, high EICmax and EBCmed , low H (deg) and density
relevant to most algorithms (Figure 2). RJ has a low D3 for the Bio
graph with a high CCvar and rather high EICmax relevant to RJ.
Almost all algorithms have high D3 for the Email dataset, having a
low EICmax and EBCmed , and highH (deg) relevant to all samplings.

FF XS RJ FS MHRW RN RNE RE IRE RDN SB RD
Email 0.21 0.44 0.23 0.74 0.32 0.67 0.84 0.52 0.23 0.26 0.65 0.25
Bio 0.18 0.25 0.12 0.38 0.25 0.74 0.83 0.43 0.15 0.20 0.61 0.18
Bus 0.05 0.09 0.13 0.12 0.13 0.65 0.64 0.46 0.33 0.52 0.26 0.55
Road 0.06 0.18 0.19 0.13 0.20 0.78 0.80 0.64 0.54 0.72 0.41 0.68
Wiki 0.15 0.31 0.16 0.37 0.22 0.61 0.71 0.39 0.18 0.17 0.39 0.25
ISP 0.24 0.37 0.17 0.22 0.22 0.55 0.60 0.32 0.18 0.20 0.26 0.26

Table 3: Average D3 for small real-world graphs

Large graphs. Large graphs revealed similar and different pat-
terns. Overall, RJ, IRE and RD perform better than other samplers
for large graphs (tables 4 and 9), where RJ is consistent with small-
scale results. FS has a very low D3 for Topology network with high
EICmax and CCvar . FF has a D3 of 0.1 for the HepPh dataset (and
0.12 for Cora) with a lower EICmin (opposite for Topology) and
high D3 for Gnutella, with low EICmax and CCvar , consistent with
our findings. Therefore, FF is a better choice for citation than tech-
nology graphs. RJ and IRE produce good-quality samples for Cora,
Caida and HepTh. Cora and HepTh have a very low EICmin (also
Caida) relevant to these algorithms. In addition, Cora and Caida
have higher diameters, correlated with them. RDN better estimates
the degree property of HepTh with a rather high EICmax.

6.2.2 Clustering coefficient distribution divergence.

Small graphs. According to Table 5, RN and RNE have the best
results (RN is consistent with synthetic data). Most algorithms can
better capture the CC property of Bus, Wiki and ISP networks.
It is interpretable for ISP network with more nodes and higher
ConCSmax relevant to C2D2 of most samplers.

Large graphs. Table 6 illustrates the best results for RN and RNE
(as in small-scale). RN has a perfect CC preservation with a max-
imum C2D2 of 0.01. For Gnutella, most algorithms very well pre-
serve the CC property, having low H (CC) and rather high |𝑁 | rel-
evant to C2D2. Additionally, this table represents poor CC preser-
vation of most algorithms on Caida and Topology datasets.

6.2.3 Hop-plot distribution divergence.

Small graphs. Table 7 represents the poor sample quality by al-
most all algorithms regarding HPD2 on small real graphs, except
for SB in Wiki. On average (Table 9), XS, RJ and FF has relatively
better results (FF performs well on synthetic (syn) graphs). We also
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Figure 1: Average synthetic graph quality metric results.

(a) D3. (b) C2D2. (c) HPD2.
Figure 2: Correlation matrix with graph features.

FF FS IRE MHRW RD RDN RE RJ RN RNE SB XS
Gnutella 0.28 0.24 0.27 0.29 0.35 0.24 0.36 0.24 0.56 0.44 0.26 0.33
HepPh 0.10 0.77 0.14 0.62 0.17 0.14 0.88 0.16 0.56 0.92 0.63 0.25
HepTh 0.17 0.71 0.12 0.55 0.08 0.11 0.83 0.12 0.51 0.89 0.57 0.29
Cora 0.12 0.43 0.11 0.39 0.10 0.17 0.69 0.10 0.57 0.79 0.41 0.14
Caida 0.24 0.17 0.10 0.20 0.14 0.18 0.55 0.09 0.55 0.71 0.24 0.20
Topology 0.27 0.04 0.25 0.34 0.18 0.28 0.44 0.19 0.65 0.59 0.31 0.29

Table 4: Average D3 for large real-world graphs.

FF XS RJ FS MHRW RN RNE RE IRE RDN SB RD
Email 0.3 0.45 0.26 0.27 0.23 0.11 0.16 0.29 0.28 0.29 0.23 0.34
Bio 0.27 0.36 0.23 0.26 0.31 0.10 0.13 0.21 0.19 0.24 0.24 0.34
Bus 0.29 0.13 0.10 0.16 0.45 0.07 0.08 0.08 0.07 0.07 0.26 0.24
Road 0.15 0.29 0.12 0.15 0.38 0.06 0.07 0.12 0.12 0.11 0.26 0.27
Wiki 0.33 0.08 0.15 0.15 0.28 0.08 0.09 0.09 0.09 0.10 0.12 0.19
ISP 0.04 0.04 0.05 0.04 0.12 0.04 0.05 0.04 0.04 0.05 0.41 0.29

Table 5: Average C2D2 results for small real-world graphs

FF FS IRE MHRW RD RDN RE RJ RN RNE SB XS
Gnutella 0.04 0.05 0.05 0.19 0.14 0.05 0.05 0.04 0.01 0.02 0.1 0.07
HepPh 0.16 0.21 0.21 0.18 0.39 0.22 0.21 0.17 0.01 0.09 0.31 0.43
HepTh 0.17 0.18 0.17 0.13 0.32 0.18 0.17 0.13 0.01 0.06 0.33 0.33
Cora 0.18 0.21 0.21 0.28 0.42 0.22 0.21 0.17 0.01 0.09 0.27 0.37
Caida 0.30 0.28 0.24 0.33 0.47 0.26 0.24 0.18 0.00 0.06 0.38 0.33
Topology 0.21 0.21 0.23 0.40 0.43 0.3 0.23 0.18 0.01 0.12 0.34 0.34

Table 6: Average C2D2 results for large real-world graphs

observed that high path lengths in Road and Bus graphs result in
poor HPD2 results for most algorithms.

FF XS RJ FS MHRW RN RNE RE IRE RDN SB RD
Email 0.37 0.55 0.27 0.80 0.15 0.49 0.79 0.49 0.31 0.31 0.53 0.18
Bio 0.31 0.18 0.20 0.46 0.31 0.56 0.87 0.43 0.19 0.26 0.12 0.29
Bus 0.35 0.15 0.56 0.42 0.75 0.96 0.99 0.85 0.71 0.89 0.89 0.92
Road 0.43 0.21 0.63 0.44 0.66 0.97 0.99 0.89 0.80 0.94 0.90 0.94
Wiki 0.30 0.35 0.19 0.42 0.17 0.62 0.91 0.39 0.20 0.27 0.07 0.39
ISP 0.36 0.46 0.23 0.52 0.27 0.63 0.95 0.54 0.29 0.37 0.14 0.48

Table 7: Average HPD2 results for small real-world graphs

FF FS IRE MHRW RD RDN RE RJ RN RNE SB XS
HepPh 0.24 0.93 0.10 0.63 0.16 0.10 0.91 0.09 0.53 0.97 0.55 0.28
HepTh 0.29 0.82 0.29 0.52 0.43 0.34 0.83 0.11 0.33 0.94 0.32 0.41
Cora 0.25 0.78 0.11 0.62 0.19 0.11 0.86 0.14 0.47 0.98 0.15 0.11
Topology 0.17 0.33 0.25 0.68 0.28 0.38 0.56 0.20 0.21 0.94 0.33 0.23

Table 8: Average HPD2 results for large real-world graphs.

Large graphs. Table 8 represents HPD2 results for four large real
graphs. This table and Table 9 indicate that on average RJ and IRE
can better preserve distances (RJ was also good in small graphs).
RJ, RDN, and IRE result in low HPD2 for the HepPh with a high
𝐻 (𝑑𝑒𝑔) and low 𝐸𝐵𝐶 relevant to these algorithms. We observe that
most algorithms have lower HPD2 for large graphs. These graphs
have lower diameters (Table 2) or path-related features, which is
important formost algorithms (Figure 2(c)).Therefore,H (deg), EBC
and path-related features appear to be important for the HPD2.

Overall results. The average results of three metrics in Table 9
indicate sampling algorithms’ quality regarding scale and type of
graphs (for HPD2 metric we only consider four large real graph
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D3 C2D2 HPD2
Syn Real Syn Real Syn Real

Small Large Small Large Small Large
FF 0.61 0.15 0.20 0.18 0.23 0.18 0.20 0.35 0.24
FS 0.77 0.33 0.39 0.15 0.17 0.19 0.69 0.51 0.71
IRE 0.71 0.27 0.16 0.15 0.13 0.18 0.28 0.42 0.19
MHRW 0.66 0.22 0.40 0.17 0.30 0.25 0.31 0.38 0.61
RD 0.65 0.38 0.17 0.20 0.42 0.36 0.44 0.56 0.27
RDN 0.79 0.34 0.19 0.16 0.14 0.21 0.34 0.51 0.23
RE 0.89 0.65 0.63 0.15 0.14 0.18 0.66 0.78 0.79
RJ 0.65 0.17 0.15 0.15 0.15 0.15 0.25 0.35 0.13
RN 0.87 0.59 0.57 0.09 0.06 0.01 0.43 0.49 0.38
RNE 0.90 0.74 0.72 0.12 0.10 0.07 0.78 0.92 0.96
SB 0.79 0.43 0.40 0.23 0.25 0.29 0.60 0.44 0.34
XS 0.60 0.27 0.25 0.36 0.23 0.31 0.30 0.32 0.26

Table 9: Average results for different graph categories

results). The algorithms can better preserve degree distribution for
real graphs and many algorithms have better sampling quality for
large real graphs. However, regarding CC most algorithms have
better sampling quality for synthetic graphs and RN and RNE per-
form better on large real graphs. Regarding HPD2most algorithms
have better results on large real graphs, due to the lower diameters.

7 CONCLUSION AND FUTUREWORK
We investigated the quality of samples by twelve sampling algo-
rithms of node, edge, and traversal-based categories underD3, C2D2,
andHPD2metrics.We evaluated themusing several synthetic graphs
of six types and twelve small and large real graphs. Our experi-
ments show different characteristics of algorithms. XS and RJ bet-
ter capture the degree distribution of synthetic and real graphs re-
spectively. RN results in better samples regarding CC for all graph
types. RJ produces better samples regarding hop-plots. Correla-
tion analysis and verification on large real graphs represented the
impact of EIC (usually high in citation or social networks), path-
related features and CCvar on D3 results of most algorithms.While,
|𝑁 | and ConCS are relevant to C2D2.H (deg), EBC and path-related
features aremost correlated with HPD2 results.We also discovered
inconsistent patterns in large graphs compared with small graphs.
As a particular result, the correlation analysis revealed no signifi-
cant dependency on the sampling rate. Overall, we observed better
sample quality of most algorithms on large real graphs under D3
and HPD2 metrics, which is promising for large-scale scenarios.

This work is beneficial to selecting an appropriate sampling al-
gorithm regarding the desired topological property of samples hav-
ing graph features. It can guide researchers in developing sampling
quality predictors by selecting the most relevant features. It can
also have implications for understanding algorithms and provide
better estimations for original graph properties by considering the
most correlated features.

Wewill conductmore experiments in the future, including larger
synthetic and real graphs, other sampling qualitymetrics, andmore
sampling algorithms. Furthermore, we will analyze the results us-
ing other methods, such as mutual information.
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