
Predicting the Performance of a Computing System with Deep
Networks

Mehmet Cengiz
Newcastle University

Newcastle upon Tyne, UK
m.cengiz2@ncl.ac.uk

Matthew Forshaw
Newcastle University

Newcastle upon Tyne, UK
matthew.forshaw@ncl.ac.uk

Amir Atapour-Abarghouei
Durham University

Durham, UK
amir.atapour-abarghouei@durham.ac.uk

Andrew Stephen McGough
Newcastle University

Newcastle upon Tyne, UK
stephen.mcgough@newcastle.ac.uk

ABSTRACT
Predicting the performance and energy consumption of computing
hardware is critical for many modern applications. This will in-
form procurement decisions, deployment decisions, and autonomic
scaling. Existing approaches to understanding the performance of
hardware largely focus around benchmarking – leveraging stan-
dardised workloads which seek to be representative of an end-user’s
needs. Two key challenges are present; benchmark workloads may
not be representative of an end-user’s workload, and benchmark
scores are not easily obtained for all hardware. Within this paper,
we demonstrate the potential to build Deep Learning models to
predict benchmark scores for unseen hardware. We undertake our
evaluation with the openly available SPEC 2017 benchmark results.
We evaluate three different networks, one fully-connected network
along with two Convolutional Neural Networks (one bespoke and
one ResNet inspired) and demonstrate impressive 𝑅2 scores of 0.96,
0.98 and 0.94 respectively.

CCS CONCEPTS
• Computing methodologies → Neural networks.

KEYWORDS
deep networks, benchmarking, performance
ACM Reference Format:
Mehmet Cengiz, Matthew Forshaw, Amir Atapour-Abarghouei, and Andrew
StephenMcGough. 2023. Predicting the Performance of a Computing System
with Deep Networks. In Proceedings of the 2023 ACM/SPEC International
Conference on Performance Engineering (ICPE ’23), April 15–19, 2023, Coimbra,
Portugal.ACM, NewYork, NY, USA, 8 pages. https://doi.org/10.1145/3578244.
3583731

1 INTRODUCTION
Performance benchmarks are commonly used as a tool to better un-
derstand systems. This includes informing procurement decisions
and, through the operation of systems, to inform deployment and

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’23, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0068-2/23/04.
https://doi.org/10.1145/3578244.3583731

scaling decisions. These benchmarks seek to understand the likely
performance of a user’s workload, but also energy consumption.
While benchmarks show good potential to gain an understanding
of performance, it is typically infeasible to benchmark all possible
combinations of workload and hardware. This problem is exacer-
bated in environments which exhibit hardware heterogeneity.

Benchmarks [1, 5, 21] – which produce metrics [11, 19] on differ-
ent hardware under specific workloads, help to identify the ‘best’
hardware. The metrics can then be compared for different hard-
ware options, supporting judgements as to how a specific user’s
workload would be expected to perform.

We seek to resolve the challenge of evaluating the performance
for previously unseen hardware-workload combinations, using the
SPEC CPU 2017 dataset. Previous efforts using linear regression
(e.g., [17]) have demonstrated the potential to predict performance
metrics, but perform poorly for non-linear aspects of hardware
evolution. In our work we present a data cleaning pipeline to ensure
the data is amenable to modelling.

We explore the potential of three Deep Networks to better model
non-linear relationships in the benchmark data. We evaluate a
number of fully-connected networks (often referred to as multilayer
perceptrons (MLP)) due to the tabular format of the dataset as well
as Convolutional Neural Networks (CNN). Originally developed
for learning from image-based data (2-dimensional, greyscale, or
3-dimensional, colour), CNNs have recently gained traction in the
case of 1-dimensional datasets such as tables [3, 4, 30]. For the
first CNN approach, we evaluate a number of networks which
contain convolution and pooling operations whilst for the second
CNN approach, we evaluate adding residual blocks as proposed in
ResNet [10]. We perform a hyperparameter tuning process within
each of these networks. This allows us to demonstrate our approach
can accurately predict unseen benchmark results. From this we
are able to achieve 𝑅2 scores of 0.96, 0.98 and 0.94 respectively,
compared to 0.53 for linear regression.

The remainder of this paper is organised as follows. In Section
2, we discuss prior work focusing on performance prediction. We
outline our methodology in Section 3. We present our results in
Section 4 and explore Threats to Validity in Section 5. We conclude
and outline areas of future work in Section 6.

91

https://doi.org/10.1145/3578244.3583731
https://doi.org/10.1145/3578244.3583731
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3578244.3583731

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Mehmet Cengiz, Matthew Forshaw, Amir Atapour-Abarghouei, & Andrew Stephen McGough

Table 1: An overview of the prediction studies that used SPEC datasets.

Work Dataset(s) Technique(s) Prediction
[17] SPEC CPU / SPEC Java Server Custom linear regression model Server benchmark performances
[22] SPEC 2006 Custom linear regression model Performance of future systems
[8] SPEC CPU2000 / CPU2006 Hybrid mechanistic-empirical model Commercial processor performance
[13] SPEC OpenMP Classic fractal-based sampling Accelerating multithreaded app simulation
[29] SPEC 2006 Fine-grained phase-based approach Performance and power
[20] SPEC 2017 Multiple Neural Networks Computer hardware configuration
[24] SPEC 2017 Multi-layer perceptron Computer performance
Ours SPEC 2017 MLP, CNN Computer performance

2 RELATEDWORK
Here we present prior work on ML-based performance prediction
of computer systems.

Performance prediction is the process of predicting some perfor-
mance metric for a system based on known characteristics of that
system, which is sometimes referred to as empirical performance
modeling [26]. However, we will reduce the scope of our study
here down to the prediction of performance metrics for computer
systems. In general, performance prediction is for values which
can take any value within a given range (e.g., time to complete
some task or a numeric value used to compare different systems).
As such, the work here focuses on regression techniques.

One of the earliest studies was performed by Ein-Dor and Feld-
messer [6]. They claimed that by using readily available data on
CPU characteristics, it is possible to predict a given CPU perfor-
mance. However, their work is based around simple statistical ap-
proaches and cannot be used for the SPEC performance predictions
we wish to perform here. Ipek et al. [12] used artificial neural net-
works to predict Instructions per Cycle (IPC) of a given system.
Their dataset contains L1 and L2 cache sizes –the first and second
caches in the hierarchy of cache levels– and front-side bus band-
width. Their experiments showed that their model predicts IPC
with only a 1-2% error.

Li et al. [18] carried the empirical performance prediction domain
to the cloud environment by developing a tool named CloudProphet.
This was effectively a trace-and-replay tool to predict a legacy
application’s performance if migrated to a cloud infrastructure. As
our work here focuses on prediction of benchmark scores, this
would not be easily translatable to our work, though it could form
a good starting point for predicting the performance of a specific
workload on another (non-cloud) computer.

Upadhyay et al. [25] discuss performance prediction issues from
a different point of view. Their motivation is to consider the other
components of a systems hardware while designing a CPU. For
selecting the best combination of CPU, they used data mining tech-
niques. Although this could be applied to the SPEC datasets we
would argue that the non-linear nature of new hardware would
make this a less than accurate approach.

A number of prediction approaches have been proposed for
prediction of performance metrics for GPUs. Ardalani et al. [2]
focused on GPU performances and designed an ensemble of regres-
sion learners named Cross-Architecture Performance Prediction

(XAPP). However, they intended to predict GPU performances us-
ing single-threaded CPU implementations. They achieved a 26.9%
average error on a set of 24 real-world kernels. As they mentioned
in their paper, their study cannot capture the impact of texture
memory and constant memory. On the other hand, adhering to
their implication, this is the problem of having a small dataset that
contains 122 data points. Therefore, since our dataset contains more
than 20K data points, we require more sophisticated models.

The work by Justus et al. [14] forms inspiration for our work as
they used Multi-Layer Perceptrons for the prediction of execution
time for training Deep Learning networks. However, we take this
work further by using Convolutional Neural Networks for our
predictions and apply it to the SPEC dataset.

2.1 Predictions from the SPEC datasets
A number of works have addressed the problem of predicting met-
rics for the SPEC datasets. As there have only been two prior works
which address the SPEC 2017 dataset, we expand our discussion
here to cover all of the SPEC datasets. A summary of these works
can be found in Table 1.

Lee [17] and Ozisikyilmaz et al. [22] used linear regression mod-
els for predicting benchmark performance. Our work seeks to over-
come potential limitations by modelling non-linear responses.

Eyerman et al. [8] developed a mechanistic model built on inter-
val analysis which breaks the total execution time into intervals
based on missed events, for out-of-order superscalar processors.

Jiang et al.. [13] presented a study to evaluate design alterna-
tives for computer architectures. They designed a fractal-based
sampling to speed up parallel microarchitecture simulation with
multithreaded applications. Due to the fact that they mainly intend
to obtain samples from parallel programming datasets, the only
similarity with our study is the use of SPEC-based datasets.

Zheng et al. [29] proposed a unified learning-based framework
named LACross to estimate time-varying software performance
and power consumption on a target hardware platform.

Lopez et al. [20] usedmultiple neural networks for a classification
task for predicting the best computer hardware configuration op-
tions. Although their work demonstrates the validity of using Deep
Learning on SPEC datasets, their underlying problem is quite differ-
ent to ours. The closest work to ours is that of Tousi and Lujan [24],
which uses MLPs for the prediction of computer performance. We
go further by demonstrating how the use of Convolutional Neural
Networks can be used to provide better results.

92

Predicting the Performance of a Computing System with Deep Networks ICPE ’23, April 15–19, 2023, Coimbra, Portugal

Table 2: Columns of SPEC2017

Data Type Column
String Benchmark, Hardware Vendor, System,

Processor, CPU(s) Orderable, 1st Level Cache,
2nd Level Cache, 3rd Level Cache, Other Cache,
Storage, Operating System, File System,
Compiler, License, Tested By, Test Sponsor

Numerical Peak Result, Base Result, Energy Peak Result,
Energy Base Result, # Cores, # Chips, Memory,
Enabled Threads Per Core, Processor MHz

Binary Parallel
Ternary Base Pointer Size

Quaternary Peak Pointer Size
Date HW Avail, SW Avail, Test Date, Published,

(mon-yyyy) Updated
Text Disclosures

3 METHODOLOGY
All experiments are run on a Tesla T4 GPU and two Intel Xeon(R)
CPUs @ 2.30GHz, and 12 GB of memory. As the SPEC 2017 dataset
is not directly in a format which can be used for machine learning,
we first discuss the process used for dataset cleansing in order
to provide data which can be fed directly to our Deep Learning
networks.We then go on to cover the search space of Deep Learning
networks which we have evaluated as part of this work.

3.1 Dataset cleansing
Within this work we consider how to prepare SPEC 2017 benchmark
dataset for machine learning. The dataset includes 34 attributes
as illustrated in Table 2. The numeric columns Peak Result and
Base Result represent the response time of systems under load
or no load respectively and are the values we seek to predict in
this work. We perform the following pre-processing on the data,
making it amenable for model training. Our approach to mitigate
inconsistencies and data quality issues include the following:

Alphanumeric cleaning: Non-alphanumeric characters such
as tabs and escape characters are removed from the dataset.
We also remove spaces from column names to make down-
stream processing easier. All characters are converted to
lower case to remove inconsistencies.

Removal of outliers: Some of the Base Result values were
zero, which is clearly incorrect. As there were only a small
number of these, they are removed.

Making units consistent: Units varied across the data (e.g.,
memory in KB, MB, GB). All units are standardised to MB.

Make columns categorical: Many of the columns although
appearing to allow arbitrary data are actually highly con-
strained (e.g., Memory can only take a small range of values).
As such, the set of these values was determined and the data
was replaced with categorical labels.

Removal of highly correlated columns: We used Kendall’s
rank correlation [23] to identify those columns which are
highly correlated. It was determined, in our case, that the

columns ‘CPU(s) Orderable’, ‘Energy Base Result’, ‘License’,
‘Parallel’, ‘System’, ‘Test Sponsor’, and ‘Tested By’ were more
than 70% correlated with other columns. As strongly corre-
lated variables may have almost the same ability to predict
the result value for observation, due to their linear depen-
dence, they were eliminated. It should be noted that we also
evaluated Pearson and Spearman correlation and obtained
similar results.

3.2 Searching for the ‘best’ Neural Network
The shape (layers and neurons per layer) of Deep Learning networks
significantly impact performance. We perform a space search for
the ‘best’ network for the SPEC data. We identify three network
structures, two trapezium and one rectangular and populate these
with either single neurons, Convolutional nodes or Residual Nodes.
We evaluate three core network designs within this work. Those
of fully-connected networks, convolutional neural networks and
networks which use Residual blocks as proposed by the ResNet
architecture [10]. We detail the design of each of these architectures:

3.2.1 Fully-Connected Networks: We evaluate three network struc-
tures, those of a strictly decreasing number of neurons per layer
shaped network – which we will refer to as a trapezium network
hereafter, see Figure 1, the reverse of this – referred to as a reverse
trapezium – and that of a rectangular network with the same num-
ber of neurons in each layer. For the trapezium network the first
layer has 2𝑛 neurons. Each subsequent layer has half the number
of neurons as the previous layer. The penultimate layer has 2𝑛−𝑚
neurons where 𝑛 −𝑚 > 1. We vary the values of 𝑛 in the range
[4, ..., 11] and𝑚 in the range [1, ..., 10]. The final layer of the net-
work contains just a single neuron to provide the regression result.
Reverse trapezium networks flip the order of the layers (apart from
the last) having the narrowest layer first and the widest layer last.

The rectangular networks contain𝑚 layers and have 2𝑛 neurons
in each layer, with a final layer containing only one neuron to
provide the regression result. Although this network does not vary
in shape between layers, the network learns weights which cause
some neurons in a level to become redundant, effectively learning
itself the number of neurons to place in each layer.

3.2.2 CNN design: The CNN network consists of a number of
convolutional layers followed by a fully-connected set of layers.
Figure 2 illustrates the shape of these networks. It should be noted
that in these cases the fully-connected layers are smaller than those

Figure 1: Sketch view of trapezium-shaped MLPs

93

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Mehmet Cengiz, Matthew Forshaw, Amir Atapour-Abarghouei, & Andrew Stephen McGough

Kernel ∈ [1, 3]

2
n

Kernel ∈ [1, 3]

2
n-1

Kernel ∈ [1, 3]

2
n-m

FL
AT

TE
N

Convolutional Layers

2p

2p -
1

2p-
q

Dense Layers

Figure 2: The CNN network structure

where we only use fully-connected layers. As our data is tabular,
we use 1D convolutional layers – i.e. our kernels/filters are 1D and
of size 𝑘 ∈ [2, ..., 5]. Again, we adopt the trapezium format of the
first convolutional layer having a width (number of filters) of 2𝑛
and each subsequent layer having half the width of the previous
layer. With the last convolutional layer having a width of 2𝑛−𝑚
(𝑛 −𝑚 > 1). The fully-connected layers are trapezium in shape
and range in nodes per layer between 2𝑝 and 2𝑝−𝑞 . We allow 𝑛,
𝑚, 𝑝 and 𝑞 to vary in the ranges [7, ..., 11], [4, ..., 7], [7, ..., 11], and
[5, ..., 7], respectively. Initial experiments indicated that searches
within these ranges yielded the best results.

3.2.3 Residual design: We adopt Residual blocks [10], where a
‘bypass’ link around a set of convolutional units is merged with
the output from the convolutional units. Figure 3 illustrates this
network topology and we refer to this hereafter as the identity
block. The width of the input and output to the identity block must
be the same (2𝑝). By convention, the kernel size of the first two
convolutions are 2𝑝−2 with the kernel size of the last convolution
being 2𝑝 to restore the original size. We allow 𝑝 ∈ [6, ..., 11].

One restriction of the original identity block is that the shape of
the data entering the block must be the same as the shape of the
output – otherwise the merging of the data from the ‘bypass’ will
not be possible. In order to overcome this, we use a convolution
unit to the ‘bypass’ which has the same output width as the final
convolution in the main path – see Figure 4. In this case, the first
two convolutions on the main path have a width of 2𝑝−2, while
the last convolution on the main path and the ‘bypass’ path have
widths of 2𝑝 . We refer to this as a convolutional block.

The two block templates are then combined to produce a su-
perblock (Figure 5). Each superblock starts with a convolutional
block followed by 𝑟 identity blocks. The width of the output for
each block (both identity and convolution) within a block will be
2𝑝 , also the output width of the whole superblock.

Superblocks can then be concatenated together as in Figure 6.
Here, the original vector data is fed into a set of 𝑤 superblocks.

Conv1 Conv2 Conv3 +X F(X)

Figure 3: The identity block

Conv1 Conv2 Conv3 +

Conv3

X F(X)

Figure 4: The convolutional block

Convolutional
Block Identity Block Identity Block

r times

(2p, 2p, 2p+2) (2p, 2p, 2p+2) (2p, 2p, 2p+2)

Figure 5: A superblock constructed from a convolution block
and 𝑟 identity blocks

Following the convention of ResNet, the width of output from each
superblock will be double that of the previous superblock. Finally
the output from the last superblock will be flattened before being
fed into a single neuron to predict the regression value.

Kernel = 3

2p

FL
AT

TE
N

SU
PE

R
 B

LO
C

K
(2

p , 2
p , 2

p+
2)

SU
PE

R
 B

LO
C

K
(2

p+
1 , 2

p+
1 , 2

p+
3)

SU
PE

R
 B

LO
C

K
(2

p+
m

, 2
p+

m
, 2

p+
m

+2
)

w times

Figure 6: The ultimate design of our ResNet model

3.3 Hyperparameter search
In addition to performing an neural architecture search over the
architecture range specified in 3.2, we also conducted a thorough
search across the hyperparameters which could be used for the net-
works. This included the optimiser, the number of training epochs,
the loss function and the activation function.

3.3.1 Optimiser: The optimiser is used to determine how the wei-
ghts of the network are updated after each training step. This work
focuses on three of the most commonly used optimisers:

SGD: Stochastic Gradient Decent is the original optimiser used
for Deep Learning. Although strictly speaking Gradient decent
performs an update after each training sample is processed, we
adopt the normal convention of performing the optimisation step
after each batch of data is processed – more correctly referred to as
Batched Stochastic Gradient Decent.

94

Predicting the Performance of a Computing System with Deep Networks ICPE ’23, April 15–19, 2023, Coimbra, Portugal

RMSprop: Root Mean Squared Propagation extends SGD by
applying decaying average partial gradients to the step size of each
parameter. The optimiser focuses more on recent gradients.

Adam: ADAptive Moment estimation [16] is an extension of
SGD. Like RMSprop, Adam adopts a separate learning rate for each
parameter. While RMSprop uses the average of the first moment,
Adam also uses the average of the second moment when choosing
how to adapt the learning rates.

3.3.2 Loss function: The loss function is used to determine the
difference between the predicted values and the true values. We
evaluate two loss functions, Mean Squared Error (MSE, Equation 1)
and Mean Absolute Error (MAE, Equation 2),

𝑀𝑆𝐸 =
1
𝑁

𝑁∑︁
𝑖=1

(𝑦′𝑖 − 𝑦𝑖)2, (1) 𝑀𝐴𝐸 =
1
𝑁

𝑁∑︁
𝑖=1

|𝑦′𝑖 − 𝑦 |, (2)

where number of samples is 𝑁 , 𝑦′
𝑖
and 𝑦𝑖 are predicted and true

values respectively. Larger errors will have a larger impact onMSE’s
loss value which we would expect to lead to fewer outlier values.

3.3.3 Activation function: The activation function provides the
non-linear element within the networks. We evaluated three com-
monly used activation functions within our work: sigmoid, tanh
and ReLU. For many problems ReLU has been shown to be the most
effective activation function. However, there are a number of cases
where the other activation functions are more suited to the problem
at hand. As is the convention, no activation function was used on
the final output layer to allow for arbitrary output values.

3.3.4 Stride: Stride is the number of cells that shifts over the input
matrix. While stride size is adaptive in the CNN experiments, we
kept it fixed in the residual-inspired models except for the starting
layer of the convolutional blocks. Our dataset has 24 columns for
independent variables, making the shape of input data (1, 24), we
defined the stride size in the range of [1, ..., 4].

3.4 Implementation Details
We use an 80-20 training-test split. Further, the training data is
split into training and validation sets as 80% and 20% respectively.
The batch size is determined as 10. Each model is trained 5 times
with different random seeds to obtain its average performance. The
data splitting process was purposely designed to demonstrate the
real-world future unseen data in operation, and adjusting class dis-
tributions via any controlled split approach such as cross-validation
would go against an uncontrolled future configuration of data [28].
By using random seeds to generate random splits of data for each
experiment, we can be confident that our models are capable of
responding to random distributions of data. in the real world.

We use the Glorot uniform initialiser [9] for initialising the pa-
rameters within our networks, which sets the weights so they are
equal across all layers in terms of the variance of the activations.
The gradient is kept from exploding or vanishing by the constant
variance. In addition, the initial bias value(s) were set to zero [15].

We allowed the number of epochs to vary between 100 and 300
in steps of 50. We stopped training after 300 epochs, where models
demonstrated optimal performance on the test set.

3.4.1 Baseline Models. We consider three baseline models:

Linear Regression: We would expect that this model would
perform well for similar hardware, but perform poorly when there
is a non-linear change in hardware performance.

Support Vector Regression: SVR is often better than a linear
regression model as it is able to fit better to the model. However, it
still suffers from the fact that it is a linear model and hence is not
expected to adapt well to step-changes in the hardware.

Random Forest Regression: This is an ensemble technique
which does not suffer from the linear model problems of the other
two approaches. It does, however, require prior examples of hard-
ware types to be able to predict new hardware accurately. We would
therefore expect this to be better than the other baseline models,
but less likely to be adaptable as the Deep Learning models.

3.4.2 Evaluation Metrics: We evaluate model performance using
MSE (Equation 1), MAE (Equation 2) and 𝑅2:

𝑅2 = 1 −
∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖)2∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)2 ,

where 𝑦𝑖 is the true value, 𝑦𝑖 is the predicted value and 𝑦 is the
mean of all true values. For both the 𝑅2 and MSE, values further
from their predicted value are going to have a more significant
impact on the results. In order to measure the models’ vulnerability
to outliers, focusing on MSE would be preferable. A focus on 𝑅2

would reduce outliers at the expense of overall accuracy.

4 RESULTS
We present the results of our model training. All results represent
the average of the five different splits of the dataset. Tables 3 and 4
present the top performing models when sorted by 𝑅2 and MSE.

4.1 Baseline Models
We first evaluate our baseline cases. Both Linear Regression (𝑅2 =

0.526,𝑀𝑆𝐸 = 15761.2) and Support Vector Regression (𝑅2 = −0.004,
𝑀𝑆𝐸 = 33448.31) performed poorly. Figure 7 shows Quantile-
Quantile plots for the residuals of the top-performing model of each
type; CNN, Linear Regression, Random Forest and SVR. We observe
that the CNN models exhibit preferable behaviour at both extremes.
Meanwhile, linear regression and Random Forest models exhibit
larger residuals for lower quantiles. Finally, Linear Regression, Ran-
dom Forest and SVR exhibit large variances for high performance
machines in the dataset. Figure 8 shows the magnitude of residuals
for each methods. We observe our CNN based approach exhibits
preferable behaviour to prior approaches.

4.2 Deep Learning Models
For MLP networks, the Trapezium networks offered highest perfor-
mance, achieving 45th position for 𝑅2 and 48th position for MSE.
The performance of MLP networks were typically not competitive
with CNN-based approaches, so we do not discuss them further.
Meanwhile, CNN networks dominate the top 12 and 13 positions
for 𝑅2 and MSE respectively.

We hypothesised that residual-inspired approaches would per-
form favourably in our case, due to their strong performance in
other domains, however, this is not borne in our findings. Residual-
inspired approaches only acheived positions of 159th by 𝑅2 and

95

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Mehmet Cengiz, Matthew Forshaw, Amir Atapour-Abarghouei, & Andrew Stephen McGough

Table 3: The results of the best deep networks and machine learning models – Order of 𝑅2

Architecture Loss Fn Kernel Sizes Stride Sizes Number of Filters (m, n) Neurons in Layers (p, q) Optimizer Epochs R2 MAE MSE
1 TriCNN MAE 3 1 (9, 7) [9, . . . , 5] Adam 250 0.98638701 5.67389728 465.3285655
2 TriCNN MAE 3 2 (9, 7, 6, 5, 4) [9, . . . , 4] Adam 250 0.98590661 5.83946465 476.0394343
3 TriCNN MAE 3 2 (9, 7) [9, . . . , 5] Adam 300 0.98579341 5.76197731 494.124225
4 TriCNN MAE 3 1 (9, 7) [9, . . . , 5] Adam 150 0.98529142 6.25318407 513.9629513
5 TriCNN MAE 3 2 (9, 7, 6, 5, 4) [9, . . . , 4] RmsProp 150 0.98282719 7.14056732 620.2982421
6 TriCNN MAE 3 2 (9, 7, 6, 5, 4) [9, . . . , 4] Adam 200 0.98280914 6.03564805 582.3068145
7 TriCNN MAE 3 2 (9, 7, 6, 5, 4) [9, . . . , 4] Adam 300 0.98278342 5.61076184 582.0247239
8 TriCNN MAE 3 1 (9, 7) [9, . . . , 5] Adam 300 0.98107176 5.78137347 645.4129883
9 TriCNN MAE 3 2 (9, 7) [9, . . . , 5] RmsProp 250 0.98095925 6.72097815 669.8856237
10 TriCNN MAE 3 1 (9, 7) [9, . . . , 5] Adam 200 0.98089907 6.32291809 665.1641919
11 TriCNN MAE 3 2 (9, 7) [9, . . . , 5] Adam 150 0.98047251 6.71537772 663.7030719
12 TriCNN MAE 3 1 (7, 6, 5, 4) [9, . . . , 5] RmsProp 300 0.98038864 6.9974749 653.5821786
∼ RF 0.9803076 4.76701531 688.0001262
13 TriCNN MAE 3 1 (7, 6, 5, 4) [9, . . . , 5] RmsProp 200 0.98002879 7.62788323 684.7595471
14 TriCNN MAE 2 1 (9, 7) [11, . . . , 6] Adam 150 0.9793459 6.519971 703.0615545
15 TriCNN MAE 3 2 (9, 7) [9, . . . , 5] Adam 100 0.97782539 8.23651529 754.5381605
16 TriCNN MAE 3 2 (9, 7, 6, 5, 4) [9, . . . , 4] Adam 100 0.97748578 7.30871799 757.4994833
17 TriCNN MAE 3 2 (9, 7, 6, 5, 4) [9, . . . , 4] Adam 150 0.97726148 6.65855022 772.0747562
18 TriCNN MAE 3 1 (7, 6, 5, 4) [9, . . . , 5] RmsProp 250 0.97665471 7.86703389 775.8960386
19 TriCNN MAE 3 2 (9, 7, 6, 5, 4) [9, . . . , 4] RmsProp 250 0.97650919 7.97325412 852.3545636
20 TriCNN MAE 3 2 (9, 7) [9, . . . , 5] RmsProp 300 0.97636563 6.91501173 816.7881606
45 TriMLP MAE [11, . . . , 6] Adam 250 0.97347275 9.12443258 906.1439402
159 Residual MAE Number of Superblocks = (2, 5, 5, 2) ((6, 6, 8), (7, 7, 9), (8, 8, 10), (9, 9, 11)) 1 RmsProp 250 0.95007233 10.595069 1006.134564
∼ LR 0.52639158 82.4596122 15761.16107
∼ SVR -0.0045634 113.749207 33448.30886

* TriCNN = Trapezium-shaped CNN, RF = Random Forest Regression, TriMLP = Trapezium-shaped MPL, LR = Linear Regression, SVR = Support Vector Regression

Table 4: The results of the best deep networks and machine learning models – Order of MSE

Architecture Loss Fn Kernel Sizes Stride Sizes Number of Filters (m, n) Neurons in Layers (p, q) Optimizer Epochs R2 MAE MSE
1 TriCNN MAE 3 1 (9, 7) [9, . . . , 5] Adam 250 0.98638701 5.67389728 465.3285655
2 TriCNN MAE 3 2 (9, 7, 6, 5, 4) [9, . . . , 4] Adam 250 0.98590661 5.83946465 476.0394343
3 TriCNN MAE 3 2 (9, 7) [9, . . . , 5] Adam 300 0.98579341 5.76197731 494.124225
4 TriCNN MAE 3 1 (9, 7) [9, . . . , 5] Adam 150 0.98529142 6.25318407 513.9629513
5 TriCNN MAE 3 2 (9, 7, 6, 5, 4) [9, . . . , 4] Adam 300 0.98278342 5.61076184 582.0247239
6 TriCNN MAE 3 2 (9, 7, 6, 5, 4) [9, . . . , 4] Adam 200 0.98280914 6.03564805 582.3068145
7 TriCNN MAE 3 2 (9, 7, 6, 5, 4) [9, . . . , 4] RmsProp 150 0.98282719 7.14056732 620.2982421
8 TriCNN MAE 3 1 (9, 7) [9, . . . , 5] Adam 300 0.98107176 5.78137347 645.4129883
9 TriCNN MAE 3 1 (7, 6, 5, 4) [9, . . . , 5] RmsProp 300 0.98038864 6.9974749 653.5821786
10 TriCNN MAE 3 2 (9, 7) [9, . . . , 5] Adam 150 0.98047251 6.71537772 663.7030719
11 TriCNN MAE 3 1 (9, 7) [9, . . . , 5] Adam 200 0.98089907 6.32291809 665.1641919
12 TriCNN MAE 3 2 (9, 7) [9, . . . , 5] RmsProp 250 0.98095925 6.72097815 669.8856237
13 TriCNN MAE 3 1 (7, 6, 5, 4) [9, . . . , 5] RmsProp 200 0.98002879 7.62788323 684.7595471
∼ RF 0.9803076 4.76701531 688.0001262
14 TriCNN MAE 2 1 (9, 7) [11, . . . , 6] Adam 150 0.9793459 6.519971 703.0615545
15 TriCNN MAE 3 2 (9, 7) [9, . . . , 5] Adam 100 0.97782539 8.23651529 754.5381605
16 TriCNN MAE 3 2 (9, 7, 6, 5, 4) [9, . . . , 4] Adam 100 0.97748578 7.30871799 757.4994833
17 TriCNN MAE 3 2 (9, 7, 6, 5, 4) [9, . . . , 4] Adam 150 0.97726148 6.65855022 772.0747562
18 TriCNN MAE 3 1 (7, 6, 5, 4) [9, . . . , 5] RmsProp 250 0.97665471 7.86703389 775.8960386
19 TriCNN MAE 3 2 (9, 7) [9, . . . , 5] RmsProp 200 0.97613855 7.72461632 807.1294185
20 TriCNN MAE 3 2 (9, 7) [9, . . . , 5] RmsProp 300 0.97636563 6.91501173 816.7881606
48 TriMLP MAE [11, . . . , 6] Adam 250 0.97347275 9.12443258 906.1439402
135 Residual MAE Number of Superblocks = (2, 5, 5, 2) ((6, 6, 8), (7, 7, 9), (8, 8, 10), (9, 9, 11)) 1 RmsProp 250 0.95007233 10.595069 1006.134564
39 LR 0.52639158 82.4596122 15761.16107
40 SVR -0.0045634 113.749207 33448.30886

* TriCNN = Trapezium-shaped CNN, RF = Random Forest Regression, TriMLP = Trapezium-shaped MPL, LR = Linear Regression, SVR = Support Vector Regression

135th by MSE. These models are more complex to engineer, and
require more time to train, and provided little benefit in our case.

We now summarise other design choices:

Optimizer: Consistent with prior research, Adam generally
performed best, though RMSprop is a strong contender.

Loss function: In all cases MAE produced the best results.
Somewhat surprising when the overall metric is MSE.

Activation Function: Sigmoid produced results for the smaller
architectures; however, the results were either NaN or neg-
ative. On the other hand, the results of the tanh activation
function could not pass 0.01 in terms of R2.

Stride Size: In most cases (𝑅2 and MSE) having a stride size
of one and two are best.

Kernel Size: The best kernel size is three for the top result
though this is not consistent over all results.

Training Epochs: Figure 9 shows the impact of training epochs
on performance for our top model, measured by MAE, MSE
and 𝑅2. The epoch count for stopping our training was de-
termined empirically.

96

Predicting the Performance of a Computing System with Deep Networks ICPE ’23, April 15–19, 2023, Coimbra, Portugal

CNN Linear Regression RF SVR

−4 −2 0 2 4−4 −2 0 2 4−4 −2 0 2 4−4 −2 0 2 4

−2000

0

2000

4000

6000

Theoretical quantiles

O
bs

er
ve

d
qu

an
til

es

Model CNN Linear Regression RF SVR

Figure 7: Q-Q Plots for residuals of the best performing CNN, Linear Regression, Random Forest and SVM models

CNN

Linear Regression

RF

SVR

−2000 0 2000 4000 6000
Residuals

M
od

el

Model CNN Linear Regression RF SVR

Figure 8: Magnitude of residuals, by method.

MAE MSE R2

250 500 750 1000 250 500 750 1000 250 500 750 1000

0.975

0.980

0.985

400

600

800

1000

6

7

8

9

Epochs

M
et
ric
Va
lu
e

Measure MAE MSE R2

Figure 9: Performance for top CNNmodel, by training epoch.

4.3 Evaluation of top cases
Here, we evaluate the performance of the top four networks by 𝑅2

andMSE. As seen in Table 3 and 4, four models which are trapezium-
shaped CNNs that are optimised by Adam dominate both tables.
All cases of the first-ranked model are in the top ten - 1st, 4th, 8th,
and 10th in Table 3 and 1st, 4th, 8th, and 11th in Table 4. However,
when the table is examined closely, we see that the increase in the
number of epochs does not result positively for this model and
a fluctuation in 𝑅2 performance is observed. At this point, it is
important to compare other metrics. If we sort all epoch setups
of the first-ranked model by MAE, we see similar fluctuations in
performance. However, considering the MSE values, although there
is no significant difference between each model, the first-ranked
configuration seems to be more resistant to outliers. As a result,
it is expected that an increase/decrease in the number of epochs
affects the performance increase/decrease, but counter-intuitively,

no pattern is obtained in this case. Moreover, the same argument
is valid for the second-ranked model in both tables. Furthermore,
an increase in the quantity of convolutional layers does not always
translate into an improvement in performance.

5 THREATS TO VALIDITY
Here, we introduce the limitations of this work, and highlight
threats to validity arising from these. We structure our approach
based on similar initiatives in the systems performance literature
(e.g., [7]) and the approach of Wohlin et al. [27].

L1 Single benchmark dataset This study uses only data from
SPEC CPU 2017 retrieved on 10 September 2022.

L2 Single expert for data cleaning Data cleaning processes
were developed by a single expert researcher.

We now consider the implication of these limitations in terms
of construct, internal and external validity.

Construct Validity This work concerns the prediction of per-
formance results. Further work could have also evaluate whether
predictive performance holds for columns Energy Peak Result and
Energy Base Result from the dataset.

Internal Validity As highlighted in Section 3.1, our work in-
volved cleaning data for it to be amenable to analysis and machine
learning. The development of the cleaning processes were under-
taken by a single expert researcher (Limitation L2), leaving the
opportunity for misinterpretation of the datasets. To mitigate this
impact, the processes undertaken were well documented, and the
process was audited by two further researchers. Code to automate
data cleaning is made available to the community.

External Validity Our experiment considers data from a single
benchmark, SPEC CPU 2017 (Limitation L1), which may limit
the generalisability of our findings. While our experiments were
conducted for just one benchmark, our methodology is applicable to
performance benchmarksmore broadly. Further research is required
to understand the extent to which our methods are effective for
other workloads; we make this possible by providing our data and
models for reproduction by other researchers.

ReproducibilityWe have made all our code and data, including
the results of the training of all the networks available1.

1https://github.com/cengizmehmet/BenchmarkNets

97

https://github.com/cengizmehmet/BenchmarkNets

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Mehmet Cengiz, Matthew Forshaw, Amir Atapour-Abarghouei, & Andrew Stephen McGough

6 CONCLUSION
This work has considered the extent to which it is possibly to predict
benchmark results for previously untested hardware configurations.
We have specifically focused on the potential of usingDeepNetwork
approaches to capture the non-linear relationships present in the
data. Our study has centred around the SPEC CPU 2017 dataset.

We investigated three deep network types, MLPs, CNNs, and
an architecture of CNNs which is ResNet. After comprehensive
studies, the models we offer excel at predicting the performance
of a given system. While the 𝑅2 values are between approx. 0.945
and 0.985, MAEs are between approx. 13 and 3.2. Secondly, it is
discovered that convolutional layers can more efficiently predict
our tabular data. This can be seen by examining the performance
gain observed when adding convolutional layers to MLPs. Another
finding of our paper involves demonstrating the effectiveness of
residual blocks as opposed to simple convolutional layers. Our
results indicate that while increasing the number of convolutional
layers can offer promising results, the use of residual blocks leads
to better performance overall.

This study is an indication and a starting point that deep neural
networks can be trained on existing benchmark datasets to pre-
dict performance. However, we believe there are of many areas of
future work. One avenue of future research would be to extend
the application by taking advantage of more powerful neural net-
work architectures with innovative feature aggregating modules or
perhaps a higher parameter and layer count. Another direction of
research would include exploring the effects of transfer learning,
whereby the performance prediction system can be pre-trained
on a larger proxy dataset to boost the performance after a subse-
quent and carefully designed fine-tuning process on the benchmark
dataset. The use of synthetic data along with domain adaptation
techniques can also lead to better performance and possibly steer
the abilities of the model towards the desired outcome considering
real-world data distributions. The method of procedurally generat-
ing the synthetic data in a meaningful manner that can benefit the
training of neural network, perhaps in an end-to-end fashion, can
also be an interesting area to investigate in a future work.

REFERENCES
[1] Gurumurthy Anand and Rambabu Kodali. 2008. Benchmarking the benchmarking

models. Benchmarking: An international journal 15, 3 (2008), 257–291. https:
//doi.org/10.1108/14635770810876593

[2] Newsha Ardalani, Clint Lestourgeon, Karthikeyan Sankaralingam, and Xiaojin
Zhu. 2015. Cross-Architecture Performance Prediction (XAPP) Using CPU Code
to Predict GPU Performance. In Proceedings of the 48th International Symposium on
Microarchitecture (Waikiki, Hawaii) (MICRO-48). Association for Computing Ma-
chinery, New York, NY, USA, 725–737. https://doi.org/10.1145/2830772.2830780

[3] baosenguo. 2020. Mechanisms of Action (MoA) Prediction: 2nd Place Solution -
with 1D-CNN.

[4] Ljubomir Buturović and Dejan Miljković. 2020. A novel method for classification
of tabular data using convolutional neural networks. bioRxiv (2020). https:
//doi.org/10.1101/2020.05.02.074203

[5] Robert C Camp. 2006. Benchmarking: the search for industry best practices that
lead to superior performance (1st. ed.). Productivity Press, NY.

[6] Phillip Ein-Dor and Jacob Feldmesser. 1987. Attributes of the Performance of
Central Processing Units: A Relative Performance Prediction Model. Commun.
ACM 30, 4 (apr 1987), 308–317. https://doi.org/10.1145/32232.32234

[7] Simon Eismann, Diego Elias Costa, Lizhi Liao, Cor-Paul Bezemer, Weiyi Shang,
André van Hoorn, and Samuel Kounev. 2022. A case study on the stability of
performance tests for serverless applications. Journal of Systems and Software
189 (2022), 111294.

[8] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith. 2009. A
Mechanistic Performance Model for Superscalar Out-of-Order Processors. ACM

Trans. Comput. Syst. 27, 2, Article 3 (may 2009), 37 pages. https://doi.org/10.
1145/1534909.1534910

[9] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning
Research, Vol. 9), Yee Whye Teh and Mike Titterington (Eds.). PMLR, Chia Laguna
Resort, Sardinia, Italy, 249–256.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. CoRR abs/1512.03385 (2015). arXiv:1512.03385
http://arxiv.org/abs/1512.03385

[11] Michelle M. Hugue. 2022. Lecture notes in Computer Systems Architecture.
[12] Engin Ïpek, Sally A. McKee, Rich Caruana, Bronis R. de Supinski, and Martin

Schulz. 2006. Efficiently Exploring Architectural Design Spaces via Predictive
Modeling. In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (San Jose, California,
USA) (ASPLOS XII). Association for Computing Machinery, New York, NY, USA,
195–206. https://doi.org/10.1145/1168857.1168882

[13] Chuntao Jiang, Zhibin Yu, Hai Jin, Chengzhong Xu, Lieven Eeckhout, Wim
Heirman, Trevor E. Carlson, and Xiaofei Liao. 2013. PCantorSim: Accelerating
Parallel Architecture Simulation through Fractal-Based Sampling. ACM Trans.
Archit. Code Optim. 10, 4, Article 49 (dec 2013). https://doi.org/10.1145/2541228.
2555305

[14] Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen McGough.
2018. Predicting the Computational Cost of Deep Learning Models. In 2018 IEEE
International Conference on Big Data (Big Data). 3873–3882. https://doi.org/10.
1109/BigData.2018.8622396

[15] Keras. 2022. Layer weight initializers. https://keras.io/api/layers/initializers/ Last
accessed 15 August 2022.

[16] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. https://doi.org/10.48550/ARXIV.1412.6980

[17] Benjamin Lee. 2006. An architectural assessment of SPEC CPU benchmark
relevance. Harvard University, Cambridge, MA, Tech. Rep. TR-02-06 (2006).

[18] Ang Li, Xuanran Zong, Srikanth Kandula, Xiaowei Yang, and Ming Zhang. 2011.
CloudProphet: Towards Application Performance Prediction in Cloud (SIGCOMM
’11). Association for Computing Machinery, New York, NY, USA, 426–427. https:
//doi.org/10.1145/2018436.2018502

[19] David J. Lilja. 2000. Measuring computer performance: A practitioner’s guide.
[20] Leonardo Lopez, Michael Guynn, and Meiliu Lu. 2018. Predicting Computer

Performance Based on Hardware Configuration Using Multiple Neural Networks.
In ICMLA. 824–827. https://doi.org/10.1109/ICMLA.2018.00132

[21] Jean-Luc Maire, Vincent, Pillet Bronet, and Maurice Pillet. 2005. A typology of
“best practices” for a benchmarking process. Benchmarking: An international
journal 12, 1 (2005), 45–60. https://doi.org/10.1108/14635770510582907

[22] Berkin Ozisikyilmaz, Gokhan Memik, and Alok Choudhary. 2008. Machine
LearningModels to Predict Performance of Computer SystemDesignAlternatives.
In 2008 37th International Conference on Parallel Processing. 495–502. https:
//doi.org/10.1109/ICPP.2008.36

[23] David Sarmento. 2022. Chapter 22: Correlation Types and When to Use Them.
[24] Ashkan Tousi and Mikel Luján. 2022. Comparative Analysis of Machine Learning

Models for Performance Prediction of the SPEC Benchmarks. IEEE Access 10
(2022), 11994–12011. https://doi.org/10.1109/ACCESS.2022.3142240

[25] Navin Mani Upadhyay, Ravi Shankar Singh, and Shri Prakash Dwivedi. 2022.
Prediction of multicore CPU performance through parallel data mining on public
datasets. Displays 71 (2022), 102112. https://doi.org/10.1016/j.displa.2021.102112

[26] Sam Van den Steen, Sander De Pestel, Moncef Mechri, Stijn Eyerman, Trevor
Carlson, David Black-Schaffer, Erik Hagersten, and Lieven Eeckhout. 2015. Micro-
architecture independent analytical processor performance and power modeling.
In 2015 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). 32–41. https://doi.org/10.1109/ISPASS.2015.7095782

[27] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[28] Xinchuan Zeng and Tony R. Martinez. 2000. Distribution-balanced stratified
cross-validation for accuracy estimation. Journal of Experimental & Theoretical
Artificial Intelligence 12, 1 (2000), 1–12. https://doi.org/10.1080/095281300146272

[29] Xinnian Zheng, Lizy K. John, and Andreas Gerstlauer. 2016. Accurate phase-level
cross-platform power and performance estimation. In 2016 53nd ACM/EDAC/IEEE
Design Automation Conference (DAC). 1–6. https://doi.org/10.1145/2897937.
2897977

[30] Yitan Zhu, Thomas Brettin, Fangfang Xia, Alexander Partin, Maulik Shukla,
Hyunseung Yoo, Yvonne A. Evrard, James H. Doroshow, and Rick L. Stevens.
2021. Converting tabular data into images for deep learning with convolutional
neural networks. Scientific Reports 11, 1, Article 11325 (2021), 11 pages. https:
//doi.org/10.1038/s41598-021-90923-y

98

https://doi.org/10.1108/14635770810876593
https://doi.org/10.1108/14635770810876593
https://doi.org/10.1145/2830772.2830780
https://doi.org/10.1101/2020.05.02.074203
https://doi.org/10.1101/2020.05.02.074203
https://doi.org/10.1145/32232.32234
https://doi.org/10.1145/1534909.1534910
https://doi.org/10.1145/1534909.1534910
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1145/1168857.1168882
https://doi.org/10.1145/2541228.2555305
https://doi.org/10.1145/2541228.2555305
https://doi.org/10.1109/BigData.2018.8622396
https://doi.org/10.1109/BigData.2018.8622396
https://keras.io/api/layers/initializers/
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1145/2018436.2018502
https://doi.org/10.1145/2018436.2018502
https://doi.org/10.1109/ICMLA.2018.00132
https://doi.org/10.1108/14635770510582907
https://doi.org/10.1109/ICPP.2008.36
https://doi.org/10.1109/ICPP.2008.36
https://doi.org/10.1109/ACCESS.2022.3142240
https://doi.org/10.1016/j.displa.2021.102112
https://doi.org/10.1109/ISPASS.2015.7095782
https://doi.org/10.1080/095281300146272
https://doi.org/10.1145/2897937.2897977
https://doi.org/10.1145/2897937.2897977
https://doi.org/10.1038/s41598-021-90923-y
https://doi.org/10.1038/s41598-021-90923-y

	Abstract
	1 Introduction
	2 Related Work
	2.1 Predictions from the SPEC datasets

	3 Methodology
	3.1 Dataset cleansing
	3.2 Searching for the `best' Neural Network
	3.3 Hyperparameter search
	3.4 Implementation Details

	4 Results
	4.1 Baseline Models
	4.2 Deep Learning Models
	4.3 Evaluation of top cases

	5 Threats to Validity
	6 Conclusion
	References

