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ABSTRACT
Datacenters are key components in the ICT infrastructure support-
ing our digital society. Datacenter operations are hampered by op-
erational complexity and dynamics, risking to reduce or even offset
the performance, energy efficiency, and other datacenter benefits. A
promising emerging technology, Operational Data Analytics (ODA),
promises to collect and use monitoring data to improve datacen-
ter operations. However, it is challenging to organize, share, and
leverage the massive and heterogeneous data resulting from moni-
toring datacenters. Addressing this combined challenge, starting
from the idea that graphs could provide a good abstraction, in this
work we present our early work on designing and implementing a
graph-based approach for datacenter ODA. We focus on two main
components of datacenter ODA. First, we design, implement, and
validate a graph-based ontology for datacenters that captures both
high-level meta-data information and low-level metrics of opera-
tional data collected from real-world datacenters, and maps them
to a graph structure for better organization and further use. Second,
we design and implement ODAbler, a software framework for data-
center ODA, which combines ODA data with an online simulator
to make predictions about current operational decisions and other
what-if scenarios. We take the first steps to illustrate the practical
use of ODAbler, and explore its potential to support datacenter
ODA through graph-based analysis. Our work helps construct the
case that graph-based ontologies have great value for datacenter
ODA and, further, to improving datacenter operations.

CCS CONCEPTS
• Computer systems organization → Maintainability and
maintenance.

+These two authors contributed equally to this work.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’24 Companion, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0445-1/24/05
https://doi.org/10.1145/3629527.3652897

KEYWORDS
graph-based ontology, ODAbler, OpenDC, operational data analyt-
ics, monitoring, mapping, analysis, simulation, datacenter

ACM Reference Format:
Shekhar Suman +, Xiaoyu Chu +, Dante Niewenhuis, Sacheendra Talluri,
Tiziano De Matteis, and Alexandru Iosup. 2024. Enabling Operational Data
Analytics for Datacenters through Ontologies, Monitoring, and Simulation-
based Prediction. In Companion of the 15th ACM/SPEC International Con-
ference on Performance Engineering (ICPE ’24 Companion), May 7–11, 2024,
London, United Kingdom. ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/3629527.3652897

1 INTRODUCTION
Our economy, academia, and more broadly our society rely on ICT
infrastructures; for example, in the Netherlands, nearly two-thirds
of the $ 1 trillion GDP, over 3million jobs, and a large fraction of
economic growth depend directly on such infrastructure [6]. Data-
centers are one of the most important components of the modern
ICT infrastructure. The complexity of modern datacenters data in-
troduces significant operational challenges, including challenges
related to performance, availability, and efficient use of energy.
To address such challenges, we need new ways to collect, share,
and understand operational data across different operational layers
of datacenters, simplifying, hardware, software, and applications.
In this work, we consider how to enable Operational Data Ana-
lytics (ODA), a family of concepts and techniques that leverage
monitoring data to extract high-level, actionable knowledge that
can be used to drive operational decisions [12]. We focus in this
work on how ontologies, monitoring, and simulation-based predic-
tion can enable ODA for datacenters.

Figure 1 shows a common ODA process, derived from Netti et
al. [12]. The process includes five components: (1) The physical Dat-
acenter, which contains any kind of hardware, energy-transferring
devices, and cooling infrastructure; (2) Data Collection, which in-
cludes different sources of operational data, such as live monitoring
sensors, tracing frameworks, and logging, (3) Data Storage, where,
in this work, we propose to augment the traditional time-series data-
base with an ontology-based approach, (4) Data Analytics, where
different techniques, such as workload characterization and mod-
eling, are used and possibly combined, to analyze and optimize
datacenter operations, and, last, (5) Reassessment and Redeployment,
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Figure 1: ODA process.

where past analytics results and current status are used to drive
decisions and optimize the ODA process automatically.

We augment in this work the typical stage 3 in ODA processes
with an ontology-based approach, and stage 4 with an approach
that leverages the ontology and combines analytical capabilities
related to it into a larger ODA framework, ODAbler. Our motivation
to develop a datacenter ontology are based on the promise of graph
data for any field [14]: (1) Ontology can structure and formalize
complex hierarchies and relationships in graph formats and thus
can be a good way to organize operational data collected from
datacenters, (2) Many powerful graph-based algorithm applications
can be used for ODA data, leading to insights that are difficult to
obtain from non-graph data and in particular frommere time-series,
and (3) From a computer systems perspective, we also aim to give
insights into building graph-based datasets and data management
approaches for datacenter operational data, encouraging future
research in this area.

Several studies have already developed and built ontologies
specifically for ICT infrastructures and datacenters. [1–3]. The
CloudLightning Ontology [1] is designed to address the hetero-
geneous resources management interoperability issues. The HPC
ontology [9] is used for managing training datasets of AI models
for addressing various challenges in HPC. The ICT Infrastructures
ontology network [2] is a high-level datacenter ontology that in-
cludes software, database, hardware, server, and network. However,
these ontologies are neither built on the monitoring data, nor do
they cover all levels and attributes of datacenters, and they are not
designed for operational data analytics, which requires special func-
tions. Thus, a data-centered ontology for operational data analytics
is still lacking.

Addressing a key gap around the use of ontology-based ap-
proaches for datacenter ODA, in this work we take first steps to-
ward a universal framework for datacenter ODA, with a twofold
contribution:

(1) We design and implement an ontology to structure the data
collected in datacenters (in Section 3). It is the first data-
centered ontology for datacenters, which could enable com-
plex graph analysis and applications in the future. We vali-
date the implementation through a prototype ontology that
meets the requirements for a real-world HPC cluster dataset.

(2) We design and implement the ODAbler framework for data-
center ODA framework (in Section 4). Based on the ontology
designed for this work, ODAbler enables the ingestion and
export of operational metrics typical of datacenters. It also

Jobs

Scheduler

Rack

Rack

Rack

Figure 2: System model.

supports complex analysis of datacenter scenarios, around
a state-of-the-art simulator (here, OpenDC [11]). Last, it
offers the technology framework necessary to explore, in
the future, the use of graph-based analysis to understand
how datacenters operate and to conduct what-if analysis for
datacenters in a new way.

2 BACKGROUND
In this section, we describe the system model from which we col-
lected data, and provide basic information about ontology.

2.1 System model
Figure 2 depicts the system model in the HPC cluster we used
to collect data. A datacenter system is composed of many racks,
each of which accommodates multiple server nodes. The nodes are
connected through a network interconnect. Different kinds of jobs
are submitted to a scheduler which then schedules them onto the
nodes of the datacenter. A job can use a single node or multiple
nodes.

We build the ontology based on the data collected from the
SURF Lisa cluster by two tools. First, SLURM scheduler logs, from
which we collect 10 months of job data, from the end of December
2021 to November 2022, with 1,596,963 records and 16 metrics. The
dataset includes job-related metrics such as the number of machines
allocated to jobs, the nodes that were allocated, and the completion
status. Second, Prometheusmonitor, fromwhichwe collect 5 months
of node data, from June 2022 to November 2022, with 127,827,719
records and 82 metrics. This dataset includes node-related metrics
such as node capacities, CPU load, memory, network, and power
and temperature metrics. All these metrics are supposed to be
covered in the designed ontology.

2.2 Ontology and OWL basics
Ontology is the field of science that helps us investigate what types
of entities (or classes, sometimes also called concepts) exist in a do-
main of discourse, how they are grouped into categories, and how
they are related to one another on the most fundamental level. An
ontology along with a set of individual instances of classes consti-
tutes a knowledge base [13]. The common reasons for developing an
ontology are below [13]: (1) Sharing a common understanding of
the structure of information among the utilizing resources; (2) En-
abling reusability of domain knowledge; (3) Making explicit domain
assumptions; (4) Analysing domain knowledge.
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The Web Ontology Language (OWL) is a formal language for
expressing ontologies and is based on the description logic (DL). The
underlying format that is fundamental to storing a wide range of
information in OWL-based ontologies is the Resource Description
Framework (RDF). The information stored in an RDF consists of a
triple: subject, property, and object. For instance, ("DataCenter-XYZ",
hasAmbientTemperature, "21 degrees") states that a DataCenter-XYZ
has an ambient temperature of 21 degrees (which could further
be explicitly related to the time of record capture using another
property, or annotated with the timestamp information).

In this project, OWL has been used for modeling the ontology
(where OWL support is made available in the Python platform by
Owlready2 [8]), and a few experiments (using the SPARQL language)
have been conducted to validate that the designed ontology meets
the expectations by satisfying the requirements outlined in the next
section. Some of the key definitions that set up the basis of the
ontology modeling using OWL are outlined below:

• Classes: Entities in an object-oriented world. In an ontology,
an individual can belong to several classes. The relation
between the two classes can be disjoint (two disjoint classes
cannot have individuals in common), pairwise disjoint (any
pair made up of two classes from this list are disjoint), and
partitions (to declare "either-or" of a class).

• Data properties: properties whose values are data (number,
text, date, boolean, etc.). The data properties have a domain
(the class for which the property is defined), and range (the
associated datatype, which can be an integer or a real number,
boolean, character string, date, and so on).

• Object properties: properties whose values are entities (i.e.
ontology individuals). The range of object properties is the
class of associated objects.

Generally, developing an ontology includes the following practi-
cal steps [13]:

1. Determine the domain and scope of the ontology.
2. Consider reusing existing ontologies.
3. Enumerate important terms in the ontology.
4. Define the classes and the class hierarchy.
5. Define the data properties of classes.
6. Define the object properties of classes.
7. Create instances.

3 ONTOLOGY DESIGN
In this section, we first analyze the requirements for the proposed
datacenter ontology. Following the requirements, we design and
implement the ontology according to the metrics collected from an
HPC datacenter, both high-level and detailed. We also explore how
they could be useful for Operational Data Analytics (ODA). Finally,
we conduct validations to ensure that the ontology aligns with the
proposed requirements.

Following the ontological process introduced in Section 2.2, we
determine the domain and scope of the ontology through require-
ments analysis in Section 3.1 as step 1. We reuse the existing on-
tology in Section 3.2 as step 2. We do high-level design including
identifying important terms in Section 3.3 as step 3. We cover steps
4-6 in in Section 3.4, and create instances for validation in Sec-
tion 3.5.

Table 1: The overall statistics of the designed ontology, based
on metrics from the SURF Lisa dataset.

Axiom count 710
Logical axiom count 442
Declaration axiom count 230
Class count 82
Object property count 17
Data property count 63
Individual count count 69
Annotation property count 2

3.1 Requirements analysis
In order to support operational data analytics, the datacenter ontol-
ogy has to cover a large scope, including infrastructure, hardware,
software, and applications. Besides, we give four functional require-
ments and two non-functional requirements for the datacenter
ontology.

3.1.1 Functional requirements.

FR1. Time-series modeling. The ontology should support the
modeling of attributes extracted from time-series metrics
collected from a large-scale computing infrastructure, e.g.,
an HPC cluster.

FR2. Resource description. The ontology should describe the
datacenter cluster resources in a structured way, including
details about nodes, processors, etc.

FR3. Performance metrics. The ontology should capture and
analyze performance metrics such as resource utilization
and energy consumption.

FR4. Consistency and accuracy. The ontology should be con-
sistent and accurate in its representation by reflecting the
state of the datacenter and its resources.

3.1.2 Non-functional requirements.

NFR1. Interoperability. The ontology should be designed with
interoperability in mind, which should facilitate integration
or reuse with/by other ontologies.

NFR2. Usability. The ontology should be user-friendly, having
sufficient comments or labels for accessibility by both experts
and non-experts.

3.2 Reusing existing ontologies
The best resource that is closer to our ontology requirements is a
work of literature studying the ontological representation of time-
series observations on the Semantic Sensor Web [4]. It suggests
the usage of three important modeling classes, out of which we
find that the most relevant class "Observation" can be reused, and
thus discussed in detail below. The two other classes "Observation-
Collection" and "TimeSeriesObservation" do not seem convincingly
reusable, mainly because of the nature of the requirements to model
a sample time-series data. If we were to model multiple time-series
data in the ontology, then we could have inherited the same struc-
ture. But, in this project, we limit ourselves to demonstrating a
single set of records in the ontology model, other than the estab-
lished relations amongst the classes. Some of the relationships for
observations that have been used here are listed below:
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Figure 3: High-level classes of the datacenter ontology. The
arrow denote the "is-a" relation between classes.

• featureOfInterest: Representation of the object being observed.
• observedProperty: The phenomenon for which the observa-
tion result provides an estimate of its value.

• samplingTime or generatedAtTime: The time when the phe-
nomenon was measured.

• result or value: An estimate of the value of a property gener-
ated using a known procedure.

• memberOf : A relation to a set of observations of observation
collection.

3.3 High-level design and classes
The ontology has been developed to structure and formalize com-
plex hierarchies and relationships of operational data in datacenters,
it provides a foundation to enable further graph-based applications.
We first give an overview of the statistics of the designed ontology,
then we describe the high-level classes, and the key subclasses step
by step.

The ontology has been developed in the OWL language by using
Protégé1 as the ontology editor, knowledge management, and visu-
alization system. We follow a common naming convention when
defining the ontology terms: Singular nouns in CamelCase are used
to present a Class, while Property names start with lowercase letters.
The statistic of the implemented prototype is shown in Table 1. The
ontology has 82 classes, 17 object properties, and 63 data properties
in total.

3.3.1 High-level classes. Figure 3 depicts the high-level classes in
the designed ontology. It consists of: a Concept class, which de-
scribes the Entity in datacenter, such as Software entity, which

1Protege - https://protege.stanford.edu/

Table 2: Object properties of the datacenter ontology.
Property Domain Range
atLocation Thing Thing

exportMonitoringMetrics MetricsExporter MonitoringMetrics
featureOfInterest Thing Feature
hasExitCode Thing ExitCode

hasJobScheduler Computer JobScheduler
hasMember Thing Thing

hasMetricsExporter Entity MetricsExporter
hasMonitoringSystem Computer MonitoringSystem
hasResourceManager Computer ResourceManager

isScheduledOn Data Thing
isScheduledOnServer Thing Server

manageJob Software Job
managesJob JobScheduler Job

measuresValueOfThing MonitoringMetrics Thing
hasMember Thing Thing

observedProperty Thing Property

includes JobScheduler, MetricsExporter, ResourceManager, Monitor-
ingSystem and so on; a Feature class describing different metric col-
lector in the datacenter; a Hardware class, which defining hardware
configurations such as Processor, Memory; a Artifact class, which
captures various source of Data from Job or MonitoringMetrics.

3.3.2 Key subclasses. MonitoringMetrics is an important subclass of
class Data, where we map the metrics collected in the dataset to the
ontology. Here we capture different kinds of metrics of datacenter
including energy-related data such as Temperature, EnergyUsage,
and resource-related data such as CPULoadAverage, NumberOfIOs.
MetricCollector is a subclass of class Feature, which shows different
data collectors such as CPULoadCollector, MemoryStatisticsCollector.
The subclasses of class Hardware shows the common components
of a datacenter, including Server, Rack, Processor etc.

3.4 Detailed design and propertites
There are two kinds of properties: object properties are whose values
are entities (i.e., ontology individuals), data properties are whose
values are data (numbers, texts, dates, Booleans, etc.). In this sub-
section, we will introduce the details of object and data properties
in our ontology.

3.4.1 Object Properties. Object properties indicate the relation-
ships between two classes. Table 2 shows the information of object
properties in the designed ontology. The class Thing has eight rela-
tionships with other classes, including: atLocation, presents Thing
is at some location; featureOfInterest, which describes the feature
being observed; hasExitCode; hasMember, indicates the membership
relation between two entities, and memberOf is an inverse relation
of it; isScheduledOnServer, indicates job is scheduled on some server
(node); observedProperty, which provides an estimation of observed
value. The class Computer has three relations: hasJobScheduler, has-
MonitoringSystem, hasResourceManager, which reveals the relations
between hardware and software. The object properties show the
complexity of hierarchies in different layers inside a datacenter, so
it is the key to linking different components and metrics.

3.4.2 Data Properties. Figure 4 shows partial data properties in
this ontology. Since the goal of ontology is to better organize the
operational data generated in datacenter, it should cover time-series
metrics as required. The data properties include all the metrics
we can collect in the SURF Lisa dataset, and the range of these
properties is either float or string.
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Figure 4: Particial data properties of the datacenter ontology.

3.5 Validation
This section is to validate that the modeled ontologies meet the
requirements of an ontology in terms of structural modeling. It
should be noted that the overall ontology structure could be val-
idated to be syntactically correct using the graph dump property
(ontology.graph.dump in Python’s Owlready2 module2), to ensure
that there are no errors encountered while representing data with
the ontology (e.g., datatype mismatch, incorrect attribute-name,
data missing scenario). If the modeled ontology is structurally in-
correct while adding data, then the graph dump statement should
give an error.

3.5.1 Validation of key properties. Validation of some of the key
properties that are common in both ontologies (e.g. ambient tem-
perature, host power usage, etc.). We perform a SPARQL query to
validate that the results are matched in both ontologies, as shown
in the listing below:

1 result_surf = list(default_world.sparql("""

2 PREFIX <https :// example.org/hpcontology_surf.owl#>

3 SELECT DISTINCT ?x where{

4 ?x rdfs:subClassOf* Property .

5 }

6 """))

3.5.2 Validation of graph structure. Verification that the modeled
ontology also reflects the graphical layout, which could be inferred
to create general graph structures on the fly for analytical purposes
(e.g., for performing ODA-related analysis). The goal of this experi-
ment is to verify that the ontology modeled for both HPC clusters
can be visualized in the form of graphical layouts with nodes and
edges, which could be easily converted to a graphical structure
in a graph database using available tools. The resulting graphical
layout for SURF’s LISA cluster is visualized using WebVOWL ontol-
ogy visualization and shown in Figure 5, from which we can see
properties such as NodeTemperature, PowerUsage, FileSystemSize are
presented in a graph format, with the relations to other metrics in
the ontology.

2Owlready2 - https://owlready2.readthedocs.io/en/latest/

Figure 5: SURF’s OWL ontology visualization (using Web-
VOWL) showing the graph layout according to the VOWL
specification, and listing graphical nodes and edges informa-
tion on the right side information box.
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Figure 6: High-level architecture of ODAbler framework.

4 ODABLER: DESIGN OF ONTOLOGY-BASED
SIMULATION IN OPENDC

We propose and implement ODAbler as a prototype to show how
the ontology can benefit operational data analytic.

4.1 Architecture of ODAbler framework
The key design element of ODAbler involves several key elements
as represented in Fig. 6. Some of the key elements include OpenDC
itself, and Apache Kafka as the middleware which is responsible for
message publishing to a time-series database InfluxDB, using the
Telegraf agent. Once the time-series data is available at InfluxDB,
the ODAbler client application performs out-of-band analysis (as
part of the current scope of its implementation)

4.2 Implementation of the ODAbler framework
4.2.1 Ontology-driven export of OpenDC metrics. As shown in
Table 3, the corresponding attributes or properties are selected
to be exported to the time-series database InfluXDB for further
analysis by the ODAbler analysis client. This screenshot is taken
from the OpenDC’s MonitoringMetrics class, which is a data class
whose sole purpose is to hold data of various metrics as reflected
by the name of the member properties.
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Table 3: Metrics exported to time-series database reusing the
concepts from the designed ontology in the section 3.

Name Type
cpuIdleTime Long

cpuActiveTime Long
cpuLostTime Long
energyUsage Double

upTime Long
serverId Int
timestamp Long

cpuUtilization Double
powerUsage Double

guestsRunning Int
policyId Int

4.2.2 Technical implementation. The technical implementation of
the ODAbler framework involves the following steps: (1) Enable
fault injection in OpenDC; (2) Launch InfluxDB and Kafka; (3)
Start Telegraf service; (4) Launch OpenDC server, then launch OD-
Abler client analyzer application. (5) Export operational data from
OpenDC to Apache Kafka. (6) Kafka exports the ontology-driven
relevant power usage and energy usage metrics (besides others) to
InfluxDB via the Telegraf agent. (7) ODAbler performs out-of-band
analysis on InfluxDB data, once the data is fully available.

4.3 Exploration of graph applications
We explore the potential applications of ontology-based graph ap-
plications for datacenter operational data analytics. (We have not
yet built these capabilities in ODAbler, but plan to do so.)

4.3.1 Graph queries. Application performance and behavior are
linked across the hardware-software stack. However, the metrics
are isolated in different parts of the stack. Ontology-enabled moni-
toring and analysis tools help link metrics across the stack. Listing 1
provides an example query to access all machines running an ap-
plication using the “production” database and the p99 latency of
the connection between the application and the database.

1 SELECT ?appname , ?machine , p99(? latency)

2 WHERE

3 {

4 ?x appname ?appname ;

5 isScheduledOn ?machine ;

6 linkedTo ?link .

7 ?link linkedTo ?db .

8 hasMetric ?y .

9 ?y metricname "latency" .

10 value ?latency ;

11 ?db appname "production" .

12 }

Listing 1: Example query to retrieve p99 latency of all apps
connected to the “production” database.

4.3.2 Graph analysis. The typical data center data analysis work-
flow now involves manually collating and analyzing metrics data.
New databases [7] have demonstrated the benefit of graph-aware
query engines for linked data. However, the link information is
unique to each data center, hindering the development of ODA-
specific databases and limiting us to slow ad-hoc data analysis. A

common ontology would allow data center operators to bring pow-
erful tools to bear on operational data analytics [12] and workload
modeling [15].

4.3.3 Graphmachine learning. Machine learning has proven promis-
ing in data center resource management applications [10, 15]. How-
ever, automatically enhancing datacenter processes remains a chal-
lenge. Data availability and domain shift are two obstacles to per-
vasive machine learning in the data center. Each datacenter has
its own idiosyncratic data collection architecture, and ML systems
trained on one datacenter’s data do not prove helpful in other data-
centers. Data normalized using a common ontology helps tackle
these obstacles.

5 RELATEDWORK
An ontology encompasses a representation, formal naming, and
definition of the categories, properties, and relations between the
concepts, data, and entities that substantiate one, many, or all do-
mains of discourse. The basic idea is to represent the properties of
a subject area and their relationships, by defining a set of concepts
and categories that represent the subject. One of the main reasons
for designing an ontology for HPC is to make training datasets and
AI models FAIR (FAIR data principles describe Findability, Acces-
sibility, Interoperability, and Reusability) [9]. Some of the existing
HPC ontology design already captures both high-level meta infor-
mation as well as low-level data content for software, hardware,
experiments, workflows, training datasets, AI models, and so on 3.

HPC ontology modelling work has already been done in previous
scientific research. There are several research works already done
in the field of HPC ontology, for example, by C. Liao et al. [9], and
by Castañé et al. [1], amongst others. One of the comprehensive
HPC ontology designs that already captures both high-level meta
information aswell as low-level data content for software, hardware,
experiments, workflows, training datasets, AI models, and so on
is available as HPC Ontology. There are other works of literature
on HPC resources’ ontology models like Zhou et al. [19], Zhao et
al. [18], Tenschert [16] and others, but those are simplified where
the main goal of the authors has been to decompose applications
between compute and data processes for HPC environments. There
are several other works of literature presenting a unified ontology
of cloud computing like Youseff et al. [17] and Imam [5]. Amongst
these works, we did not find any literature studying themodelling of
ontology derived from the metrics collected from operational HPC
clusters. But, thesemetrics are the source of ODA framework design,
and, so, the ODA framework should be driven by the modelled
ontology, which should be derived from those captured metrics of
large-scale computing infrastructures.

6 CONCLUSION AND FUTUREWORK
This paper presents our ongoing efforts to build a datacenter on-
tology to enable operational data analytics based on the data from
a real-world HPC cluster. We adopt both high-level and detailed
designs to cover the designed requirements. The resulting data-
center ontology has modeled properties of essential concepts of
this domain, including hardware, software, and collected metrics.

3https://hpc-fair.github.io/ontology/
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Through the validation, the ontology can support typical search
queries using SPARQL.

An essential item of future work is to incorporate graph-based
analytics into ODAbler, and, further, explore applications of this
technology. Although the exact capabilities of a graph-based OD-
Abler, and more generally of graph-based datacenter ODA, are
largely unknown, this line of future work will bring evidence of
whether our exploration in Section 4.3 is correct and could result
in a new way of understanding datacenters.

Future work will also include extensions of the current ontology,
such as more comprehensive relations between different entities.
We will also add more individuals to the ontology and conduct
graph-based experiments to see if the ontology can help better
understand the datacenter operation. The current draft ontology is
available online at https://github.com/am-i-helpful/hpc-ontology-
modeller .
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