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ABSTRACT
High-performance computing (HPC) is the cornerstone of tech-
nological advancements in our digital age, but its management
is becoming increasingly challenging, particularly as systems ap-
proach exascale. Operational data analytics (ODA) and holistic
monitoring frameworks aim to alleviate this burden by collecting
live telemetry from HPC systems. ODA frameworks rely on NoSQL
databases for scalability, with implicit data structures embedded
in metric names, necessitating domain knowledge for navigating
telemetry data relations. To address the imperative need for ex-
plicit representation of relations in telemetry data, we propose a
novel ontology for ODA, which we apply to a real HPC installation.
The proposed ontology captures relationships between topological
components and links hardware components(compute nodes, rack,
systems) with job’s execution and allocations collected telemetry.
This ontology forms the basis for constructing a knowledge graph,
enabling graph queries for ODA. Moreover, we propose a compar-
ative analysis of the complexity (expressed in lines of code) and
domain knowledge requirement (qualitatively assessed by informed
end-users) of complex query implementation with the proposed
method and NoSQL methods commonly employed in today’s ODAs.
We focused on six queries informed by facility managers’ daily
operations, aiming to benefit not only facility managers but also
system administrators and user support. Our comparative analysis
demonstrates that the proposed ontology facilitates the implemen-
tation of complex queries with significantly fewer lines of code and
domain knowledge required as compared to NoSQL methods.

CCS CONCEPTS
• Information systems→ Resource Description Framework
(RDF); • Computing methodologies → Ontology engineering.
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1 INTRODUCTION
The rise in complexity of large-scale computing infrastructures
driven by post Moore’s and Dennard’s scaling era presents unprece-
dented challenges. Key challenges include efficient power manage-
ment, optimization for parallelism, data movement and storage,
software complexity, fault tolerance, scalability, workload diver-
sity, resource allocation, and security. Many data centers explore
Operational Data Analytics (ODA) to extract knowledge from mon-
itoring data, enabling control over system parameters and aiding
administrators through visualization. Despite extensive research
into individual aspects of ODA, comprehensive solutions for pro-
duction remain rare, particularly given the inherent complexity of
HPC[9, 13].

HPC is operated by multiple teams and organizations, each
tasked with distinct responsibilities for production. This includes
system administrators, facility managers, and user support, who
collectively contribute to its efficient operation and management.
ODA targets holistic management, where the data includes diverse
types such as job tables, sensor time-series data, and other varied
representations ranging from log files and configuration files to
system metadata. ODA frameworks often rely on NoSQL databases
as they allow flexibility with diverse data sources and scalability to
handle big data frameworks[11]. Moreover, namespaces adopted in
ODA are tailored to the specifics of vendors, sites, or configurations,
jeopardizing the portability of knowledge extraction solutions.

Acquiring domain knowledge presents a formidable challenge,
as it often relies on undisclosed or dispersed information within
various organizations and teams managing similar resources, lead-
ing to a fragmented understanding. In ODA, data demonstrates
interconnectivity and the true value lies in identifying and harness-
ing these complex relationships. These relationships encompass
various aspects, including the interactions between system compo-
nents, submitted jobs, their execution on specific compute nodes,
event correlations, and topology mapping.
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In this work, we propose the first ontology aiming to provide a
structured data model that captures these intricate relationships.
The current state-of-the-art data center ontologies focus on inven-
tory and infrastructure[4, 5], while the proposed ontology goes
further by incorporating topological component relationships and
establishing links between hardware components (such as compute
nodes, racks, and systems) and job data. This ontology serves as the
foundation for constructing a knowledge graph, providing a struc-
tured representation of ODA data, facilitating organized retrieval of
interconnected data using graph queries. This ontology has been de-
veloped specifically for the CINECA Italian Tier-0 supercomputing
center[15]. We utilized the Marconi100 (M100) system at CINECA,
which employs the Examon ODA framework for holistic monitor-
ing (detailed in sec.3), operating on Cassandra DB and KairosDB
(a NoSQL time-series database), utilizing an encoded version of
metric names and properties as column names. The results of this
manuscript were obtained using a subset of publicly available M100
Examon collected data [3]

Furthermore, this manuscript includes a comparative analysis
of query implementation complexity, measured in lines of code
(LOC), and domain knowledge required between ontology-based
approaches and NoSQL methods. A lower LOC indicates simpler
code, while qualitative assessment of domain knowledge require-
ments is pivotal in determining the user-friendliness of the pro-
posed ontology. The objective is to underscore the significance of
ontologies for ODA and illustrate how they can facilitate ODA for
HPC.

2 RELATEDWORK
In this manuscript, we target the development of ontologies for data
centers and HPC suitable for ODAs telemetry. With this regard,
Oscar Corcho et al.[5] identify a lack of comprehensive implemen-
tations and common data models not only in this field but also
across other ICT infrastructure areas. Their work is deemed impact-
ful, showcasing the practical use of ontologies in managing data
heterogeneity. Gabriel G. Castañé et al.[4], propose an ontology
integrating HPC and cloud. However, its emphasis on HPC-cloud
interrelations may limit its relevance to our specific requirement
of simplifying query of telemetry data in HPC. Liao et al.[7] intro-
duce an HPC ontology to ensure FAIRness (Findable, Accessible,
Interoperable, Reusable) of training datasets and AI models on
heterogeneous supercomputers. Their ontology offers controlled
vocabularies and formal knowledge representations for data anno-
tation and SPARQL query support, which is not the target of the
proposed manuscript. Kousha et al.[6] focus on an HPC ontology
tailored for job script submission and AI-assisted tools, unlike this
paper which concentrates on ODA telemetry data retrieval. Ad-
ditionally, Tuovinen et al.[14] present an HPC ontology to make
a unified framework capable of adapting queries across different
time-series storages. In contrast, the ontology proposed in this
manuscript is designed to address a specific set of queries essential
for the daily operations of an HPC facility manager/engineer. The
aim is to simplify query implementations and reduce the required
domain knowledge compared to NoSQL approaches. Additionally,

we validate our approach through a comparative analysis to demon-
strate its simplicity, thus proving the adoption of data structures to
handle unstructured telemetry data in large-scale HPC.

3 BACKGROUND: EXAMON
Examon is a holistic monitoring framework for HPC[2]. It is de-
signed to collect data from various sources, including hardware
sensors, software logs, and performancemetrics, and stores this data
in a NoSQL database (Cassandra, with KairosDB for time-series) in
a centralized repository.

Examon’s data collection targets a diverse range of sources, as
depicted in (Fig.1). The complexity of the collected data encom-
passes hardware sensors—such as CPU load across all cores, CPU
clock, instructions per second, memory accesses, power consump-
tion, fan speed, and ambient and component temperatures—along
with workload-related information like job submissions and their
characteristics. Additionally, Examon actively monitors compute
node availability by capturing warning messages and alarms from
diagnostic software tools used by system administrators. The figure
further illustrates the granularity of Examon’s approach, showcas-
ing separate plugins for each hardware component, each equipped
with specific sensors. This design underscores Examon’s capacity
to manage diverse data sources, contributing to its inherent capa-
bility to handle massive data complexity in monitoring. The openly
available dataset by Borghesi et al.[3] covers a spectrum of metrics,
from hardware parameters to system-related statistics.

Furthermore, Examon employs a specific set of parameters and
tags, and to interact with its dataset, it features a dedicated query
language known as ExamonQL. This language allows users to ac-
cess information stored in the database, including metadata, and
generate dataframes of the queried results.

4 METHODOLOGY
Themethodology involves creating a knowledge graph aligned with
Examon’s operational principles. This section details the proposed
ontology, its specifications, query language for ontology, complex
queries for comparison with ExamonQL, and the evaluation criteria
for the comparative analysis.

4.1 ODA ontology
In this subsection, we outline the reasoning behind the proposed
ontology, followed by its explanation. The Resource Description
Framework (RDF) plays a central role in this context, being a web
standard essential for ontologies and knowledge graphs. Employing
a triple structure—comprising subject, predicate, and object—RDF
efficiently represents relationships. In RDF, the Uniform Resource
Identifier(URI) uniquely identifies resources, such as classes and
properties. These URIs can be in the form of Uniform Resource
Locator(URL), providing the means to locate a resource on the
internet. In the context of the proposed paper, the resources refer to
components and telemetry data. RDF’s flexibility in accommodating
both literal values and resource descriptions makes it an invaluable
tool for constructing ontologies, providing structured models to
define concepts and their relationships[8].

4.1.1 Reasoning behind ontology. The proposed ontology follows
a novel approach that exploits the holistic nature of ODA’s (and
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Figure 1: Examon’s massive scale and data heterogeneity.

Examon’s) monitoring data and the natural ability of knowledge
graphs to capture relationships between data. As this ontology is
designed to facilitate the work of large-scale HPC center data ana-
lysts and facility managers, it is designed to best meet the needs of
these users. While Examon is a very powerful tool for holistic mon-
itoring, it requires a thorough knowledge of the data architecture
itself. With the proposed ontology, data is organized in a structure
that allows easy interrogation by end users. In particular, as will
be shown in the following sections, the data analysis process is
greatly simplified, allowing a data-driven usage, management, and
optimization of supercomputer systems production with workloads
such as those proposed by Molan et al.[10].

4.1.2 Ontology creation process. The proposed ontology is de-
veloped to establish logical connections among the various data
sources within Marconi100, as perceived by system administrators
such as facility engineers and managers. Aligned with the under-
lying principles of Examon (see sec.3), it caters to the meticulous
organization of telemetry data illustrated in Figure 1. In Examon,
telemetry data is structured in a Plugin-centric manner, with spe-
cific plugins housing sensors tailored to each resource within the
facility, be it a compute node or a component of the cooling in-
frastructure. These sensors gather data, which is then stored in
individual files within their respective folders in the database, fol-
lowing a clear pathway from Plugin to Sensor to Sensor Reading,
culminating in a storage file termed as a "Data Record" within our
proposed ontology (see Fig.2).

However, Examon lacks inherent topological information cru-
cial for understanding the physical organization and location of
resources, particularly significant for workloads involving graph
processing[10]. In an HPC facility, the natural topological structure
typically revolves around compute nodes housed in racks, each
rack assigned a physical location in the x and y dimensions, with
compute nodes stacked within. Consequently, the position of a com-
pute node within the stack becomes the third dimension, denoted
as "Position" in our proposed ontology.

Moreover, an integral aspect of any HPC system is the jobs
submitted to it. Therefore, our proposed ontology incorporates
job-specific information, establishing a natural linkage between
submitted jobs and the resources they utilize, which are compute
nodes. This holistic approach creates a unified framework wherein
every resource within the HPC facility is interconnected with its
logical connections—an aspect lacking in themonitoring framework
of Examon.

4.1.3 Proposed Ontology. The proposed ontology (Fig.2) presents
a significant improvement for ODA in HPC. This structured frame-
work organizes elements such as racks, nodes, positional infor-
mation, plugin-specific sensors, and their readings. It establishes
explicit relationships between HPC and ODA components, includ-
ing a specific link between submitted job and the resources utilized,
a feature lacking in other approaches[4, 5]. The proposed ontology
provides a comprehensive model for integrating and understanding
sensor data, spatial configurations, job execution, and deployed
software/hardware components status in HPC infrastructure.

Figure 2: Proposed Ontology

HPC cluster topology consists of multiple racks, each housing a
set of compute nodes. ODA frameworks[11] also organize data into
different plugins (9 in Examon: Nagios, Ganglia, IPMI, Job table,
Slurm, etc), each linked to its corresponding monitored sensors.
The proposed ontology mirrors these observations by representing
physical components as classes and capturing associated informa-
tion through properties. Relationships between classes are precisely
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defined, aligning with the arrangement of plugins and sensors of
Marconi100 and Examon.

Table 1 provides an overview of the proposed ontology’s classes
and their attributes, where each class represents a component
within the HPC system. Table 2 reports the properties of the pro-
posed ontology, outlining their roles and functionalities, which
establish relationships between classes.
Class Name Description
Sensor Represents individual sensors with attributes:

sensorName and sensorType.
Sensor Reading Captures sensor data with attributes: value,

timestamp, and unit.
Plugin Represents specific plugins, identified by

pluginName.
Job Represents job information with attributes: jobId,

startTime, and endTime.
Rack Represents physical racks with a unique rackId, that

houses nodes.
Node Represents individual compute nodes with a unique

nodeId

Position Defines spatial coordinates (posX, posY, posZ) of
nodes.

Data Record Represents stored data records in database with
attributes: fileName, startTimestamp, and
endTimestamp.
Table 1: Classes Overview

Property Description
Has Plugin Connects nodes to its plugins.
Has Sensor Links plugins to associated sensors in the HPC in-

frastructure.
Has Reading Connects sensors to its readings.
Uses Node Associates jobs with the nodes utilized during the

job’s execution.
Has Node Establishes a relationship between racks and nodes.
Has Position Connects nodes to spatial coordinates (X, Y, Z) repre-

senting their physical location.
Is Part Of Links sensor readings to data record, specifying their

inclusion in specific files in storage.
Table 2: Properties

4.2 Knowledge graph: Ontology realisation
Ontology is a structured way of representing knowledge, defining
concepts and relationships. Meanwhile, a knowledge graph is a
graph-based structure built upon the schema set by the ontology,
representing information in nodes(components) and edges(relations
between components). By constructing a knowledge graph based
on the proposed ontology, we enable the implementation of graph
queries. These queries would be utilized for the comparative analy-
sis between NoSQL methods. The evaluation criteria are explained
in the (sec.4.5).

4.3 ODA Complex Queries
Table 3 reports the complex ODA queries. Query 1,2,3 targets anom-
aly detection and prediction models that leverage node’s proximity
information and advance graph algorithms, like[10]. Query 4,5,6 tar-
gets the extraction of insights from job data. Overall, these queries
are instrumental for root cause analysis of anomalous behaviors

arising from the submitted jobs. By delving into job-related data,
the aim is to pinpoint irregularities, understand their origins, and
ultimately contribute to the reduction of anomalies in HPC opera-
tions. This approach aligns with the overarching goal of efficient
management of HPC systems through data-driven analytics and
insights derived from complex ODA queries.
No. Query Description
1 Generate adjacency matrix,

each node connected to the
closest nodes in a rack.

Finds closest nodes in the
same rack and constructs an
adjacency matrix.

2 Generate adjacency matrix for
the entire compute room, each
node connected to nearest
neighbors in the 3 dimensions.

Identifies nodes in proximity
in the entire compute room to
form an adjacency matrix.

3 Generate adjacency matrix for
nodes running the same com-
pute job.

Finds node running the same
compute job and forming its
adjacency matrix.

4 Average job power. Calculates average power con-
sumption for a specific job.

5 Howmany jobs are running in
a particular node, over a time-
period.

Count the number of jobs run-
ning on a specific node over a
time period.

6 What is the min, max, average
temperature when a node is in
use, over a given time-period.

Computes temperature statis-
tics of the node in use during
a specified period.

Table 3: Selected Queries

4.4 Ontology query language: SPARQL
SPARQL is the preferred choice for ontology querying due to its
seamless compatibility with the RDF structure. SPARQL aligns well
with RDF’s graph representation, making it ideal for expressing and
retrieving information from knowledge graphs. Its triple pattern
matching capability allows precise matching within RDF triples,
enabling users to specify complex relationships. SPARQL’s expres-
siveness and flexibility make it a powerful tool for crafting tailored
queries. Standardized by the W3C, SPARQL ensures consistency
and interoperability, establishing itself as a state-of-the-art solution
for RDF querying[1, 12].

4.5 Evaluation criteria
The evaluation of each query primarily focuses on its simplicity and
conciseness. This involves a thorough examination of the complex-
ity, indicated by the Lines of Code(LOC) required for each query.
Additionally, the assessment considers the level of domain-specific
knowledge necessary for executing the query effectively. A crucial
aspect of the evaluation is determining the comprehensibility of
each query for individuals with limited to no direct domain knowl-
edge. Traditional metrics such as time to execution and data fetches
are not applicable in this context. The knowledge graph based on
the proposed ontology resides locally, while the Examon query
retrieves information directly from the real Examon installation
and its remote database. Consequently, the execution time won’t
be utilized as a comparative metric in our evaluation. Similarly,
regarding data fetches, the extensive historical data in Examon
makes the volume queried substantially larger than the minimal
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RDF instances (described in sec.5.1) created for experimental pur-
poses. Hence, these metrics are not considered in our evaluation
approach.

5 EXPERIMENTAL EVALUATION
5.1 Experiment setup
The knowledge graph using the proposed ODA ontology is created
in the TURTLE(.ttl) format. SPARQL and Examon queries are exe-
cuted in a Python environment. Examon, being operational with
accessible historical data, allows retrieval of genuine historical data.
Examon utilizes its specific query library, ExamonQL, while RDF
and SPARQL execution in Python relies on the RDFlib library.

To initiate the process, we load the .ttl ontology file and populate
the RDF graph by traversing the tables of examon’s historical data
and selecting small batches of a few instances from each table and
expressing them in the RDF triple format, thereby constructing the
knowledge graph referred to as combined_graph in these queries.
The PREFIX at the start of each query serves as a unique identifier
for the entire ontology, with each component’s identifier as its
extension. The PREFIX remains consistent in all SPARQL queries
and is explicitly defined as follows: "cineca_m100" is the prefix
for the ontology with its base Unique Resource Identifier (URI),
"rdf" is the prefix for the RDF namespace, and "xsd" is the prefix
for the XML Schema namespace, used for defining datatypes in
RDF. These prefixes simplify the notation in SPARQL queries by
providing shorthand representations for longer URIs.

5.2 Query implementation
In this section, we will analyze the implementation of each query
in both SPARQL and ExamonQL, providing a detailed comparison

5.2.1 Query 1: Generate adjacency matrix, each node connected to
the closest nodes in a rack andQuery 2: Generate adjacency matrix for
the entire compute room, each node connected to nearest neighbors in
the 3 dimensions. These two queries are centered around obtaining
topological information, specifically in the context of identifying
compute nodes in close physical proximity. This focus is crucial
for graph-based machine learning and artificial intelligence, where
precise spatial information is essential for generating adjacency
matrices. It’s noteworthy that these two queries are not feasible to
execute using Examon due to the absence of spatial information in
Examon. We present the SPARQL query aligned with the proposed
ontology (Fig. 2) for further exploration. This process involves
retrieving the positions of all nodes within a rack and presenting
the results.

1 query = f""" SELECT ?node ?nodeId ?pos
2 WHERE {{
3 cineca_m100:rack{rack_number} cineca_m100:

hasNode ?node .
4 ?node cineca_m100:nodeId ?nodeId .
5 ?node cineca_m100:hasPosition ?pos .
6 }}"""

Query 1 and 2: SPARQL
The final manipulation process may differ based on different

edge connectivity strategies. We combine the first two queries into
a single subsection due to their similarity and shared requirements.

Notably, the semantic nature of this query establishes a hierarchy,
starting from identifying the target rack to its nodes and positions.
SPARQL’s semantic clarity enables intuitive understanding, even
for individuals with limited domain knowledge familiar with the
ontology and its basic concepts.

5.2.2 Query 3: Generate adjacency matrix for nodes running the
same compute job. This query focuses on job-specific analysis and
the direct linkage in the proposed ontology between job and nodes
makes its implementation simpler (lower LOC count, fewer param-
eters and namespaces based on proposed ontology which are not
specific to an ODA framework or HPC facility) than in ExamonQL.
This structure can be utilized as follows by identifying the job by its
"job_id" and examining its "usesNode" property to retrieve the list of
nodes where this job was executed. Whereas in Examon, accessing
specific data is more intricate due to the absence of direct relations
between its ODA components. Retrieving particular information
necessitates a deep understanding of Examon and its heterogeneous
data types. Users must possess domain knowledge (covering both
ODA’s data types and HPC internal structure ) to identify the rel-
evant data source, determine which data table holds the needed
information, and navigate the complete ODA framework to access
the necessary data.

1 query = f""" SELECT ?node ?nodeId
2 WHERE {{
3 cineca_m100:Job{job_id} cineca_m100:usesNode

?node .
4 ?node cineca_m100:nodeId ?nodeId .
5 }}"""

Query 3: SPARQL

1 #Setup for Marconi100
2 sq.jc.JOB_TABLES.add('job_info_marconi100 ')
3 data = sq.SELECT('*').FROM('job_info_marconi100 ')

.WHERE(job_id ={jobId}).TSTART ({ job_start_time
}).TSTOP({ job_end_time }).execute ()

4 #create dataframe of the query result
5 df = pd.read_json(data)
6 print(df['cpus_alloc_layout '][0])

Query 3: Examon

5.2.3 Query 4: Average job power. Implementation of this query
in SPARQL begins by identifying the nodes used and retrieving
start and end times for a job. It then follows a relationship path-
way from these nodes to their associated plugins and subsequently
to their sensors. In this particular instance, the query selects the
"total_power" sensor. Following this, the query proceeds to collect
all readings from the selected sensor and apply a filter based on
the job’s timestamp to narrow down the readings to those within
the job’s specified period. Finally, the query concludes by grouping
each node’s values using the groupby command.

1 query = f""" SELECT ?nodeId ?unit (AVG(? powerValue
) AS ?averagePower)

2 WHERE {{
3 cineca_m100:Job{job_id} cineca_m100:usesNode ?

node ;
4 cineca_m100:startTime ?startTime ;
5 cineca_m100:endTime ?endTime .
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6 ?node cineca_m100:hasPlugin/cineca_m100:
hasSensor ?sensor ;

7 cineca_m100:nodeId ?nodeId .
8 ?sensor cineca_m100:sensorName "total_power" ;
9 cineca_m100:hasReading ?reading .
10 ?reading cineca_m100:value ?powerValue ;
11 cineca_m100:timestamp ?timestamp ;
12 cineca_m100:unit ?unit .
13 FILTER (? timestamp >= ?startTime && ?timestamp <=

?endTime)
14 }} GROUP BY ?nodeId """

Query 4: SPARQL

In implementing this query in ExamonQL, we observe that the
number of lines for both query types is almost the same, yet it ap-
pears more complex than the SPARQL query. The complexity arises
because there is no inherent relationship between data sources in
Examon, which requires the user to connect the dots, necessitating
the users to be well-acquainted with each separate data source,
its tables, and the contents of each table to successfully execute
this query. The user has to navigate through different data sources
and establish the necessary connections manually. To facilitate this
process, the use of helper functions in Python becomes essential,
further contributing to the complexity of the query implementation.
In Examon, two sub-queries are required: one to gather job-related
data and another to retrieve sensor readings. Users must integrate
job information from the first sub-query into the second to obtain
the final value. This multi-step process adds complexity compared
to the straightforward SPARQL query.

1 def get_data(node_to_get ,start_time ,end_time):
2 data = sq.SELECT('*') \
3 .FROM('total_power ').WHERE(node=node_to_get).

TSTART(str(start_time)).TSTOP(str(end_time)).
execute ()

4 value = data.df_table['value ']
5 return value
6 sq.jc.JOB_TABLES.add('job_info_marconi100 ')
7 data = sq.SELECT('*') \
8 .FROM('job_info_marconi100 ').WHERE(job_id=

jobId).TSTART ({ start_time }).TSTOP ({ end_time })
.execute ()

9 # create df of the query result
10 df = pd.read_json(data)
11 # get the allocated nodes list
12 dict_of_nodes = df['cpus_alloc_layout '][0]
13 nodes = list(dict_of_nodes.keys())
14 start_time = format_TS(str(df['start_time '][0]))
15 end_time = format_TS(str(df['end_time '][0]))
16 for node in nodes:
17 df = get_data(node ,start_time ,end_time)
18 avg = df.sum()/len(df)

Query 4: Examon

5.2.4 Query 5: How many jobs are running in a particular node, over
a time-period. The implementations clearly show that the SPARQL
query requires fewer lines of code (LOC) compared to the Exam-
onQL query. This pattern aligns with the observation in Query 4,
where a single SPARQL query is used instead of two ExamonQL
subqueries due to the lack of connection between separate data

sources in Examon. Moreover, the semantic nature of SPARQL pro-
vides a logical structure that is easier to understand for individuals
with a basic understanding of the proposed ODA ontology. In con-
trast, the ExamonQL implementation underscores the necessity of
domain knowledge to achieve the desired output.

1 query = f""" SELECT (COUNT(?job) as ?jobCount)
2 WHERE {{
3 ?job a cineca_m100:Job ;
4 cineca_m100:usesNode cineca_m100:Node{node_id} ;
5 cineca_m100:startTime ?startTime ;
6 cineca_m100:endTime ?endTime .
7 FILTER (? startTime <= "{ end_time }"^^ xsd:dateTime

&& ?endTime >= "{ start_time }"^^ xsd:dateTime)
8 }}"""

Query 5: SPARQL

1 def get_nodes_list(jobId ,time_period):
2 data = sq.SELECT('*')\
3 .FROM('job_info_marconi100 ')\
4 .WHERE(job_id=str(jobId))\
5 .TSTART(time_period [0]).TSTOP(time_period [1]).

execute ()
6 # create df of the query result
7 df = pd.read_json(data)
8 # get the allocated nodes list
9 dict_of_nodes = df['cpus_alloc_layout '][0]
10 try: nodes = list(dict_of_nodes.keys())
11 except: pass
12 # create df of the query result
13 df = pd.read_json(data)
14 df['cpus_alloc_layout '][0]
15 nodes = list(dict_of_nodes.keys())
16 return nodes
17 # Setup for Marconi100
18 sq.jc.JOB_TABLES.add('job_info_marconi100 ')
19 data = sq.SELECT('*') \
20 .FROM('job_info_marconi100 ').TSTART ({

start_time }).TSTOP({ end_time }).execute ()
21 df = pd.read_json(data)
22 job_ids = df['job_id ']. to_numpy ()
23 count = 0
24 for job_id in job_ids:
25 try: nodes_list = get_nodes_list(job_id ,

time_period)
26 count += nodes_list.count(node_to_check)
27 except: pass

Query 5: Examon

5.2.5 Query 6: What is the min, max, average temperature when a
node is in use, over a given time-period. In the implementation of
this query, we can see that ExamonQL requires a lot more lines
of code(LOC) as compared to SPARQL. Additionally, in the case
of ExamonQL for this query, the necessity for four sub-queries to
obtain the final results further emphasizes the increased complexity
in comparison to the more concise SPARQL implementation.

1 query = f""" SELECT ?nodeId (AVG(? temperature) as
?avgTemperature) (MIN(? temperature) as ?
minTemperature) (MAX(? temperature) as ?
maxTemperature)

2 WHERE {{
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3 ?job rdf:type cineca_m100:Job ;
4 cineca_m100:startTime ?jobStart ;
5 cineca_m100:endTime ?jobEnd ;
6 cineca_m100:usesNode ?node .
7 ?node cineca_m100:hasPlugin/cineca_m100:

hasSensor ?sensor ;
8 cineca_m100:nodeId ?nodeId .
9 ?sensor cineca_m100:sensorName "temperature" ;
10 cineca_m100:hasReading ?reading .
11 ?reading cineca_m100:value ?temperature ;
12 cineca_m100:timestamp ?timestamp ;
13 cineca_m100:unit ?unit .
14 FILTER (? jobStart <= "{ end_time }"^^ xsd:dateTime

&& ?jobEnd >= "{ start_time }"^^ xsd:dateTime)
15 }}GROUP BY ?nodeId """

Query 6: SPARQL

1 def get_nodes_list(jobId ,time_period):
2 data = sq.SELECT('*') \
3 .FROM('job_info_marconi100 ').WHERE(job_id=str

(jobId))\
4 .TSTART(time_period [0]).TSTOP(time_period [1])

.execute ()
5 # create df of the query result
6 df = pd.read_json(data)
7 # get the allocated nodes list
8 dict_of_nodes = df['cpus_alloc_layout '][0]
9 try: nodes = list(dict_of_nodes.keys())
10 except: pass
11 # create df of the query result
12 df = pd.read_json(data)
13 df['cpus_alloc_layout '][0]
14 nodes = list(dict_of_nodes.keys())
15 return nodes
16 # Setup for Marconi100
17 sq.jc.JOB_TABLES.add('job_info_marconi100 ')
18 data = sq.SELECT('*').FROM('job_info_marconi100 ')

.TSTART ({ start_time }).TSTOP({ end_time })\
19 .execute ()
20 df = pd.read_json(data)
21 job_ids = df['job_id ']. to_numpy ()
22 node_used_in_job_list = []
23 for job_id in job_ids:
24 try: nodes_list = get_nodes_list(job_id ,

time_period)
25 if (node_to_check in nodes_list):
26 print(job_id ,nodes_list)
27 node_used_in_job_list.append(job_id)
28 except: pass
29 def get_data(node_to_get ,metric ,start_time ,

end_time):
30 data = sq.SELECT('*').FROM(metric).WHERE(node=

node_to_get).TSTART(str(start_time)).TSTOP(
str(end_time)).execute ()

31 value = data.df_table['value ']
32 return value
33 def get_job_time(jobId):
34 data=sq.SELECT('*').\
35 FROM('job_info_marconi100 ')\
36 .WHERE(job_id=str(jobId),node=node_to_check)\
37 .TSTART ({ start_time }).TSTOP({ end_time })\
38 .execute ()

39 df = pd.read_json(data)
40 start_time= format_TS(str(df['start_time '][0]))
41 end_time= format_TS(str(df['end_time '][0]))
42 return start_time ,end_time
43 each_job_df = []
44 for job in node_used_in_job_list:
45 start_time ,end_time = get_job_time(job)
46 try:
47 df = get_data(node_to_check ,metric ,start_time

,end_time)
48 each_job_df.append ((max(df),min(df),(df.sum()

/len(df))))
49 except: print("error")

Query 6: Examon

6 DISCUSSION
The evaluation of SPARQL queries against ExamonQL provides
valuable insights into their efficiency and usability for querying
topological information and conducting job-specific analyseswithin
HPC environments (see sec. 5.2). In queries 1 and 2, SPARQL’s se-
mantic clarity and alignment with the proposed ontology enable
intuitive querying, starting from rack identification to node po-
sitions. In contrast, Examon lacks spatial information, rendering
such queries unfeasible in ExamonQL. For queries 3, 4, 5, and 6, the
direct linkage between jobs and their utilized nodes in the proposed
ontology simplifies query implementation, resulting in fewer lines
of code and reduced complexity compared to ExamonQL. Addi-
tionally, SPARQL’s filtering capabilities lead to a more concise and
logical query structure, whereas ExamonQL’s fragmented queries
lead to increased complexity.

Overall, SPARQL consistently demonstrates advantages in ef-
ficiency and usability across all six queries, offering a structured
framework that simplifies query development and comprehension.
In contrast, ExamonQL’s manual connection requirements and frag-
mented querying pose challenges for users, necessitating a deeper
understanding of the underlying connectivity between different
data sources.

7 CONCLUSION
In this manuscript, we presented an ontology for ODA and a com-
parative analysis with state-of-the-art ODA methods. The compar-
ative analysis of complex ODA queries implemented in Examon
and SPARQL sheds light on the practical applicability of SPARQL,
showcasing its efficiency and clarity in query execution(fewer LOC
and less domain knowledge requirements). SPARQL’s semantic
nature allows users to comprehend queries by following the logi-
cal structure outlined in the proposed ontology. With even basic
knowledge of the proposed ontology, its classes, and relationships,
users can easily grasp the query’s intent. This feature enhances
accessibility and comprehension without necessitating extensive
domain expertise. SPARQL query seamlessly aligns with the in-
herent relations in the HPC data, making queries transparent and
aiding a straightforward understanding. Future work involves fur-
ther refining the ontology, assessing capabilities with more complex
queries, and converting historical Examon datasets into RDF format
for deployment in graph databases for further comparative analysis.
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