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ABSTRACT
The complexity of microservices and their distributed nature neces-
sitates constantmonitoring and tracing of their execution to identify
performance problems and underlying root causes. However, the
large volume of collected data and the complexity of distributed
communications pose challenges in identifying and locating ab-
normal services. In this paper, we propose a novel approach that
takes into consideration the importance of execution contexts in
propagating and localizing performance root causes. We achieve
this by integrating social network analysis techniques with spec-
trum analysis. To evaluate our proposed approach, we conducted
an experiment using a real-world benchmark, and we observed
promising preliminary results, with a success rate of 91.3% in cor-
rectly identifying the primary root cause (top-1), and a perfect
100% success rate in finding the root cause within the top three
candidates (top-3).
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1 INTRODUCTION
Despite the widespread adoption of microservices for their scalabil-
ity, modularity, and rapid deployment capabilities, their distributed
architecture introduces significant challenges in diagnosing perfor-
mance issues and localizing their root causes. Consider a complex e-
commerce platform built upon this architecture. Services frequently
depend on each other to accomplish tasks. When a performance
issue such as a slowdown occurs, it rarely remains isolated but
instead propagates through dependent services. A performance
issue, say a slowdown, in a single service can have a cascading
effect on all services dependent on it. Alternatively, it might also
be the case that poor performance in a particular service is actually
rooted in another service it depends upon. Without understanding
these structural interconnected dependencies, diagnosing issues
will become a complicated process. In the worst cases, the actual
root cause may be entirely overlooked.

Therefore, accurate diagnosis requires understanding services
interactions and dependencies. This necessitates an in-depth study
of structural dependencies, particularly in cases of forward or back-
ward anomaly propagation where the starting point of an issue
might be several services away from where it eventually manifests.

Understanding complex inter-dependencies is essential for com-
prehending anomaly propagation and troubleshooting distributed
systems, a topic explored in various research works [5, 8, 13, 15].
Some researchers advocate for prioritized diagnostic processes
based on the likelihood of anomaly propagation in different compo-
nents [4, 18]. However, the specific challenges faced by existing stud-
ies vary. Certain studies [13] face challenges in precisely pinpoint-
ing the direction of dependencies and analyzing the propagation
path of anomalies. Others are restricted to insights derived solely
from abnormal system executions, overlooking the information pro-
vided by normal request propagation [8]. Some studies [4, 5, 15, 18]
remain constrained, often relying on isolated aspects of individual
services in anomaly propagation, lacking the holistic view needed
for accurate root cause identification. This limitation stems from
the inherent structural complexity of distributed systems, where
services are interconnected and interdependent, adding multiple
layers of complexity to anomaly resolution.
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To address existing limitations, we introduce a strategy using
social network algorithms to enhance spectrum analysis, a method
for estimating system component faultiness based on successful and
failed executions. Our approach incorporates three key contexts:
individual services, service communities, and execution paths. Then,
it explains how anomalies propagate through these contexts and
identifies key nodes where performance issues likely originate.
Utilizing graph theory concepts like PageRank and community
detection adds a new layer of depth to our spectrum analysis. The
result is a context-aware, finely-grained method for accurately
pinpointing the root causes of performance issues. Our approach
utilizes distributed traces [11], to represent these contexts.

Upon detecting anomalies, we generate graphs and use social
network techniques to calculate the structural importance of ser-
vices, including an assessment of execution path importance. The
resulting impact scores are used as weights in our spectrum analy-
sis, generating a ranked list of probable root cause services, thus
reducing the debugging effort required by programmers [17].

Our preliminary tests on an instance of a real-world production
microservice system in China Mobile Zhejiang, a known complex
and large-scale system, indicate a 91.3% success rate of our approach
in identifying the primary root cause (top-1) and a 100% success rate
for locating the root cause among the top three candidates (top-3)
across various scenarios. Our preliminary tests employed rigorous
sampling and evaluation metrics, ensuring the robustness of our
findings. We have designed our method for generalizability, so it
can be applied in many different situations and we have concrete
plans for future empirical validation to strengthen our findings.

Our main contributions are as follows: I) Employing social net-
work analysis to construct and analyse the structural interdepen-
dence of services, communities, and execution paths for forward
and backward anomaly propagation and root cause identification,
II) Proposing an enhanced weighted spectrum analysis. While ex-
isting methods often rely on individual services and isolated exe-
cutions, our approach breaks new ground by introducing contex-
tual layers, encompassing individual services, service communities,
and execution paths, into root cause analysis. This context-aware
methodology refines spectrum analysis, providing a more accurate
identification of root causes, and thus advances the state-of-the-art.

2 FOUNDATIONAL EXPERIMENTS
Spectrum-based techniques are commonly used for debugging and
fault localization in software applications. These techniques gather
various types of test coverage data to identify likely root causes of
failures. Specifically, they collect metrics such as𝑂𝑒 𝑓 ,𝑂𝑛𝑓 ,𝑂𝑒𝑝 , and
𝑂𝑛𝑝 , which count the presence or absence of a given component
in both failed and successful test cases [18]. A risk factor, like the
Ochiai risk factor, is then used to quantify the suspicion level for
each component being the root cause [3, 10]. In microservices,
spectrum-based methods utilize distributed traces for both normal
and abnormal system states to perform similar analyses [17].

Applying spectrum-based methods to distributed traces has lim-
itations in root cause localization. For instance, our experiments,
shown in Figure 1, based on a scenario from dataset C published
by Li et al. [6], found that the original spectrum analysis ranked
the true root cause (docker_003) only fifth in suspicion, while it

placed os_021 at the top, identified as the most suspicious due to
having the highest Ochiai score of 0.319. Yu et al.’s approach [18],
which integrates a personalized PageRank algorithm into spectrum
analysis, also falls short. It places emphasis on service frequency in
determining the significance of an execution path for root cause
localization, but it lacks granularity in understanding anomaly prop-
agation, leading to suboptimal root cause identification. Figure 1,
middle table, shows our experiments when we integrate a PageRank
algorithm with spectrum analysis. It identifies the true root cause
in the third place, while os_021 remains at the top.

In our experiments, we noticed two issues with integrating spec-
trum analysis with PageRank for root cause identification. First,
about 30% of the cases presented multiple services with identical
suspicion scores, complicating the ranking. Second, both original
and integrated methods struggle when the root cause does not fre-
quently appear in abnormal traces, e.g., the presence of a frequent
loop between non-true root cause services in abnormal traces.

To address these issues, we study the significance of services
in interconnected groups (communities) rather than prioritizing
them based on their frequency across all traces. Here, by ’commu-
nities,’ we refer to clusters of services that frequently interact with
each other, thereby forming a closely-knit functional group within
the larger system. Finding communities assists in distinguishing
observed contexts and differentiating between similar connectiv-
ity patterns, which highly reduces (up to 98%, according to our
preliminary experimental results) the likelihood of encountering
multiple services with the same suspicious score all occupying the
same position in the rank list of candidates. Additionally, studying
the significance of services according to the significance of their
interconnected services prioritizes less frequently observed ser-
vices when they are significant within their own context. Therefore,
the root cause service can be detected even if it is not frequently
invoked in the collected abnormal traces. In addition to studying
the significance of services in communities, we introduce a novel
aspect to the root cause identification process by evaluating con-
textual details in requests or traces. While existing research by
Yu et al. [18] assigns more weight to shorter traces, our approach
innovatively refines this by equalizing the importance of services
and trace diversity, regardless of the trace length. This offers a more
comprehensive and effective method for root cause localization.
Please refer to the right table in Figure 1 for a comparison between
our method (context-aware root cause localization) and traditional
approaches, which clearly illustrates the efficacy of our strategy.
With our approach, the true root cause is ranked at the top with an
Ochiai score of 0.286.

3 SYSTEM DESIGN
Figure. 2 represents our context-aware root cause localization ap-
proach including several steps of data collection, Service Call Graph
(SCG) construction, social network analysis, and spectrum analysis.

3.1 Data Collection
Our process is initiated in response to a detected anomaly. Once an
anomaly is detected, we collect normal and abnormal distributed
traces within a specified time window (5 minutes in this paper). Any
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Figure 1: Comparison of Original, PageRank-Integrated, and Context-aware Weighted Spectrum Analyses in a Real-world
Scenario (True root cause: docker_003, Top-1 identified root cause by each method has been highlighted.)

Figure 2: Context_aware Root Cause Localization

state-of-the-art anomaly detection techniques [12] can be employed
to detect performance anomalies and label distributed traces as
normal or abnormal. In this paper, we utilize the anomaly detection
approach proposed by Li et al. [4]. However, as recommended by
the literature [18], subsequent occurrences of the same anomalous
state within the time window are not treated as separate anomalies.

3.2 SCG Construction
Following the data collection phase, two SCGs, built from each
group of normal and abnormal traces, serve as weighted graphs.
In these graphs, nodes symbolize services, edges represent service
calls, and edge weights quantify the frequency of these calls within
the respective set of traces. Distributed traces provide the neces-
sary context information, capturing parent-child relations between
services, which helps in constructing SCGs.

3.3 Social Network Analysis
In this phase, social network methods are employed to assess the
structural influence of services communities, individual services,
and traces during anomalies within SCGs. The output comprises im-
portance scores for services and traces in both normal and abnormal
conditions.

3.3.1 Community Analysis. Upon constructing normal and abnor-
mal SCGs, we apply the Louvain graph community algorithm [1] to
each SCG to partition them into smaller, closely related contextual
communities. This aids in identifying cohesive groups and strong
inter-node communication. For example, in abnormal SCG, these

communities highlight partitions susceptible to anomalies should
they contain an anomaly-affected node.

The Louvain method has two phases. First, nodes within an SCG
are iteratively assessed and assigned to neighbouring nodes based
on modularity cost function gains[1], continuing until no more
modularity gains are achievable. Second, communities identified
in the first phase are amalgamated into supervertices, converting
nodes within each community into a single node. Supervertices’
connectivity depends on at least one edge between nodes from cor-
responding communities, with the edge weight determined by the
sum of all edges weight between their respective lower-level parti-
tions. The algorithm iteratively applies these phases to supergraphs
until communities stabilize, typically after a few rounds.

3.3.2 Service Analysis. Next, after identifying the community con-
texts, we quantify services importance within their community. To
this end, we adopt the suggested approach in trace abstraction by
Wang et al. [14]. First, we use an iterative PageRank algorithm [16]
for each community to determine the significance of services based
on their interactions within the community. The process begins
by initializing the PageRank values for each service within the
community. These initial values are set to 1

𝑛 , where 𝑛 represents
the total number of services in the community. Subsequently, the
PageRank values are iteratively calculated until they converge to a
stable value. The PageRank for a service 𝑛 in a community of 𝐶 is
determined based on the PageRanks of its neighbouring services
over 𝑡 iterations, and it can be defined as follows:

𝑃𝑅(𝑛)𝑡 = 𝛼
∑︁

(𝑛→𝑛′ ) ∈ edges of𝐶

𝑃𝑅𝑡−1 (𝑛′)
𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒 (𝑛′) (1)

where 𝛼 is a normalization factor for the total rank of all services
and out_degree is the number of outgoing edges from 𝑛′.

This step is performed for services in identified communities of
both normal and abnormal SCGs.

3.3.3 Trace Analysis. In this step, we focus on prioritizing different
request types considering their effectiveness in uncovering a root
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cause. According to Yu et al. [18], less diverse traces expedite root-
cause localization. This is because more similar traces indicate a
narrower scope of difference, simplifying the pinpointing of the
root cause. However, Yu et al. measure trace diversity using the
count of operations covered in traces, which makes it dependent on
trace size. Consequently, shorter traces with less important services
may overshadow longer ones with more critical services. In our
approach, we prioritize traces by considering both their diversity
and the significance of the services they cover, regardless of the
number of services involved.

We first, cluster collected traces based on their request type sep-
arately for normal and abnormal distributed traces. This approach
ensures that we study all observed request types, regardless of how
frequently they have occurred. Then, for each request-type clus-
ter, we calculate a score based on the diversity and importance of
covered services.

To measure the importance score of clusters based on the im-
portance of the services they cover, we adjust the formula recom-
mended by Chen et al. [2] as follows. This refinement allows us
to measure the rank score of a cluster 𝑐𝑙𝑖 based on the PageRank
score (PR) of services they cover. In this context, PR is the computed
scores using equation 1, The function 𝐿(𝑋 ) denotes the position of
score 𝑋 within the ordered list of ascending PR scores within the
SCG, and |SCG| represents the number of SCG’s nodes (services).
For abnormal request-type clusters, SCG refers to abnormal SCG
and PRs are scores of all services computed from abnormal SCG.
The same is applied to normal request-type clusters.

𝑅𝑎𝑛𝑘 (𝑐𝑙𝑖 ) =
𝐿(𝑀𝑎𝑥 (𝑃𝑅𝑠 ∈ 𝑐𝑙𝑖 ) − 1

|𝑆𝐶𝐺 | + 𝑀𝑒𝑎𝑛(𝑃𝑅𝑠 ∈ 𝑐𝑙𝑖 )
|𝑆𝐶𝐺 |𝑠𝑢𝑚(𝑃𝑅𝑠 ∈ 𝑆𝐶𝐺) (2)

Next, we measure diversity between request-type clusters using
Jaccard distance [7], favouring less diverse clusters. Finally, the
adapted heuristic search algorithm [2] searches for the next cluster
based on the prior one, aiming to maximise the sum of Rank(𝑐𝑙𝑖 )
score while minimizing the cluster diversity.

3.4 Spectrum Analysis
Considering the importance of services in the community context
and request type (trace), we redefine spectrums. For instance,𝑂𝑒 𝑓 is
modified as follows where, T is a set of abnormal traces of𝑇1,𝑇2, ..𝑇𝑘
including service 𝑠𝑖 , 𝑐𝑙𝑇𝑗

is the abnormal request-type cluster for
trace 𝑇𝑗 , and 𝑃𝑅(𝑠𝑖 ) is the Pagerank for 𝑠𝑖 in the abnormal SCG.

𝑂𝑒 𝑓 (𝑠𝑖 ) = 𝑃𝑅(𝑠𝑖 ) ×
∑︁

∀𝑇𝑗 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑠𝑖 ,𝑇𝑗 ∈𝑇
𝑟𝑎𝑛𝑘 (𝑐𝑙𝑇𝑗

) (3)

Similarly, other notation definitions are updated by being influenced
by the rank scores, while 𝑂𝑒𝑝 and 𝑂𝑛𝑝 are computed based on the
normal SCG, normal set of traces, and normal request-type clusters
identified in the previous step.

To estimate the suspicious score using the notations, we use the
Ochiai factor [10], measured for each service 𝑠𝑖 as:

𝑂𝑐ℎ𝑖𝑎(𝑠𝑖 ) =
𝑂𝑒 𝑓√︃

(𝑂𝑒 𝑓 +𝑂𝑒𝑝 ) (𝑂𝑒 𝑓 +𝑂𝑛𝑓 )
(4)

4 PRELIMINARY RESULT AND DISCUSSION
We evaluate the efficiency of our approach by conducting exper-
iments on a real-world microservice benchmark (dataset C), pro-
vided during the 2020 AIOps Challenge Event1[6]. Given that this
dataset extends beyond microservice applications, in alignment
with literature recommendations [4, 18], we exclusively focus on
faults related to microservice. Our evaluation involves the random
selection of 46 time windows, each containing labelled root causes,
as well as corresponding normal and abnormal distributed traces.
Our experiment dataset includes 15 instances of CPU stress, 15
cases of network delays, and 16 occurrences of network loss. We
define "Top-1" to "Top-3" as the probability of locating the true root
causes within the top 1 to 3 service instances among all services,
descendingly sorted based on their computed Ochiai score. This
sorted list of ranked services is referred to as the ranked list of can-
didates [8, 18]. Figure. 3 shows the result of root cause identification
by our context-aware root cause localization approach for all 46
time windows compared to the original spectrum analysis [17] and
spectrum analysis integrated with PageRank, inspired by [18]. The
context-aware root cause localization outperforms the spectrum
analysis integrated with PageRank by 13.5% in detecting the true
root cause at the top position of the ranked list of candidates, and
it performs 35% better than the original spectrum analysis.

Figure 3: Performance Comparison Across 46 Scenarios: Orig-
inal Spectrum Analysis [17] vs. Enhanced Methods

Our approach also exhibits a higher success rate in detecting root
causes of CPU exhaustion scenarios, followed by network loss sce-
narios, and finally network delay cases. This performance variation
can be attributed to the ability of our approach to effectively cap-
ture abnormal behavioural patterns within the collected traces. As
anomalies propagate through more traces and spans, they become
more likely to be successfully identified. Our initial investigation
revealed that CPU exhaustion affected a larger number of services
compared to the delay. This discrepancy can be attributed to the
different approaches used to inject these anomalies into the system.

To evaluate the importance of studying services in contexts of
communities and traces for root cause localization, we examine a
scenario containing more than 530 traces collected after injecting
the CPU stress into one of the services of the benchmark. After
labelling normal and abnormal traces identified by the anomaly
detection stage, we perform an original spectrum analysis to find
the root cause. We then incorporate our approach components
into the original spectrum analysis one by one to highlight how
each contributes to enhancing the result of root cause localization.
1https://github.com/NetManAIOps/AIOps-Challenge-2020-Data
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Table 1 demonstrates the result of each improvement applied to
the same scenario, indicating the position within the ranked list
of candidates where the root cause was identified by that specific
improvement. The original spectrum analysis [17] locates the un-
derlying root cause of this scenario in the sixth position of the
ranked list of candidates. As shown, using our context-aware root
cause localization, the true root cause is identified at the top po-
sition while each component also enhances the accuracy of root
cause identification.

Table 1: Performance Ranking of Localization Components

Method Pos.
Orig. Spectrum [17] 6th
Orig. + Service PageRank 4th
Orig. + Community_based Service PageRank 2nd
Context-aware: Full Method 1st

5 RELATEDWORK
Root cause localization has become prominent in recent research
due to its significant role in assuring the quality of complex sys-
tems [9, 13, 15, 17, 18]. A common approach to finding root causes
involves studying the dependencies between services or traces to
understand anomaly propagation, ultimately pinpointing the un-
derlying root cause [5, 8, 15]. However, certain research works [13],
face limitations in determining the propagation direction between
dependent components. Furthermore, a significant portion of root-
cause localization methods concentrates solely on abnormal execu-
tions [8, 13, 15].

Ye et al. [17] emphasize the significance of using both normal
and abnormal traces, proposing a root cause localization approach
based on an original spectrum analysis that leverages all traces
to identify root causes. Addressing the requirements of spectrum
analysis for distributed traces, Yu et al. [18] suggest integrating
a personalized PageRank algorithm with the original spectrum
analysis. The proposed personalized PageRank prioritizes services
and traces based on their importance in uncovering root causes.
However, as mentioned in Section 2, we found that studying the
importance of individual services in Yu et al. study [18], is not al-
ways effective, especially when the true root cause is not frequently
observed in abnormal traces. Moreover, Yu et al. [18] study the
importance of traces in revealing the root cause based on their
frequency and length, which is not always applicable, especially
when the true root cause occurs in longer traces calling only a few
services. These limitations are also discussed in Sections 2 and 3.

To address these limitations, we incorporate spectrum analysis
with social network concepts to assess structural importance in
forward and backward anomaly propagation across interconnected
services. Studying the importance of services in interconnected
communities helps analyze the significance of services within their
respective communities. This approach overcomes biased rankings
of services based solely on their high outgoing connections, ne-
glecting the density of connections in overall SCGs. Moreover, to
examine the importance of trace scope in uncovering root causes,
we introduce a heuristic search algorithm to simultaneously evalu-
ate trace importance based on both the significance and diversity

of covered services within the trace scope. This makes trace scope
analysis independent of the trace length and differentiates traces
based on what they cover rather than their length. As our pre-
liminary results show, this improves upon simply counting called
services in each trace context, as done in Yu et al.’s work [18].

While there are research works employing social network anal-
ysis in root cause localization, they are often limited in utilizing
techniques for studying the prominence of individual nodes within
a network [9, 18, 19]. To the best of our knowledge, our work stands
as the only research investigating the impact of different levels of
contextual structures, such as individual services, service commu-
nities, and traces, in uncovering root cause localization using social
network techniques.

6 CONCLUSIONS AND FUTURE PLAN
This study introduces a novel context-aware approach for root
cause localization in distributed systems. Our methodology under-
scores the pivotal role of service communities, individual services,
and trace scope in pinpointing the root causes of system anomalies.
Through our work, we have effectively mitigated the issues delin-
eated in Section 2. Preliminary outcomes showcase a high success
rate, ranging from 91.36% to 100%, in accurately identifying root
causes across diverse settings.

Moving forward, there are several directions for further improve-
ment and extension. Firstly, we plan to explore modifications to
obtain more detailed models beyond SCGs. These models can in-
corporate additional modalities, such as profiling metrics, enabling
us to add performance insights to our social network analysis and
analyze execution states instead of solid services. This will also help
provide explanations about the issues associated with the ranked
candidates, aiding in debugging or further investigations.

Furthermore, we aim to investigate how our approach impacts
the detection of multi-root causes within service communities. By
focusing on the interplay of anomaly propagation within commu-
nities, we anticipate that our methodology may excel in identifying
complex scenarios where multiple root causes manifest within or
across service communities.

Additionally, we aim to explore and adapt network analysis con-
cepts that align with the unique characteristics of distributed traces.
By leveraging these concepts, we can further investigate their cor-
relation with different system types or collected data, potentially
uncovering new insights instrumental in customizing network anal-
ysis concepts, such as community detection for distributed traces,
thereby enhancing the precision of our methodology.

In conjunction with these efforts, we plan to evaluate our ap-
proach across a diverse set of case studies varying in size, com-
plexity, and nature of their design. This assessment will help us
gauge the scalability and adaptability of our approach for real-world
systems.

Lastly, we acknowledge the importance of performing compre-
hensive comparative assessments against establishedmethods. Such
evaluations are crucial for validating the efficacy of our approach
and identifying its advantages, shortcomings, and avenues for re-
finement across different use cases.
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