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ABSTRACT
This work critically examines several approaches to temperature

prediction for High-Performance Computing (HPC) systems, fo-

cusing on component-level and holistic models. In particular, we

use publicly available data from the Tier-0 Marconi100 supercom-

puter and propose models ranging from a room-level Graph Neural

Network (GNN) spatial model to node-level models. Our results

highlight the importance of correct graph structures and suggest

that while graph-based models can enhance predictions in certain

scenarios, node-level models remain optimal when data is abun-

dant. These findings contribute to understanding the effectiveness

of different modeling approaches in HPC thermal prediction tasks,

enabling proactive management of the modeled system.

CCS CONCEPTS
• Hardware → Temperature simulation and estimation.
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1 INTRODUCTION
High-Performance Computing (HPC) represents a pinnacle of com-

putational capability, harnessing the power of advanced hardware
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and software technologies to solve complex problems with un-

matched speed and precision. The price for this unparalleled perfor-

mance is the high hardware and operational costs, which become

even more critical with the transition to exascale. The most crucial

variable cost is the energy consumption of facility infrastructure,

which is not directly linked to processing [9]. The cooling of the

processing elements is the main contributor to this consumption

along with its associated costs [3].

Intelligent thermal monitoring and prediction systems are being

introduced to minimize the cooling expense and consequently re-

duce the variable cost of the HPC operation. These systems vary

from macro-scale, predicting the power-usage efficiency of the en-

tire data center in connection to weather conditions, to micro-scale,

modeling the thermal dynamics of the processor of the single com-

pute node. Accurate and reliable thermal prediction models would

enable more efficient utilization of HPC computing systems, such

as direct integration with the scheduler [3]. Energy-aware sched-

uling, such as the one proposed in [3], is already a well-explored

concept in the HPC domain. During periods of high cooling costs,

the scheduler aims to schedule fewer and fewer intensive compute

jobs on the system.

Associated with the rise in performance, HPC systems have

also exploded in complexity. Exascale and pre-exascale systems

have up to tens of thousands of compute nodes, each consisting of

CPUs and dedicated accelerators [9]. This explosion in complexity

necessitates the transition frommanual analysis and domain-driven

models to the introduction of machine learning models. The most

recent trend in machine learning-powered predictive models for

HPC is the use of graph representation and Graph Neural Networks

(GNNs) [6]. HPC systems are an ideal target for GNNs as there

are multiple layers of connection between logical units (compute

nodes), such as physical layout or job proximity.

In this work, we critically examine the utility of the graph pro-

cessing approaches for the thermal prediction use case and compare

it against the domain-driven per-node model. Based on this valida-

tion, we find the best node-level thermal prediction model that can

be scaled to current and future pre- and exascale HPC systems. We

perform the experimental evaluation on a publicly available dataset

curated by the University of Bologna [4]. All proposed models are
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also publicly available and form the basis for future exploration of

graph- and non-graph-based predictive models for HPC systems.

Our code is available at https://gitlab.com/ecs-lab/hpc-thermal.

Figure 1: Taxonomy of HPC modeling approaches.

2 RELATEDWORK
2.1 Machine learning approaches in HPC
There are twomain approaches to buildingmachine learningmethod-

ologies to support HPC systems: holistic and component-level mod-

els [8]. Each of them leverages the specific characteristics of HPC

systems. Component-level approaches aim to build many different

machine learning models such as neural networks, each tailored to

a specific component or subsystem of the HPC system [7]. On the

other hand, the holistic approaches aim to leverage large amounts

of data produced by the HPC system to build a single, large model

encompassing the whole HPC system with all its components and

subsystems [1]. The midway point between room-level (holistic)

and component-level models are models designed for a group of

components, e.g, a set of nodes within the same compute rack [6].

We illustrate this taxonomy in Figure 1.

Component-level approaches are well-explored in the area of

HPC modeling. For anomaly detection applications, it has been

well-established that the best possible results come from training

a separate self-supervised anomaly detection model for each com-

pute node [7]. The common denominator of these approaches is

that while the compute nodes are similar (e.g., they have the same

hardware configuration), they nonetheless require models explic-

itly trained for those nodes. This is because each node experiences

slight variations in hardware use, application utilization, and differ-

ent cooling and thermal conditions. What is common across all the

component-level approaches is that they use the same neural net-

work structure, but the model for each node is trained from scratch.

Using the same model structure for each of the component-level

models is possible because the compute nodes in a compute room

share the same hardware characteristics [7].

On the other side of the spectrum are the holistic modeling ap-

proaches (see [1, 7]). Instead of training many models with the same

structure, they attempt to create a single model that provides pre-

dictions for all the components. Because of the data’s large quantity

and complexity, regular tabular modeling approaches cannot be

utilized. Additional information in the form of a graph structure is

introduced to train such models effectively. This graph structure

often takes advantage of the fact that the HPC systems are orga-

nized in compute rooms, in which nodes are arranged in rows of

compute racks. This physical layout can then be a basis for the

graph representation of the room-level dataset. Graph-level models

have proven useful for some problems, like anomaly anticipation,

where they vastly outperform the component-level models [6].

2.2 Thermal modeling in HPC
In line with the taxonomy proposed in Figure 1, several thermal

modeling approaches exist for the problem of compute node-level

temperature prediction. These models, such as the one proposed in

[2], belong to the component-level category. While there have been

attempts [2, 10], [3] at building a holistic thermal model of the entire

computing room, none of these approaches attempt to generate

thermal predictions at the granularity of the individual compute

node. Instead, existing holistic, room-level models only predict

the average temperature of the entire computing room. However,

for optimizing the energy efficiency of the HPC operations, as

well as for energy-aware scheduling, more granular, node-level

temperature predictions are needed [3].

Recent advancements in applications of graph processingmethod-

ologies, such as [6], suggest using Graph Neural Networks (GNNs)

to build a holistic predictive model with a high resolution of pre-

dictions (for each individual node).

Motivated by the need for the node-level thermal prediction

model, this work critically examines the component-level (node-

level in our case) and the holistic modeling approaches. Specifically,

it compares the same-structure, individually-trained approach (in

line with [7]) against the graph-based approach inspired by [6]. To

the best of our knowledge, this is the first work in the literature

with a systematic focus on HPC temperature prediction via graph

models.

3 METHODOLOGY
3.1 Dataset
The data used for our analysis comes from the publicly available

M100 dataset [4]. It contains several features, also referred to as met-

rics, collected from the Tier-0 CINECA Marconi100 supercomputer

over multiple years by the ExaMon HPC monitoring framework [3].

In particular, we focus on the April 2021 – September 2022 period,

in which ExaMon collected all the metrics that are relevant to this

work. We use this data in samples covering contiguous 15-minute

time windows, each representing a snapshot of the HPC system at

a certain period in time. The snapshots include, for each compute

node, aggregations of data (such as average, minimum, maximum,

and standard deviation) collected during the time window. The

use of aggregations is necessary to have a time-uniform dataset

since ExaMon samples different metrics at different frequencies.

We define sample 𝑡 as the snapshot starting from timestamp 𝑡 and

ending at 15 minutes after 𝑡 . We refer to subsequent snapshots as

sample 𝑡 + 1, 𝑡 + 2, etc.

We exclude samples that contain a proportion of missing values

(NaNs) which is larger than 1%, a threshold we fixed after a compre-

hensive inspection of the data. This choice allows to skip snapshots

with clusters of neighboring vertices with missing values, which

would be difficult to impute. On the other hand, in the remaining

eligible samples, we fill in NaNs with a neighbor average approach.
That is, for a given missing value associated with a certain vertex

𝑛, metric𝑚, and timestamp 𝑡 , we collect the (non-missing) values

of the𝑚 metric of the neighbors of 𝑛 at time 𝑡 , perform a weighted
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average, and impute such average to the missing value. The weights

used are the same as the corresponding edge weights in the graph

model (see Section 3.3).

3.2 Prediction target
Given a snapshot associated with time 𝑡 and a compute node, our

prediction target variable is the future temperature increase mea-

sured at the node outlet, i.e., the difference between the outlet

temperature measured at time at time 𝑡 + 1 and the one measured

at time 𝑡 . This corresponds to a 15-minute prediction horizon, as

mentioned earlier. This time horizon enables almost real-time mon-

itoring of the HPC system, allowing timely interventions by system

administrators or automatic adjustments to the cooling system if

using adaptive control strategies.

We choose to predict a temperature increase rather than the raw

temperature data because it contains the truly relevant information

that system administrators ought to know. A large raw temperature

value does not necessarily suggest a hazardous state. External fac-

tors such as weather and seasonal conditions heavily influence such

value, to the point where it is not uncommon to have an average

10°C difference between both winter and summer [2]. A sudden

spike in temperature instead signals a potentially hazardous state

of the system, especially using a short prediction time horizon.

3.3 Models
For our temperature prediction task, we propose three models,

which represent three hypotheses having increasing complexity: 1)

a Ridge linear regression model for each node; 2) a Dense Neural

Network (DNN) model for each node; and 3) one Graph Neural

Network (GNN) model for the entire Marconi100 room.

In the graph model, we represent the Marconi100 room with an

undirected weighted graph whose structure is based on the physical

layout of the room. We display this layout in Figure 2. Each dot

Figure 2: Spatial coordinates (in meters) of Marconi100 racks.

in the figure represents one of the 49 racks (IBM 7965-S42) in the

room, each of which holds 20 compute nodes and is about 2 meters

tall. The room therefore hosts a total of 980 compute nodes.

In our graph model, each vertex represents a compute node,

with edges connecting it to its closest neighbors in all three spatial

directions. Therefore, each vertex has at least 2 neighbors (for nodes

in the corners of the room) up to 6 (for any node that is not near

the sides of the room). This results in a total of 4782 weighted

edges. Furthermore, edge weights are inversely proportional to

the physical distance between nodes in the room. We refer to this

representation as the spatial graph model.

We use this graph structure to perform regression using the

Graph Convolutional Network (GCNConv) presented in [5]. We

chose this network as it yields the best results in terms of prediction

accuracy, according to preliminary experiments.

4 EXPERIMENTAL RESULTS
4.1 Experimental setting
The goal of our experiments is to assess the validity of the three

models presented earlier. Specifically, for graph models, we seek to

validate or reject the following two research questions:

• Does the data present a graph structure?

• Does a graph structure bring benefit to the prediction task

compared to a per-node analysis?

Therefore, besides the comparison between per-node and graph

models, we also conduct experiments with other graph mapping

structures. Specifically, we also test a random connectivity matrix

and a null connectivity matrix. In the first case, we sample random

pairs of vertices and connect them through edges with randomly

sampled weights. In the second case, we set all edge weights to

zero, preventing the model from exchanging information between

neighboring vertices.

We split the collection of samples into a training set and a test

set, composed of 80% and 20% of the total snapshots, respectively.

We preserve the chronological ordering of snapshots during the

split. This way, we simulate a real-world scenario in which we use

past experience to predict the future behavior of the system. We

use this split to train all models described in this work. We use

the Mean Squared Error (MSE) as the loss function to minimize

during training and as the validation metric for the evaluation of

the test set. Relative metrics like the Mean Absolute Percentage

Error (MAPE) are not suited for this prediction task, since the target

variable is oftentimes very close to zero. For the graph models, we

train each GCN in batches of size 20 for 10 epochs. Further details

about the training process can be found in our code repository.

The baseline against which we compare all models is the trivial

Last-Value Prediction (LVP), in which the prediction for a node’s

temperature at time 𝑡 + 1 is equal to the temperature at time 𝑡 . We

use the temperature difference as the regression target, therefore

the LVP is identically zero for all 𝑡 . The LVP is often used as a

reference benchmark for temperature in HPC settings since temper-

ature is a slow-changing metric. In particular, the LVP represents a

steady-state system approximation for the HPC system. Focusing

on a performance comparison with the LVP means focusing on the

meaningful temperature changes in the system.

The random connectivity matrix described earlier is created by

first fixing the same number of edges as in the spatial mapping

(4782), then randomly sampling that many pairs of vertices. Each

pair corresponds to a graph edge in the random mapping. Then,

the weights for these edges are i.i.d. sampled from a uniform dis-

tribution on (0, 10), which is a similar range to the original spatial

mapping.

4.2 Empirical results
We will describe our process of improving our prediction models to

improve their accuracy. The steps of this incremental process each

refer to one part of Figure 3, in which we plot the true target values

(in red) against the model predictions (in green) in the first portion

of the test set, on a randomly chosen node. We will show that these

steps lead to an overarching conclusion: Simplicity is best.
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(a) Spatial graph mapping: initial high-complexity model.

(b) Spatial graph mapping: reduced model.

(c) Node DNN model.

(d) Ridge linear model.

(e) Random graph mapping.

(f) No graph mapping.

Figure 3: Predictions for several models for node 85.

4.2.1 Model complexity. Webuild our first GNNmodel as described

in the earlier sections. In particular, we use as input all 416 aggre-

gated node features available in the original dataset and use 10

hidden layers with regularly decreasing sizes. As shown in Figure

3a, such a model collapses to the trivial prediction of zero for all

timestamps. This is also the average of all per-node temperature

differences in the entire dataset, as well as the null constant value

of the LVP baseline.

Since this model is unable to capture the trend of the target vari-

able, we tried increasing the number of layers in the neural network.

Still, the added complexity did not translate to an improvement in

the model’s predicting power. The result is nearly identical to the

original model shown in Figure 3a. We then tried to head in the

opposite direction by removing complexity from the model, in two

different ways: by decreasing the number of hidden layers and by

considering a smaller subset of all available features. In particular,

out of the original 416 aggregated node features, we only choose

to keep three that we deem the most relevant and essential. Two

of these features are used twice, once representing information

coming from snapshot 𝑡 − 1, and once from snapshot 𝑡 . This results

in five features being used in the GCN models. We list such features

in Table 1. The underlying physical processes of heating suggest

name description

pcie_avg_t-1 average outlet temperature in snapshot 𝑡 − 1

pcie_t0 outlet temperature at time instant 𝑡

total_power_avg_t-1 average node power consumption in snapshot 𝑡 − 1

total_power_avg_t0 average node power consumption in snapshot 𝑡

ambient_avg_t-1 average inlet temperature in snapshot 𝑡 − 1

Table 1: Reduced subset of node features.

that given temperature information from time 𝑡 − 1 to 𝑡 , as well as

the total power consumption from time 𝑡 − 1 to 𝑡 + 1, we should

be able to infer the temperature at time 𝑡 + 1. In Figure 3b, we can

see that the changes bring positive benefits to the model, which

is now capable of capturing the fluctuations of the next temper-

ature difference. We may attribute the worse performance when

using all available features to the fact that most of the removed

ones are likely irrelevant when inferring temperature, therefore

representing a source of noise.

Simplicity also has a positive impact concerning the GNN model

complexity. Specifically, the best-performing model only has one

hidden GCN layer (plus one input and one output layer). As men-

tioned, increasing the number of hidden layers does not improve

the model performance, and can even have a negative impact when

adding too many. We can explain this phenomenon by the deter-

minism of the underlying physical process.

Simplicity also translates to a lack of complexity in the chosen

GNN model. As previously mentioned, we tested several network

models, and GCN [5] stood out as yielding the best prediction

performance. This is one of the simplest models available in the

literature (see, e.g., [11]).

4.2.2 Per-node models. We now build individual Dense Neural

Network (DNN) models for each individual compute node, by us-

ing the same layer structure as the GNN, except with GCN layers

swapped out for traditional fully connected layers. We also use as
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model subplot MSE

LVP – 2.260

spatial graph (initial) (a) 2.261

spatial graph (reduced) (b) 1.667

node DNN (c) 2.261

Ridge (d) 1.103

random graph (e) 2.436

no graph (f) 1.453

Table 2: Average test-set Mean Squared Errors for several
models.

input the same reduced subset of the five features described earlier.

However, as depicted in Figure 3c, this model also degenerates to a

constant prediction. This result is consistent with our observation

about complexity. Indeed, an entire neural network for an individ-

ual compute node is arguably more complex than a portion of a

single graph network modeling all nodes at once – in other words,

980 independent DNNs bring more complexity than one GNN.

Finally, we attempt to simplify our assumptions even further by

training one Ridge linear regression model for each compute node.

Similarly to the DNN per-node model, we use the reduced subset of

features. As exemplified in Figure 3d, not only does this model not

collapse to a constant, but it also outperforms the best GNN model

trained so far, i.e., the reduced one (Figure 3b). This is another piece

of evidence suggesting that less complex models are best suited to

this prediction task.

4.2.3 Model comparison. We show the full extent of the compar-

ison between the GNN model and the linear model in Figure 4a.

Specifically, each point on the blue line represents the average

test-set MSE of the GNN predictions on an individual node. These

points are sorted in decreasing order. The figure also shows the

corresponding MSE for both the LVP baseline (in orange) and the

Ridge linear model (in green), by keeping the same order of nodes

used for the GNN errors. In other words, vertically aligned points

refer to the same compute node. Finally, the horizontal dashed lines

represent the average MSEs of the three models across all compute

nodes. Figure 4a shows that Ridge models outperform the GNN

model in nearly all individual nodes. Nonetheless, both models

score lower errors than the LVP baseline.

4.2.4 Graph structure validation. We now report results for both

the random and the zero-weight graph mapping. Their predictions

on the chosen test-set window are displayed in Figures 3e and 3f,

while the errors for all compute nodes are in Figures 4b and 4c,

respectively. The random graph model does not degenerate to a

constant either, but its predictions are less precise than the reduced

spatial model – in fact, they turn out to be worse than even the

trivial LVP baseline. This is most evident from Figure 4b: the curve

of the GNN model error (in blue) lies above the LVP errors (in

orange) for the majority of the nodes. On the contrary, the zero-

weight graph model shows an improvement compared to the spatial

model but still falls short of the linear regression model (as is clear

from Figure 4c).

We show the average test-set MSEs of all models in Table 2.

These figures are consistent with the rest of our analysis. The initial

(a) Spatial graph mapping: reduced model.

(b) Random graph mapping.

(c) No graph mapping.

Figure 4: Sorted Mean Squared Errors for several models.

spatial graph model (a) and the node DNN model (c) are very close

to being constant models, thus they have the same error as the LVP

baseline. The random graph model (e) performs worse than the

baseline and the reduced spatial graph model (b) achieves worse

performance than the zero-weight graph model (f), which in turn

is worse than the per-node linear model (d).

4.2.5 Graph vs per-node models. These results lead us to the fol-

lowing considerations. The fact that the best models (in terms of
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MSE) do not use graph information, shows that a graph structure

is not needed to perform prediction on the M100 data, nor does a

graph structure necessarily improve results in a regression setting.

However, an inappropriate graph structure (such as the random

one in (e)) can still influence the model’s predictive capability in a

negative way. This indicates that the data may still present graph-

like patterns, which do not emerge when using a random graph

structure.

5 DISCUSSION
This work critically examines the node-level and holistic modeling

approaches for thermal prediction in HPC systems. Based on the

experimental evaluation, the best-performing holistic approach is

the spatial GNN which is trained to predict temperature changes

in connection to the current temperature. It beats the baseline and

achieves good prediction results. We also observe the importance

of a correct graph structure: if the graph structure is shuffled, the

prediction performance drops significantly, becoming even worse

than the trivial baseline.

However, the holistic approach performs sub-optimally com-

pared to the node-level approach. A simple node-level model based

on domain-based feature engineering outperforms the graph model.

This contrasts with the recent result in [6] on the same dataset,

where graph-based models severely outperformed the node-level

models on anomaly prediction tasks.

The difference between the anomaly prediction and the tempera-

ture prediction cases is the availability of labels. Anomaly prediction

is an unbalanced classification task; per-node models do not have

sufficient data to learn non-trivial predictions. In the temperature

prediction case, however, the future temperature information is

equally abundant in both the graph and node-level cases. The com-

prehensive study conducted in this paper thus suggests that when

sufficient data is available, simple node-based models outperform

more complex graph models.

Surprising results presented in this study nicely complement the

current preliminary results onGNN applications in theHPC domain.

While graphs are a powerful computational tool that unlocks the

possibilities of fulfilling novel predictive tasks, their utility lies

mainly in augmenting other models’ poor or missing data, such

as anomaly prediction cases. However, when data is abundant, the

classic per-node and per-component modeling approaches still give

the optimal results.
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