
Predicting the Performance of ATL Model Transformations
Raffaela Groner

raffaela.groner@uni-ulm.de
Institute of Software Engineering and

Programming Languages, Ulm
University

Ulm, Germany

Peter Bellmann
peter.bellmann@uni-ulm.de

Institute of Neural Information
Processing, Ulm University

Ulm, Germany

Stefan Höppner
stefan.hoeppner@uni-ulm.de

Institute of Software Engineering and
Programming Languages, Ulm

University
Ulm, Germany

Patrick Thiam
patrick.thiam@uni-ulm.de

Institute of Medical Systems Biology,
Ulm University

Institute of Neural Information
Processing, Ulm University

Ulm, Germany

Friedhelm Schwenker
friedhelm.schwenker@uni-ulm.de
Institute of Neural Information
Processing, Ulm University

Ulm, Germany

Matthias Tichy
matthias.tichy@uni-ulm.de

Institute of Software Engineering and
Programming Languages, Ulm

University
Ulm, Germany

ABSTRACT
Model transformation languages are special-purpose languages,
which are designed to define transformations as comfortably as
possible, i.e., often in a declarative way. Typically, developers create
their transformations based on small input models which systemat-
ically cover the language of the input models. This makes it difficult
for the developers to estimate how the transformations would per-
form for a large and diverse set of input models.

Hence, developers would benefit from an approach for predicting
the performance of model transformations based on just abstract
characteristics of input models. Regression approaches based onma-
chine learning lend themselves well to such predictions. However,
it is currently unknown, whether and which regression approach is
suitable in this context as well as how a model should be abstractly
characterized for this purpose.

We conducted several experiments to analyze how well dif-
ferent machine learning methods predict the execution time of
model transformations defined in the Atlas Transformation Lan-
guage (ATL) transformations for distinct sets of model characteris-
tics. As possible methods, we have investigated linear regression,
random forests and support vector regression using a radial basis
function kernel.

The results of our experiments show that support vector regres-
sion is the best choice in terms of usability and prediction accuracy
for the model transformation modules covered in our experiments
and is thus suited for a prediction approach. In addition, simple
model characterizations based only on the number of model ele-
ments, the number of references, and the number of attributes are
a suitable way to easily describe a model and to achieve decent
prediction accuracy.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’23, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0068-2/23/04.
https://doi.org/10.1145/3578244.3583727

CCS CONCEPTS
•General and reference→Performance; •Computingmethod-
ologies → Machine learning approaches; • Software and its
engineering → Model-driven software engineering.

KEYWORDS
performance prediction, ATL, model transformation, machine learn-
ing, linear regression, random forests, support vector regression

ACM Reference Format:
Raffaela Groner, Peter Bellmann, Stefan Höppner, Patrick Thiam, Fried-
helm Schwenker, and Matthias Tichy. 2023. Predicting the Performance
of ATL Model Transformations. In Proceedings of the 2023 ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE ’23), April 15–
19, 2023, Coimbra, Portugal. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3578244.3583727

1 INTRODUCTION
Model-Driven Engineering is used in multiple areas and, particu-
larly, in the area of cyber-physical systems [47]. Model transfor-
mations as technology are used, e.g., to translate models in one
formalism into models in another formalism, e.g. transforming UML
to Alloy [4], or to update models@run.time in order to trigger a
reconfiguration of a self-adaptive system [71]. In the past, many
different model transformation languages like the Atlas Transforma-
tion Language (ATL) [39], Henshin [59], QVTo [51] or Viatra [66]
have been proposed.

Götz et al. have identified 15 different categories of advantages
and disadvantages of model transformation languages in their re-
cent Systematic Literature Review [27]. Performance is one of these
categories, as researchers continuously work to improve the perfor-
mance of the execution of model transformation rules. The impor-
tance of performance is also shown by the results of an interview
study [28] that we conducted previously.

However, many of the interviewees mention not only the core
performance of the execution as an important aspect but also would
like to have an easy-to-use approach to be able to predict the perfor-
mance of a model transformation for varying model characteristics,
i.e., sizes and structures of input models. This is known as what-if

77

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3578244.3583727
https://doi.org/10.1145/3578244.3583727
https://doi.org/10.1145/3578244.3583727
https://www.acm.org/publications/policies/artifact-review-badging

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Raffaela Groner et al.

analysis in the Performance Engineering research area [13, p. 78].
Our interviewees report manual and ad-hoc approaches for this pre-
diction. This prediction is not a trivial task as model transformation
languages are often declarative and do not describe the concrete
execution steps but leave this as implementation and optimization
detail to the execution engine.

In order to realize this vision of a what-if performance analysis
for model transformations, we need to predict the execution time of
a given transformation based on characteristics of the input model.
The contribution of this paper is such a prediction approach. Partic-
ularly, we investigate how well different types of machine learning
methods predict the execution time of model transformations spec-
ified in ATL based on different sets of model characteristics.

Specifically, we answer the following research questions:

RQ1: How well do different machine learning methods predict
the execution time of an ATL transformation?

RQ2: How well do those machine learning methods perform
for different feature sets of model characteristics?

We answer our research questions by comparing linear regres-
sion, random forest regression, and support vector regression using
a radial basis function kernel. Our comparison is based on a set of
real world models provided by Kögel and Tichy [43] and obtained
by mining GitHub repositories, as well as ATL transformations
from the ATL zoo [21].

With respect to RQ1, our results show that depending on the
transformation module and characterization of a model the linear
regression approach yields an acceptable mean absolute percentage
error (MAPE) of 1.54%. The random forest regression and support
vector regression provide good predictions depending on the model
characterization, as they only misestimated by less than 4% in 75%
of the predictions. With respect to RQ2, the best compromise of
prediction quality and usability is the support vector regression
with model characteristics describing the number of objects, the
number of references and the number of attributes. Its resulting
MAPE lies between 2.07% and 10.63%. But our experiments also
demonstrate a limitation. Currently, we cannot predict the execu-
tion time of transforming attribute values having an arbitrary size
with a high variance that is not depending on the structure of the
model, e.g., comments defined as string attributes. In such a case
our approach achieves in the best case a MAPE of 1,010.91%.

In the next section, we introduce the aims and foundations of
predicting the execution time, particularly, the investigated features
of model characteristics. We present the relevant background of the
used machine learning methods as well as the employed prediction
performancemetrics in Section 3. In Section 4, we present the design
of our experiments. The results of the experiments are presented
in Section 5. After a discussion on related work in Section 6, we
conclude and give an outlook on future work in Section 7.

2 PREDICTION
The prediction approach is the key component of a what-if analysis.
This analysis provides a closer look at the behavior of a system or
can assist in decisionmaking [26, 54]. A developer can, e.g., examine
how the execution time of an ATL transformation changes if the in-
put model used consists of several thousands model elements. Then,
the developer can decide whether the performance is sufficient, the

Table 1: Overview of the feature sets.

Feature
Feature Set 1 2 3 4 5 6 7 8

Number of model elements (only
objects)

X X X

Number of references X X
Number of attributes X

Number of model elements per
type

X X X X X

� Fan-In per model element type X X
� Fan-Out per model element
type

X X

Number of attributes per attribute
type

X

� Fan-In per model element type
and per reference type

X X

� Fan-Out per model element
type and per reference type

X X

Number of attributes per model el-
ement type and per attribute type

X

transformation should be optimized, or the transformation should
be replaced with another technology.

With the help of a prediction approach developers can easily
analyze the influence of arbitrarily largemodels of varying structure
on the execution time. By describing the input model based on its
characteristics for the prediction, the very time consuming manual
creation of large and realistic models is no longer necessary. The
manual creation of very large models is also very complex, since a
model must usually satisfy semantic conditions to be realistic.

To realize a prediction, there are two requirements: 1) a function
that maps given characteristics of a model to a predicted execution
time and 2) a way to characterize a model that contains all the
necessary information for a prediction. To fulfill requirement 1,
we performed experiments to compare linear regression, random
forests and support vector regression using a radial basis function
kernel. We also examined different characteristics of a model, since
a suitable way to characterize a model (requirement 2) based on
which one can predict the execution time of a transformation is
currently unknown to the best of our knowledge.

Based on our experience with model transformations and their
performance, we systematically defined characteristics to describe
a model. We incrementally defined metrics (features) that describe
a model in increasing degrees of detail, and then used their union
as feature sets. The idea is always to add another piece of informa-
tion to a metric by adding structural or type information. We also
considered possible performance metrics for transformations that
we have summarized in our data set [32].

The feature sets in Table 1 are divided into three groups, which
differ in the amount of type information they contain. Within each
group the feature sets differ in the amount of structural information
they contain. We use a simple meta model and model (cf. Figure 1)
to illustrate the feature sets in Table 1. Note that the models we use
are directed typed graphs specified by metamodels.

78

Predicting the Performance of ATL Model Transformations ICPE ’23, April 15–19, 2023, Coimbra, Portugal

Bank

name:String

Client

name:String
age:Integer

Metamodel

Model

Manager

name:String

:Bank

name="Union
 Bank"

:Manager

name="Bob"

:Client

name="Alice"
age=32

staff clients

staff
clients

Figure 1: Metamodel and model of a simple bank.

The first group contains the feature sets 1 to 3, which cover
increasing levels of structural information. Feature set 1 contains
the total number of model elements regardless of which meta class
they belong to. Feature set 2 extends that by the total number of
references between the model elements irrespective of reference
types. Feature set 3 then extends that by the total number of all
attribute values. In our example (cf. bottom of Figure 1), the number
of model elements is 3 (the client Alice, the manager Bob and the
Union Bank), the number of references is 2 (staff between the
manager Bob and the Union Bank and clients between the client
Alice and the Union Bank) and the number of attributes is 4.

Group 2 contains the feature sets 4 to 6. These feature sets resem-
ble the feature sets 1 to 3. However, they contain features for each
type instead of a single feature, i.e., these feature sets contain three
features each covering the number of instances of Bank, Client,
resp. Manager for our example. Similarly, a feature, which contains
the average Fan-In (incoming references) resp. Fan-Out (outgoing
references) to characterize the references in more detail, is included
in feature set 5 for each of the three types. Finally, feature set 6
extends that by containing the number of attributes for the type
of each attribute, i.e., distinguishing String and Integer attributes
in our illustrative example. For example, feature set 6 consists of
11 features for the input model at the bottom of Figure 1. Three
features specifying that there is one bank, one client, and one man-
ager in the model (these features are also part of feature set 4 and
5). Six features specifying the average Fan-In and Fan-Out of the
bank, the client and the manager (these features are also part of
feature set 5). The bank has an average Fan-In of 0 because it has
no incoming references and an average Fan-Out of 2 because it
references the client and manager. The client and manager both
have an average Fan-In of 1, since they are referenced by the bank,
and an average Fan-Out of 0. Furthermore, feature set 6 contains
a feature for String attributes with the value 3 and a feature for
Integer attributes with the value 1.

Group 3 contains the feature sets 7 and 8 that provide more
details w.r.t. types of references as well as attributes. The model
elements are not extended any further, since no additional type
information is available for them. Feature sets 7 and 8 include
features that differentiate the average Fan-In and Fan-Out for each
reference type. In our illustrative example, features sets 7 and 8
include two features covering the average Fan-Out of the references
clients and staff, respectively. This means in our example that for
the Union Bank the average Fan-Out of the references clients is
1 and the average Fan-Out of the references staff is also 1. The
feature sets in group 2 in contrast only contain one feature for
the average Fan-Out of all references of the Bank element type.
Feature set 8 extends feature set 7 by the number of attributes for
the type of each attribute and the type of the associated model

element, i.e., four features forManager.name, Bank.name, Client.age,
and Client.name result for our example. For the example model at
the bottom of Figure 1, feature set 8 consists of 11 features. Three
features specifying that there is a bank, a client, and a manager in
the model (these features are also part of feature set 4, 5, 6 and 7).
Two features specifying the average Fan-Out of the bank and two
features specifying the average Fan-In of the client and the manager
(these features are also part of feature set 7). One feature represents
the average Fan-Out of the bank per reference type clients and one
feature represents the average Fan-Out of the bank per reference
type staff. Both of these features have the value 1 in our example.
The average Fan-In of the client per reference type clients and
average Fan-In of the manager per reference type staff have the
value 1. Note, we do not include the average Fan-In/Fan-Out per
model element type and per reference type for the model elements
without any incoming/outgoing references, as this would result
in feature sets containing a lot of features with a constant value
of 0 (we discuss constant feature values in Section 4). As already
mentioned, feature set 8 also contains 4 features representing the
number of attributes per model element type and per attribute type.

The models we use also support inheritance between model
element types. For example, we could extend our metamodel so
that the typesClient andManager inherit from amodel element type
Person, which has an attribute Person.name. This would eliminate
the need to define a corresponding attribute in the Client and in
the Manager in the metamodel. Such a concept has naturally an
impact on the performance of a transformation, because if the
transformation considers, e.g., only model elements of the type
Person, the number of possible model elements that are transformed
is probably larger than if the transformation considers only model
elements of the typeManager. This effect is reflected in our features
by considering the inheritance hierarchy when quantifying the
features for each model, e.g., “number of elements per type” is
defined for the type being inherited from as well as for the type
that inherits. Where the former feature is then a superset of the
latter one. With regard to our previously described example, this
means that we have one feature presenting the number of elements
of the type Client, which has the value 1 (the client Alice) for our
example model in Figure 1. We have another feature presenting the
number of elements of the typeManager, which has the value 1 (the
manager Bob). And we have a third feature presenting the number
of elements of the type Person, which has the value 2 (the client
Alice and the manager Bob) for our example model in Figure 1,
since it represents all model elements of the type Person as well as
all model elements that inherit from the type Person.

3 REGRESSION ANALYSIS METHODS
In this section, we first provide the definition of regression tasks.
Subsequently, we summarize three popular regression approaches
and define the metrics we use for evaluating the prediction quality.

3.1 Formalization
Let X ⊂ Rd , d ∈ N, be a d-dimensional data set. Furthermore, let
Y ⊂ R be the set of target labels. By N = |X | = |Y |, we denote
the number of elements in the sets X and Y . In a regression task,
defined by the set (X ,Y) = {(xi ,yi)}

N
i=1 ⊂ X × Y , each data point

79

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Raffaela Groner et al.

xi ∈ X is assigned to its corresponding target yi ∈ Y .
The goal of each regression task is to find amapping f : Rd → R,

such that f (xi) ≈ yi ,∀i = 1, . . . ,N , i.e., such that the evaluation of
f at data point xi is close to its corresponding true target label yi ,
for all data samples (xi ,yi) ∈ (X ,Y) [52, p. 1-2].

In this work, the analyzed feature space reflects the different
model characteristics. Therefore, each model is defined by an x ∈

Rd , whereby the entries of vector x contain the features introduced
in Table 1, such as the number of model elements. The set Y simply
contains the corresponding execution time, for transforming each
of the input models.

3.2 Ordinary Least Squares Linear Regression
One way of finding a mapping f with the properties described
above is given by the ordinary least squares (OLS) method, which
is also used in the field of machine learning. In the general OLS
approach, the mapping f is obtained by minimizing the sum of the
squared differences between the true target values and the approxi-
mated target values. Thus, we have to determine min

∑N
i=1 ∆

2
i , with

∆i := f (xi) − yi ,∀i = 1, . . . ,N . To this end, the type of the current
regression function must be specified at first.

More precisely, in a linear setting, f is simply defined as f (x) =
α0 +

∑d
k=1 αkx

(k), αk ∈ R,∀k = 0, . . . ,d , whereby x (k) denotes the
k-th dimension (i.e., the k-th feature of a data point x ∈ X). Let
X ∈ RN×d+1 be defined as the matrix that contains all data points
of X as row vectors extended by a leading one, i.e., the i-th row of
matrix X is equal to (1, x (1)i , . . . , x

(d)
i). Furthermore, let α ∈ Rd+1

be the vector consisting of the coefficients αi , i = 0, . . . ,d , and
y = (y1, . . . ,yN)T be the vector consisting of the corresponding
target labels. Then, to determine the regression function f , we have
to solve the following equation system,

min
α ∈Rd+1

N∑
i=1

∆2
i = min

α ∈Rd+1
∥Xα − y∥2, (1)

whereby ∥ · ∥ denotes the Euclidean distance. In case the matrix
XTX is invertible, the solution of Eq. (1), and hence the regression
function, is given by α = (XTX)−1XTy [60, p. 52-53]. In this work,
we will denote this approach simply by linear regression (LR).

3.3 Random Forests
In the field of supervised machine learning, Breiman et al. intro-
duced the concept of classification and regression tree (CART) mod-
els [17], which are often simply denoted as decision trees. Thus, a
decision tree is either a classification or a regression tree model.

The general training process of a decision tree can be briefly sum-
marized as follows. Based on a pre-defined split criterion, e.g., the
mean squared error, one of the features, i.e., input variables, is used
to separate the initial training set into two subsets. The split cri-
terion is used to obtain the best split to differentiate the training
samples, with respect to their target values. Subsequently, each
of the resulting subsets is divided analogously, until a pre-defined
stop criterion is met. This procedure leads to a tree-based structure
where each node is defined by its corresponding split rule, such as
“is the statement feature i ≤ θ true?”, whereby θ ∈ R is obtained
during the training process. Each of the tree’s branches leads to a

terminal node, denoted as leaf. To predict the target label of a data
point z ∈ Rd , the features of z are fed to the decision tree, leading
to exactly one of the leaves. For a regression tree, the target label
of z is calculated as the average value of the target labels specific
to the training samples that are included in the corresponding leaf.

It is common to apply ensembles of decision models [9, 45], due
to a generally higher robustness and generalization ability. A re-
gression ensemble is simply a set of regression models. A popular
decision tree-based ensemble approach is the random forest (RF)
method, which was introduced by Breiman [16]. In the basic RF
variant, each ensemble member, i.e., decision tree, is trained in com-
bination with a randomly chosen data- and feature subset of the
fully available training set. More precisely, based on the training set
X = {x1, . . . , xN } ⊂ Rd , for each ensemble member, we randomly
draw Ñ ≤ N data points. Moreover, for each of the resulting data
subsets, we randomly draw d̃ ≤ d features. The corresponding
decision tree is then trained based on the obtained data- and fea-
ture training subset, in combination with the target labels of the
randomly chosen data points.

To train a basic RF model, one has to specify the number of
decision trees, the fraction of randomly drawn data points, and
the fraction of randomly chosen features. In general, the ensemble
member-specific training data points are sampled with replacement.
This additionally ensures a variety in the size of the individually
obtained, ensemble member-specific training sets. In general, the
training subsets are randomly drawn according to the distribution
of the initial, i.e., fully available, training set. This ensures that the
individual training subsets reflect the initial data distribution.

To predict the value of a data point z ∈ Rd , each of the ensemble
members is evaluated in combination with z. The final prediction is
obtained by averaging the outputs of each decision tree. Note that
the RF approach does not provide any specific regression function.

3.4 Support Vector Regression
Another popular machine learning-based model used for classifi-
cation and regression is the support vector machine, which was
introduced by Vapnik [64]. Concerning support vector regression
(SVR), the goal is to find a smooth linear function f : x 7→ αT x +α0,
which leads to the minimization of the term 1

2α
T α subject to the

constraint |yi − (αT xi + α0)| ≤ ϵ, ∀i = 1, . . . ,N , whereby ϵ > 0
is a pre-defined error tolerance. Since there is no guarantee for the
existence of a function f that satisfies the aforementioned con-
straints, the idea of the SVR approach is to introduce so-called slack
variables, denoted by ζ −i , ζ

+
i ≥ 0, which allow higher regression

errors. This leads to the following optimization problem,

min
α ∈Rd

1
2
αT α +C

N∑
i=1

ζ −i + ζ
+
i ,

subject to ∀i = 1, . . . ,N :

yi − (αT xi + α0) ≤ ϵ + ζ −i ,

(αT xi + α0) − yi ≤ ϵ + ζ +i .

The parameter C regulates the penalty term with respect to the
number of points violating the error tolerance.

Since the linear model is not always suitable for a given regres-
sion task, there are so-called kernel functions (kernels), which are

80

Predicting the Performance of ATL Model Transformations ICPE ’23, April 15–19, 2023, Coimbra, Portugal

used to replace the dot product and transfer the data into a higher-
dimensional space. For instance, using the radial basis function
kernel, the dot product between x and z, x, z ∈ Rd , is replaced by
k(x, z) = exp(−γ ∥x − z∥2), for some γ > 0. In our experiments we
use the SVR approach with a radial basis function kernel.

3.5 Choice of Regression Analysis Approaches
There exists a plethora of different regression models. The current
trend is dominated by (deep) artificial neural network (ANN) ar-
chitectures [10, 46]. However, ANNs require a sufficient amount of
training data to avoid overfitting. In addition, according to Saleh [58,
p. 41], neural networks have a long training time compared to tra-
ditional machine learning approaches, apart from requiring an
extremely large amount of training data. In particular, the need
for input data would severely limit the usability of our prediction
approach, as we discovered in our interviews [29] that there is
already a lack of models to perform performance tests.

Due to the small to high amount of input models, as well as some
low-dimensional feature spaces (1 ≤ d ≤ 1, 964), we decided to
focus on the LR, SVR and RF-based regression approaches. They
are popular machine learning tools that are widely used in simple
and complex pattern recognition tasks, such as in pain intensity
recognition scenarios [8, 61].

3.6 Performance Evaluation Metrics
There exist different measures to determine the quality of regres-
sion models. To this end, let Z = {(zi ,yi)}

N
i=1 ⊂ Rd ×R be a test set.

Furthermore, let ŷi denote the corresponding predicted values, spe-
cific to the data points zi , i = 1, . . . ,N , obtained by the approaches
LR, RF or SVR. We focus on the mean absolute percentage error
(MAPE) [50] and on the absolute percentage error (APE) which are
defined as follows,

MAPE =
1
N

N∑
i=1

����yi − ŷi
yi

���� , (2)

APEi =
����yi − ŷi

yi

���� , ∀i = 1, . . . ,N . (3)

Equation (2) and (3) imply that the MAPE measure and the APE
measure are not defined if yi = 0. However, note that, we want to
approximate the execution time. Therefore, it holds, yi , 0,∀i =
1, . . . ,N . In order to assess the distribution of the predicted val-
ues, we use the 95th percentile of the absolute percentage error
(P95(APE)). We use the P95(APE), since it is robust against outliers
and provides an upper bound for the APE below which 95% of the
values lie. Based on the suggestion from Hyndman and Fan [37], we
used the median unbiased method of NumPy in case the percentile
lies between two data points.

4 EXPERIMENTS DESIGN
The design of our experiments can be divided into five parts. We
selected transformation modules and suitable input models. Then,
we collected the data, planned the detailed setup of the experiments
and defined evaluation criteria that we use to evaluate our results.
Transformation module selection: Our choice of transforma-
tion modules is influenced by three factors: 1) the transformations

should be as different as possible 2) the structure of the input mod-
els transformed should be as different as possible and 3) enough real
input models should be available to train the regression approaches.

Considering these factors, we use the transformation modules
EMF2KM3 (EMF2KM3), Make to Ant (MAKE2ANT), ATL to Bind-
ingDebugger (ATL2Debugger), ATL to Problem (ATL2Problem) and
ATL to Tracer (ATL2Tracer) from the ATL zoo [21]. We reimple-
mented the transformation Models Measurement (EMF2Measure)
from the ATL zoo [21] to transform Ecore metamodels [1] instead
of KM3 [40] models. We also had to partially modify some transfor-
mations to execute them. The necessary changes are documented
in our supplementary material [30].

EMF2KM3 transforms Ecore metamodels [1] into KM3 [40] mod-
els. This is a simple translation from one model formalism into
another one, for which we can use real Ecore metamodels from
the data set from Kögel and Tichy [43]. EMF2Measure performs
complex computations of metrics for Ecore metamodels. Thus, we
can compare two different types of transformations on the same
real input models.

MAKE2ANT transforms Makefiles into Ant files. Compared to
Ecore metamodels, the transformed Makefile models are very flat
and the model elements are less branched among themselves.

ATL2Debugger adds debugging instructions to an ATL trans-
formation and ATL2Tracer adds tracing information to an ATL
transformation. We included these two modules because they do
not create new output models but update the given input models
resp. ATL transformations.

ATL2Problem analyzes a given ATL transformation to identify
non-structural errors. Thus, it implements a simple translation
between twomodel formalisms by generating an error report model,
but also contains complex analysis code.
Inputmodel selection: For the model selection, we paid attention
to choose real-world input models.

We used the data set from Kögel and Tichy [43] to obtain input
models for EMF2KM3 and EMF2Measure. This data set contains
31,799 Ecore metamodels including their version history. We al-
ways selected the newest version and excluded all models that could
not be transformed or not be parsed due to unresolved dependen-
cies. In total, we obtained 4,804 models as input for EMF2KM3. For
EMF2Measure, we obtained 4,797 models. The different numbers
result from the fact that EMF2KM3 throws an exception for a model
that can be transformed by EMF2Measure. And while performing
EMF2Measure, 5 models caused stack overflow errors and for 3
models the execution did not terminate.

In order to obtain real Makefiles for MAKE2ANT, we mined
GitHub via its REST API on the 22nd of April 2021 using the query
q=language:makefile. The search API provides the first 1,000 search
results for a query [25], which we filtered by parsable Makefiles and
available suitable licenses. This way we received 247 real Makefiles.

We use the transformations available at the ATL zoo [21] as
input models for ATL2Debugger, ATL2Tracer and ATL2Problem. We
filtered out duplicates, ATL queries and ATL libraries, which are not
transformed by these three transformations. This way we obtained
220 ATL modules that we use as input models.
Data collection: In order to avoid including model elements in our
feature sets which are not touched by a transformation, we man-
ually analyzed the transformation modules to identify the types

81

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Raffaela Groner et al.

of model elements, which are involved in the transformation. In
this analysis, we have also taken into account the inheritance hi-
erarchies specified by the corresponding metamodel. This means
that if a model transformation touches a model element of a certain
type, all types inheriting from it are also relevant types to be con-
sidered. To create our feature sets, we subsequently collected only
the information on the model elements that belong to a relevant
type. If we would collect information about all elements in an input
model, the regression approaches could learn associations that do
not exist because they have received information that has no impact
on the execution time. The prediction could then depend, e.g., on
EAnnotations, which are used with varying frequency in Ecore
metamodels but are not considered at all in EMF2KM3. There are
two things to note, first this manual analysis could be automated
with a type inference for ATL transformations. Second, we can
ignore the irrelevant model elements, since we only predict the
execution time of the transformation and not the loading or the
saving of the models.

Table 2: Overview of the modules and input models used.

Relevant Execution
Module Model Elements Time [ms]

Min Max Min Max
EMF2KM3 1 17,453 3.0 309.2
EMF2Measure 1 13,401 5.0 47,707.2
MAKE2ANT 1 196 0.9 2.16
ATL2Debugger 1 3,441 0.8 1,371.7
ATL2Tracer 15 7,574 13 2,484
ATL2Problem 20 11,674 4 10,104

After we determined for each transformation module the rele-
vant model element types, we collected the data for our feature
sets summarized in Table 1 using our own Eclipse Plugin (avail-
able here [30]). We monitored the execution times in ms with Java
Microbenchmark Harness (JMH) [2]. The measured time values
were rounded to zero, one or two decimal places, depending on
the module, based on the reported errors in the result report of the
JMH measurements to mitigate measurement errors.

Based on the obtained data, we can characterize the transforma-
tion modules and the input models as summarized in Table 2, in
which the first double column (Relevant Model Elements) shows
for each module used the lowest (Min) and the highest (Max) num-
ber of relevant model elements that we counted in the available
input models. In the second double column (Execution Time [ms]),
Table 2 shows for each module the smallest (Min) and the largest
(Max) execution time that we measured for the respective available
input models.
Experiments set-up: In the design of our experiments, we focus
on two objectives: First, we compare the three different machine
learning approaches on the basis of the feature sets we defined in
Table 1. Second, we investigate whether our individual feature sets
yield better prediction results than feature sets based on a feature
selection method using the variance of features [15, p. 187].

For each combination of feature set and machine learning, we
performed a 10-fold cross-validation evaluation [11], consisting

of dividing the input data into 10 test-set-training-set pairs. We
removed the featureswith a variance of 0 from the respective feature
set for each run. Such features are a constant value over all models
and, therefore provide no useful information for the prediction.

We re-ran our experiments using a feature selection method
based on the variance of the features, to compare the resulting
predictions to the results yielded by our feature sets. We used the
union of all feature sets from Table 1 as the basis and calculated for
each feature its variance. Afterwards, each feature is removed from
the feature set whose variance falls below a given threshold value.
Filtering features based on their variance is also called Variance
Thresholding and is a basic technique for feature selection. This
feature selection method is based on the assumption that features
with a small variance have little benefit as input than features with
a high variance [3].

In the following we use VARF to denote the variance of one
feature and VARFS to denote the set of all variances for each feature
in a feature set. We use a variance of 0 (VARF>0) as a threshold,
as well as the 75th (VARF>P75(VARFS)), 85th (VARF>P85(VARFS)),
95th (VARF>P95(VARFS)), and 99th (VARF>P99(VARFS)) percentile
of the set of all variances of each feature from the union of all
feature sets as further thresholds. This means we remove all fea-
tures from the union of all feature sets with a constant value
(VARF>0). And for the other thresholds, we retain only X-% of
the features with the highest variance removing those below the
given variance threshold. Whereby we vary X in the different exper-
iments between 25% (VARF>P75(VARFS)), 15% (VARF>P85(VARFS)),
5% (VARF>P95(VARFS)) and 1% (VARF>P99(VARFS)). We decided to
use these thresholds since many of our features have a very small
variance. For the calculation of the percentiles, we used the linear
method provided by NumPy in Python since the use of the median
unbiased method in combination with the 99th percentile resulted
in an empty feature set for MAKE2ANT.

Note, reducing the feature set to the necessary features is al-
ways advisable, as this reduces the computational overhead and
reduces the risk of overfitting, especially for linear regression ap-
proaches [41, p. 173-174]. We also normalized the values of the
features in order to balance their influence, since some of them
have large differences in their value ranges [44, p. 48].

We used Scikit-learn [53] to implement the three machine learn-
ing approaches. We did not further configure the LR approach.
In the implementation of the SVR and the RF approach, we also
optimizes their hyperparameters. To select the possible values of
the hyperparameters C and γ for the SVR approach, we used the
suggestions of Hsu et al. [35]. For the RF approach, we optimized
the number of threes and the number of samples required to be
at a leaf node using the default values from Scikit-learn and the
values suggested by Probst et al. [57]. Probst et al. [57] mentions
more hyperparameters than the two we optimized, but these are
either not offered by Scikit-learn or the proposals lead to invalid
values for some of our feature sets. We used a seed to reproduce
our results and we provide the data and scripts in [30].
Evaluation criteria:To evaluate the results of our experiments, we
evaluate the quality of the predictions based on the errors. For this
purpose, we focus on the mean absolute percentage error (MAPE)
in %, the absolute percentage error (APE) in % and the 95th per-
centile of the absolute percentage error (P95(APE)) in %. A good

82

Predicting the Performance of ATL Model Transformations ICPE ’23, April 15–19, 2023, Coimbra, Portugal

combination of feature set and approach is characterized by a high
accuracy (small values for the MAPE, the APE and the P95(APE)) of
the predictions. In analyzing the results, we proceed in two phases.
First, we consider the individual results for each combination of
transformation module, feature set, and machine learning approach.
The goal here is to check whether there are combinations that de-
liver particularly good results or are completely useless predictions.
In the second phase, we consider the MAPE and the P95(APE) over
all modules (excluding ATL2Tracer, cf. our 3rd finding) for all com-
binations of machine learning approach and feature set. The aim
in the phase is to compare the combinations of feature set and
machine learning approach over all modules that yield the smallest
values for the MAPE and the P95(APE) to subsequently answer our
research questions.

4.1 Threats to Validity
In this section, we discuss the major threats to validity of our study
based on the guidelines by Wohlin et al. [72, p. 102-110].
Conclusion validity: There may be other approaches that provide
better predictions than the ones we investigated. We chose the
approaches examined, because we want an approach that works
out-of-the-box so we can use it as a basis for our what-if analysis.

There may be a combination and encoding of model charac-
teristics that can provide better predictions than those we have
investigated. The feature sets we have defined are by no means a
complete list of all possible combinations and encodings of model
characteristics.

In order to ensure the repeatability of our experiments, we used
a seed to create the test set-training set pairs and to configure the
implementation of the RF approach.
Construct validity: The manual analysis of the transformation
modules to identify the types of model elements, which are touched
by a transformation, was performed by two authors independently
and subsequently the results were compared, to avoid a biased
selection of relevant types of model elements.

While we measured the execution times we always used the
same software versions for Java, JMH and the Ubuntu OS, but we
were confronted with some hardware issues. So the time measure-
ments for EMF2KM3 and EMF2Measure were done on one machine.
The time measurements for MAKE2ANT and ATL2Problem were
done on the same machine, but a hard disk was replaced. The time
measurements for ATL2Debugger and ATL2Tracer were performed
on a completely different machine. Overall, the results of our ex-
periments are not affected by this, since we do not mix timing data
from different machines for one transformation module.

In order to prevent a biased selection of input models, we used
all input models available excluding only those which could not
be transformed. In addition, due to 10-fold cross-validation, each
input model was included exactly once in a test set.
External validity: We only used transformations from the ATL
Transformation zoo. However, we paid attention to the fact that
they used different types of input models and execute different
types of transformations, to improve the generalizability of our
results. However, we cannot guarantee that these different types of
transformations represent the general use of ATL.

It is not clear whether our results for the best approach and
feature set apply to other models and transformations as well. How-
ever, we consider various different types of transformation modules.
In addition, we considered Ecore metamodels as well as models
describing Makefiles, which differ strongly in their structure, since
models describing Makefiles are by far flatter and model elements
reference each other less often than in Ecore metamodels.

5 EXPERIMENTS RESULTS
In this section, we present the results of our experiments.

Tables 3 and 4 show the MAPE in % and the P95(APE) in % of
the predicted execution times for each transformation module and
each combination of machine learning approach and feature set
used. The row “All modules” contains the MAPE and the P95(APE)
over all modules used except ATL2Tracer. We explain the reason for
this in our 3rd finding. The cells colored in green contain the lowest
combination of MAPE and P95(APE) for an approach and feature
set combination per module. The cells colored in yellow contain
the lowest combination of MAPE and P95(APE) for an approach
and feature set combination over all modules except ATL2Tracer.
Four findings emerge from the data presented in the Tables 3 and 4:
1st finding:Most of the time the RF approach yields the best results
but also the SVR approach yields good predictions.
2nd finding: The LR approach performs rather well for EMF2KM3
and MAKE2ANT. This could be due to the fact that these two trans-
formations simply transform an element of the input model into
an element of the output model. The other transformations, per-
form more calculations and might traverse the input model several
times. But there are also some combinations of the LR approach and
feature sets resulting in extremely high values for the MAPE for
EMF2KM3, ATL2Problem and ATL2Tracer (cells marked in orange
in the Tables 3 and 4). There are two possible reasons for these ex-
tremely high values. Single extreme outliers can reduce the quality
of the prediction or there is no linear relationship between the used
feature set and the execution time. Our analysis of the predicted
values for EMF2KM3 shows that the extremely high MAPE values
are the result of outliers. This can also be seen by the fact that the
values for P95(APE) is between 4.77 and 4.84% in the respective
cells. Such outliers can occur, e.g., if the training set generated for a
fold does not sufficiently represent the corresponding test set. For
the remaining cells marked in orange, the predicted values rarely
match the real ones and scatter strongly, indicating that there is no
linear relationship between the execution time and the feature set
used for these modules. The large deviation of the predicted values
from the real ones can also be seen in the fact that the values for
P95(APE) are between 14,918.72 and 1.1e14% in the respective cells.
3rd finding: There is a limitation of our approach to predict the ex-
ecution time for transformations which transform attributes, whose
values can have an arbitrary unlimited size, and its size is unrelated
to the features in our feature sets. In ATL2Tracer comments, which
are string attributes, are explicitly copied. The size of comments
depends on whether and what the developer of the input model
has written. Hence, there is no combination of machine learning
approach and feature set that yields decent results for ATL2Tracer.
We repeated our experiments without transforming the comments
and the RF approach with feature set VARF>P85(VARFS) yields the
best results (MAPE=2.0%, P95(APE)=5.28%). We plan to explore how

83

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Raffaela Groner et al.

Table
3:M

A
PE

in
%
and

P
95 (A

PE)in
%
of

the
predicted

execution
tim

e
using

the
features

sets
1
to

8.

M
odule

A
p-

proach
Feature

Set1
Feature

Set2
Feature

Set3
Feature

Set4
Feature

Set5
Feature

Set6
Feature

Set7
Feature

Set8
M
A
PE

P
95 (A

PE)
M
A
PE

P
95 (A

PE)
M
A
PE

P
95 (A

PE)
M
A
PE

P
95 (A

PE)
M
A
PE

P
95 (A

PE)
M
A
PE

P
95 (A

PE)
M
A
PE

P
95 (A

PE)
M
A
PE

P
95 (A

PE)

EM
F2-

K
M
3

LR
3.05

6.67
2.7

6.38
2.17

5.6
1.94

4.84
1.54

4.17
1.59

4.48
1.5e7

4.77
9.5e9

4.84
RF

1.51
4.19

1.22
3.24

1.12
3.05

1.43
3.58

1.44
3.86

1.13
3.12

1.5
3.93

1.53
3.95

SVR
1.94

4.9
1.91

4.84
2.07

4.9
1.99

4.72
1.77

4.81
1.36

3.37
1.59

3.79
1.6

3.97

EM
F2-

M
easure

LR
451.23

573.29
236.55

809.13
309.93

772.96
628.81

1,594.13
958.5

2,773.15
1,114.0

3,302.94
923.75

2,952.88
1,248.33

3,188.14
RF

23.96
39.88

8.5
21.56

7.0
15.27

11.42
18.92

7.15
10.64

7.22
10.4

17.59
11.42

15.95
12.38

SVR
10.14

37.84
8.85

24.6
6.6

16.72
9.96

25.9
16.55

35.07
17.65

37.38
33.21

92.99
46.37

194.35

M
A
K
E2-

A
N
T

LR
3.0

9.2
2.46

7.35
2.21

6.01
1.84

6.52
1.68

5.01
1.68

5.01
1.68

5.04
1.68

5.04
RF

2.81
9.8

2.29
6.58

1.9
4.89

1.26
3.25

1.19
2.79

1.13
2.8

1.28
3.2

1.28
3.2

SVR
3.01

9.29
2.91

8.12
2.84

7.49
3.0

9.07
3.85

9.77
2.71

9.89
3.38

9.61
3.24

9.89

A
TL2-

D
ebugger

LR
493.26

2,047.01
359.23

1,403.32
369.81

1,451.78
383.73

1,634.01
400.87

1,596.19
400.87

1,596.19
416.79

1,719.12
419.94

1,715.83
RF

11.1
37.01

6.71
21.38

6.82
21.57

5.13
13.63

5.12
13.96

4.98
12.95

5.1
14.27

5.1
14.0

SVR
11.24

29.52
5.24

16.84
5.0

14.45
10.54

41.79
14.62

40.89
14.89

51.59
13.34

40.21
11.38

29.48

A
TL2-

Problem

LR
1,279.76

3,976.64
1,391.7

4,460.82
1,013.48

3,373.92
412.75

1,176.63
2,879.66

10,538.05
4.9e9

1.1e10
2.5e13

1.1e14
1.2e13

4.4e13
RF

13.83
53.29

14.19
53.09

14.03
49.26

11.38
37.75

11.95
41.57

10.38
36.55

157.67
669.36

217.74
447.72

SVR
15.64

42.77
14.53

38.93
10.63

30.69
28.15

65.4
28.02

96.62
27.56

93.9
58.48

246.6
57.07

253.26

A
TL2-

Tracer

LR
1,477.44

7,194.49
1,485.1

7,194.85
1,481.16

7,160.47
1,429.58

6,772.25
1,202.38

6,889.34
1,203.33

6,881.9
1.3e14

14,918.72
1.4e14

16,386.54
RF

1,449.71
8,230.44

1,368.79
7,196.96

1,321.88
6,606.88

1,098.83
6,264.37

1,039.94
5,309.84

1,038.66
5,203.76

1,019.66
4,998.52

1,013.76
4,981.58

SVR
1,778.13

9,037.99
1,630.03

8,626.71
1,630.08

8,645.7
1,170.31

7,834.5
1,107.94

6,420.77
1,108.67

6,420.05
1,043.71

5,751.31
1,035.09

5,937.85

A
ll

m
odules

LR
249.81

559.77
149.06

674.0
175.16

648.95
311.18

1,242.39
517.83

2,096.92
1.0e8

2,435.36
5.3e11

2,380.19
2.6e11

2,729.15
RF

12.47
21.41

5.04
13.69

4.28
10.3

6.37
10.84

4.4
7.81

4.25
6.6

12.41
9.44

12.94
9.48

SVR
6.29

22.36
5.51

16.49
4.45

11.49
6.47

14.48
9.54

19.56
9.84

19.98
17.84

37.15
23.91

65.74

Figure 2: APE of all modules (excluding ATL2Tracer).

Input models sorted by their transformation execution time

100

101

102

Ex
ec

ut
io

n
tim

e
[m

s]

Real execution time
RF & VARF > P95(VARFS)
SVR & VARF > P85(VARFS)
RF & FS6
SVR & FS3

Figure 3: Real vs. predicted execution time of EMF2KM3.

Input models sorted by their transformation execution time

101

102

103

104

Ex
ec

ut
io

n
tim

e
[m

s]

Real execution time
RF & VARF > P95(VARFS)
SVR & VARF > P85(VARFS)
RF & FS6
SVR & FS3

Figure 4: Real vs. predicted execution time of EMF2Measure.

we can deal with this issue in more detail in our future work. A
solutionwould be to include the size of the strings in our feature sets,
but we want to avoid simply adding a new feature for every possible
constraint. Due to the fact that there is a sweet spot between the
size of a feature set in terms of overfitting (usage of too large
feature sets is prone to overfitting [41, p. 173-174]), as well as the
usability and the quality of the prediction. The other modules also
transform string attributes, but their size is similar for all models,
thus their transformation is approximated as a constant overhead.

84

Predicting the Performance of ATL Model Transformations ICPE ’23, April 15–19, 2023, Coimbra, Portugal

Table 4: MAPE in % and P95(APE) in % of the predicted execution time using the variance to filter the features used.

Module
Ap-

proach
VARF>0 VARF>P75(VARFS) VARF>P85(VARFS) VARF>P95(VARFS) VARF>P99(VARFS)

MAPE P95(APE) MAPE P95(APE) MAPE P95(APE) MAPE P95(APE) MAPE P95(APE)

EMF2-
KM3

LR 1.79 4.78 1.63 4.56 1.92 5.13 2.18 5.7 2.12 5.42
RF 1.08 3.03 1.08 3.03 1.08 3.03 1.1 3.03 1.28 3.54
SVR 1.48 3.84 1.52 3.75 1.67 4.04 1.92 4.58 2.28 5.81

EMF2-
Measure

LR 1, 078.01 3, 198.17 574.49 1, 749.6 575.49 1, 616.43 380.97 942.02 481.68 625.89
RF 14.31 10.06 8.22 12.05 6.91 11.4 6.34 12.36 27.0 44.38
SVR 47.0 189.41 7.55 11.01 4.27 7.89 6.04 14.3 12.01 41.05

MAKE2-
ANT

LR 1.71 5.01 1.89 6.38 1.84 6.52 2.34 6.22 2.55 7.36
RF 1.2 2.99 1.29 3.37 1.33 3.91 2.08 5.69 2.37 7.96
SVR 3.73 9.71 3.43 9.76 3.12 8.9 2.82 7.69 2.65 7.33

ATL2-
Debugger

LR 421.44 1, 641.25 387.98 1, 609.67 379.11 1, 499.09 370.21 1, 470.24 494.24 2, 050.46
RF 5.11 13.27 5.12 13.91 5.05 13.8 8.6 29.82 11.24 37.06
SVR 16.58 59.66 9.87 45.3 4.74 13.78 7.18 26.28 11.42 30.07

ATL2-
Problem

LR 7.0e12 3.8e13 1.5e12 7.3e12 44, 034.14 42, 980.73 245.3 722.23 305.5 786.39
RF 114.97 240.19 11.22 40.53 13.5 43.08 9.97 31.51 8.93 30.89
SVR 53.2 229.22 34.3 125.12 26.58 93.21 20.76 76.23 8.24 23.09

ATL2-
Tracer

LR 10, 138.09 32, 682.46 1, 414.92 6, 340.63 1, 187.59 6, 134.3 1, 465.1 7, 011.33 1, 480.47 7, 114.73
RF 1, 010.91 5, 036.55 1, 015.0 4, 980.31 1, 049.39 5, 742.53 1, 144.09 6, 079.69 1, 337.63 7, 130.48
SVR 1, 052.39 6, 170.99 1, 067.61 5, 920.41 1, 111.38 6, 496.49 1, 631.95 9, 211.29 1, 629.14 8, 633.83

All
modules

LR 1.5e11 2, 555.34 3.2e10 1, 481.9 1, 219.02 1, 223.61 191.87 666.19 242.75 600.85
RF 9.77 6.71 4.71 6.78 4.16 6.78 3.92 8.63 13.67 23.24
SVR 24.19 66.05 5.26 9.37 3.52 6.71 4.38 10.72 7.15 22.99

In the following, we will exclude ATL2Tracer, because its data does
not provide any further information.
4th finding: With respect to the best prediction results using fea-
ture selection based on variance (cf. Table 4), there is only a slight
difference in quality from the best prediction results using one of
our feature sets (cf. Table 3).

In the following, we take a closer look at the combinations of ap-
proaches and feature sets of the yellow marked cells in the Tables 3
and 4 since they provide the best results over all modules except
ATL2Tracer. But we exclude the LR approach since our previous
findings already show that it is not useful.

Figure 2 shows the absolute percentage error (APE) resulting
from using the RF approach combined with feature set 6 (FS6)
and VARF>P95(VARFS) and the SVR approach combined with fea-
ture set 3 (FS3) and VARF>P85(VARFS) for all modules (excluding
ATL2Tracer). The y-axis shows the individual combinations and
the x-axis the APE in %. The upper plot shows all values and bot-
tom plot shows a zoomed in view. For each feature set-approach
combination one box plot is displayed, showing the APE for all
modules. Note that we trained the machine learning approaches for
each module individually and did not use the same trained machine
learning approach to predict the execution times of all modules.
From Figure 2 one obtains various findings:
5th finding: The upper part of the plot shows that every combina-
tion of approach and feature set leads to some extreme outliers.
6th finding: The interquartile ranges are very small and the upper
quantile is slightly less than 4%. This means that the approaches
are misestimating by less than 4% in 75% of the predictions.

Figures 3 to 7 show for each module the actual execution time
in comparison to the predicted ones.

7th finding: The plots show that the different feature sets provide
quite similar predictions. But one can also see that longer execution
times are usually not as well predicted as shorter ones. This may
be due to the fact that our data sets consist mainly of small models,
which do not lead to particularly long execution times.
Summary and discussion: Based on our results, we obtain the
following answers for our two research questions. Concerning
RQ1, we can conclude that the RF approach and the SVR yield
decent results (cf. Tables 3 and 4). With respect to RQ2, we can
conclude that the SVR approach in combination with feature set
VARF>P85(VARFS) yields the best prediction results (MAPE=3.52%,
P95(APE)=6.71%, over all modules except ATL2Tracer). In terms
of usability for a what-if analysis we would recommend the SVR
approach in combination with feature set 3, because a model can be
described much easier only using the number of model element, the
number of references and the number of attributes and the results
are only slightly worse (MAPE=4.45%, P95(APE)=11.49%, over all
modules except ATL2Tracer).

Overall, our results are very good considering our small amount
of training data for some transformation modules in the machine
learning context. Prathanrat and Polpraser [56] use 909 records
(our smallest data set contains 220 input models) to train a random
forest in order to predict the performance of Jupyter notebook. The
feature set used by Prathanrat and Polpraser consists of information
about the execution, such as memory and CPU usage. They have
optimized the hyperparameters and trained one machine learning
model to use it for different programs. Subsequently, they obtained a
MAPE of about 12.8%.Maros et al. [48] use, among other approaches,
a random forest approach to predict the performance of cloud
applications on Apache Spark. Depending on the experiment, they

85

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Raffaela Groner et al.

Input models sorted by their transformation execution time

100

2 × 100

Ex
ec

ut
io

n
tim

e
[m

s]

Real execution time
RF & VARF > P95(VARFS)
SVR & VARF > P85(VARFS)
RF & FS6
SVR & FS3

Figure 5: Real vs. predicted execution time of MAKE2ANT.

Input models sorted by their transformation execution time

100

101

102

103

Ex
ec

ut
io

n
tim

e
[m

s]

Real execution time
RF & VARF > P95(VARFS)
SVR & VARF > P85(VARFS)
RF & FS6
SVR & FS3

Figure 6: Real vs. predicted execution time ofATL2Debugger.

Input models sorted by their transformation execution time

101

102

103

104

Ex
ec

ut
io

n
tim

e
[m

s]

Real execution time
RF & VARF > P95(VARFS)
SVR & VARF > P85(VARFS)
RF & FS6
SVR & FS3

Figure 7: Real vs. predicted execution time of ATL2Problem.

use data consisting of up to 1,000GB, 20 million rows and 2,500 im-
ages. They defined two different types of feature sets, namely black
box models and gray box models. The black box models contain
only information that is already known before the execution and
the gray box models also contain information about the execution,
like the average execution time of a task. Maros et al. optimized the

hyperparameters and trained for each application a machine learn-
ing model to predict the execution time. They obtained a MAPE
that lies between 2.4% and 41.9% using the black box models and a
MAPE between 4.5% and 91.3% using the gray box models.

Based on these other works, it is also shown that the type of
feature sets used can influence whether a trained machine learning
model can be reused for predicting the performance of other appli-
cations/programs or not. Since the feature set used by Prathanrat
and Polpraser [56] contains information about the execution it is
sufficient to train one machine learning model and use it for dif-
ferent programs. The black box models used by Maros et al. [48]
as well as the feature sets used in our presented work only use
information available before the execution. Therefore the machine
learning approach lacks execution details and is specialized for one
application resp. one transformation module. In case of modifica-
tions or other applications or transformation modules, the data
collection and training must be repeated.

6 RELATEDWORK
To the best of our knowledge, no other approach exists for predict-
ing the performance of model transformations. There are however
manyworks that focus onmachine learning for performance predic-
tion in other engineering areas as well as several publications that
apply machine learning in other areas of transformations. Other
publications that can be related to our work are papers in the area of
performance engineering on transformations and what-if analyses.

While there exist no other works that implement performance
prediction for transformations, there are two short papers that envi-
sion this idea. In [33], the authors roughly outline the idea of using
raw data from monitoring transformations to build a framework
for performance prediction. Similarly, the authors of [69] propose
an approach for predicting the performance of transformations
within a three phase process for performance engineering. Their
approach envisions the use of automatically generated models as
input for a transformation. The generated models are automati-
cally transformed and the performance for the transformation is
measured and saved. All collected data then serves as a basis for
predicting the performance of the transformation for other input
models. Although not specifically stated, both proposed approaches
envision performance predictions based on pre-collected execution
data, which is similar to the machine learning approach presented
in this paper. However, those papers do not present any evaluation.

What-if analyses have been applied to many different fields. The
authors of [12] applied it in e-commerce, while Baybutt [6] describes
the usage of a what-if analysis for hazard analysis and, Chaudhuri
and Narasayya [19] use it for index selection in relational databases.
More closely related to our work is the use of a what-if analysis
by Herodotos and Babu [34] for a cost optimization approach of
MapReduce programs. Their setup allows them to use an in-house
developed what-if engine to investigate how the execution time of
an application changes when the reduction tasks are increased or
the number of nodes involved is changed. While their approach
does not focus on model transformations, it demonstrates that a
what-if analysis can be used to predict the impact of different factors
on the performance of a system.

As previously stated, machine learning has not yet been used for
performance prediction of model transformations, it has however

86

Predicting the Performance of ATL Model Transformations ICPE ’23, April 15–19, 2023, Coimbra, Portugal

been used in other aspects of model transformations. Kappel at
al. [42] suggested to apply machine learning techniques, in order
to improve the quality of model transformations produced through
the concept of model transformation by example [65]. Moreover,
Chioaşcă [20] suggests to usemachine learning for natural language
processing of textual specification documents to transform the
textual representation into Object System Models.

There exist several works that apply machine learning tech-
niques to try and predict the performance of applications. Venkatara-
man et al. [68] introduce Ernest, which is a framework for predict-
ing the performance of cloud applications running on a shared
infrastructure. Their goal is to predict the performance of a cloud-
based application under different resource configurations to help
choosing an optimal configuration. They argue that to predict the
performance on large data sets and clusters, models can be trained
on the same jobs for small sample data sets. Their evaluation of the
framework based on a number of tests shows that the performance
prediction is within 12% of the actual runtime and only requires a
training overhead of 5% even for long-running applications.

Comparably, the authors of [48] present machine learning based
performance prediction approaches for cloud applications onApache
Spark. Their approaches are based on gray-box and black-box su-
pervised machine learning models. To evaluate the cost benefit of
these approaches they compare it to Ernest on different scenarios,
configurations and application workloads. Based on their evalua-
tions the authors conclude that Ernest was able to achieve good
results on regular test sets. But it was outperformed by their black-
box based models when applications exhibited irregular patterns.
Moreover their tests also indicate that no single approach was able
to outperform all other approaches in all scenarios.

Another work that focuses on predicting the performance of
parallel applications is presented in [38]. Their approach employs
multilayer neural networks to predict the performance of SMG2000
applications. They evaluated their neural networks using two large-
scale parallel platforms and were able to predict their performance
within 5-7% accuracy. Similar to [48] their approach is independent
from application internal details which they argue makes it easy to
use. In [36], the authors show that machine learning-based empiri-
cal hardness models can not only be used to predict the performance
of deterministic search algorithms but can also quite accurately
predict the performance of non-deterministic, randomized methods
based on stochastic local search. Furthermore they demonstrate
that the machine learning models can be used to adjust and opti-
mize the analyzed algorithms through adjusting their parameter
inputs. These optimizations are evaluated empirically to provide
evidence that the adjustments never reduced the performance and
sometimes even improved it over standard parameter settings.

A different approach than machine learning for predicting per-
formance of a system is simulation. The authors of [7] introduce
a metamodel, called the Palladio Component Model, designed to
support the prediction of extra-functional properties of a system
such as performance. They provide a proof-of-concept case study
evaluation to demonstrate that simulations based on the Palladio
Component Model can be used to predict system performance.
While the case study reveals shortcomings of the approach, it also
shows that performance predictions are possible and can be suffi-
cient for evaluating architectural design decisions.

The performance of model transformations is influenced by
many different factors. One factor that has seen a lot of focus is the
transformation engine. There exist several works [5, 14, 24, 67, 70]
that try to improve engine performance. These works mainly focus
on optimizing the search plans for graph-based model transfor-
mation languages which are generated from the defined model
transformations in an effort to reduce the amount of time necessary
to find matchings within the input model. For rule based trans-
formation languages there exist works which try to improve the
performance by optimizing the order of application of transforma-
tion rules within a transformation [22, 23]. Moreover, there are
several publications that try to improve performance by optimizing
the transformation code. In [63] the authors use experiments on
ATL and QVT to demonstrate that the transformation code defini-
tions can heavily influence the performance during runtime. Their
results are mirrored in the work presented in [49] where the au-
thors suggest that performance increases up to 70% are possible
with manual optimizations of the transformation code. The authors
of [62] present a selection of bad smells in Henshin transformation
code which negatively influence the performance of the executed
transformations. A similar approach is detailed in [18] where the
authors present guidelines, developed through experimentation for
writing model transformations that help improve execution perfor-
mance. Lastly, when the performance of a system is not satisfactory,
profilers are often used to detect bottlenecks during execution.
Unfortunately there is a lack of profilers for many model transfor-
mation languages. Currently only ATL [55] and Henshin [31] have
fully developed and usable profilers.

7 CONCLUSION AND FUTUREWORK
We conducted several experiments to investigate which combina-
tion of approach and feature set is suitable to predict the execution
time of an ATL transformation based on input model characteristics.
We have examined linear regression (LR), random forest (RF), and
support vector regression using a radial basis function kernel (SVR).
We have defined and compared different feature sets, which contain
different detailed information about the input models.

We can conclude that the SVR approach is the most suitable of
the approaches examined, as it provides accurate predictions (cf.
Tables 3 and 4). The SVR approach provides the best predictions
based on a feature set resulting from feature selection, but using
a feature set which contains the number of model elements, num-
ber of references and number of attributes also provides decent
results with much less effort to describe a model. Additionally, we
showed one weakness of our approach, which is not able to predict
the execution time for operations which are not connected to the
structural and type information of the input models in our feature
sets (cf. ATL2Tracer).

In order to overcome the presented weakness of our approach
we aim to focus on how we can handle attributes, whose values
can have an arbitrary unlimited size and occur randomly without
a connection to the features in our feature sets. Additionally, we
want to examine whether we can use artificially generated models
to train the SVR approach. Generated models could improve the
quality of the prediction approach and its usability, since it is then
very easy to generate extremely large amounts of training data.

87

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Raffaela Groner et al.

ACKNOWLEDGMENTS
This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) - Ti 803/4-1. The authors
acknowledge support by the state of Baden-Württemberg through
bwHPC.

REFERENCES
[1] 2008. EMF: Eclipse Modeling Framework. xxix, 704 p.
[2] 2022. Java Microbenchmark Harness (JMH). https://github.com/openjdk/jmh

Accessed: 19.10.2022.
[3] Chris Albon. 2018. Machine learning with Python cookbook: practical solutions

from preprocessing to deep learning. https://learning.oreilly.com/library/view/-
/9781491989371/?ar 1 online resource (1 volume).

[4] Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. 2007.
UML2Alloy: A Challenging Model Transformation. In Model Driven Engineering
Languages and Systems, Gregor Engels, Bill Opdyke, Douglas C. Schmidt, and
FrankWeil (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 436–450. https:
//doi.org/10.1007/978-3-540-75209-7_30

[5] Gernot Veit Batz, Moritz Kroll, and Rubino Geiß. 2007. A first experimental
evaluation of search plan driven graph pattern matching. In International Sympo-
sium on Applications of Graph Transformations with Industrial Relevance. Springer,
471–486. https://doi.org/10.1007/978-3-540-89020-1_32

[6] Paul Baybutt. 2003. Major hazards analysis: An improved method for process
hazard analysis. Process Safety Progress 22, 1 (2003), 21–26. https://doi.org/10.
1002/prs.680220103

[7] Steffen Becker, Heiko Koziolek, and Ralf Reussner. 2007. Model-based per-
formance prediction with the palladio component model. In Proceedings of
the 6th international workshop on Software and performance. 54–65. https:
//doi.org/10.1145/1216993.1217006

[8] Peter Bellmann and Friedhelm Schwenker. 2020. Automated Pain Assessment: Is
it Useful to Combine Person-Specific Data Samples?. In SSCI. IEEE, 1588–1593.
https://doi.org/10.1109/SSCI47803.2020.9308279

[9] Peter Bellmann, Patrick Thiam, and Friedhelm Schwenker. 2018. Multi-classifier-
Systems: Architectures, Algorithms and Applications. Springer International Pub-
lishing, Cham, 83–113. https://doi.org/10.1007/978-3-319-89629-8_4

[10] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. 2013. Representation
Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell.
35, 8 (2013), 1798–1828. https://doi.org/10.1109/TPAMI.2013.50

[11] Daniel Berrar. 2019. Cross-Validation. In Encyclopedia of Bioinformatics and
Computational Biology, Shoba Ranganathan, Michael Gribskov, Kenta Nakai,
and Christian SchÃűnbach (Eds.). Academic Press, Oxford, 542–545. https:
//doi.org/10.1016/B978-0-12-809633-8.20349-X

[12] Hemant K Bhargava, Ramayya Krishnan, and Rudolf Müller. 1997. Electronic
commerce in decision technologies: a business cycle analysis. International
Journal of Electronic Commerce 1, 4 (1997), 109–127. https://doi.org/10.1080/
10864415.1997.11518297

[13] André B. Bondi. 2014. Foundations of Software and System Performance Engineer-
ing: Process, Performance Modeling, Requirements, Testing, Scalability, and Practice.
Pearson Education.

[14] Artur Boronat. 2018. Expressive and efficient model transformation with an
internal DSL of Xtend. In Proceedings of the 21th ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Systems. 78–88. https:
//doi.org/10.1145/3239372.3239386

[15] Alberto Boschetti and Luca Massaron. 2016. Python Data Science Essentials. Packt
Publishing.

[16] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32. https:
//doi.org/10.1023/A:1010933404324

[17] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification
and Regression Trees. Wadsworth.

[18] Roberto Bruni and Alberto Lluch Lafuente. 2011. Evaluating the performance
of model transformation styles in maude. In International Workshop on Formal
Aspects of Component Software. Springer, 79–96. https://doi.org/10.1007/978-3-
642-35743-5_6

[19] Surajit Chaudhuri and Vivek Narasayya. 1998. AutoAdmin "‘what-if"’ index
analysis utility. ACM SIGMOD Record 27, 2 (1998), 367–378. https://doi.org/10.
1145/276305.276337

[20] Erol-Valeriu Chioaşcǎ. 2012. Using machine learning to enhance automated
requirements model transformation. In 2012 34th International Conference on Soft-
ware Engineering (ICSE). 1487–1490. https://doi.org/10.1109/ICSE.2012.6227055

[21] Eclipse. 2020. ATL Transformations. https://www.eclipse.org/atl/
atlTransformations/ Accessed: 19.10.2022.

[22] Martin Fleck, Javier Troya, and Manuel Wimmer. 2015. Marrying search-based
optimization and model transformation technology. Proc. of NasBASE (2015),
1–16.

[23] Lars Fritsche, Erhan Leblebici, Anthony Anjorin, and Andy Schürr. 2017. A Look-
Ahead Strategy for Rule-Based Model Transformations. In MODELS (Satellite

Events). 45–53.
[24] Holger Giese, Stephan Hildebrandt, and Andreas Seibel. 2009. Improved flexibility

and scalability by interpreting story diagrams. Electronic Communications of the
EASST 18 (2009). https://doi.org/10.14279/tuj.eceasst.18.268

[25] Inc. GitHub. 2021. Search. https://docs.github.com/en/rest/reference/search
Accessed: 19.10.2022.

[26] Matteo Golfarelli, Stefano Rizzi, and Andrea Proli. 2006. DesigningWhat-If Analy-
sis: Towards a Methodology. In Proceedings of the 9th ACM International Workshop
on Data Warehousing and OLAP (DOLAP ’06). Association for Computing Ma-
chinery, New York, NY, USA, 51–58. https://doi.org/10.1145/1183512.1183523

[27] Stefan Götz, Raffaela Groner, and Matthias Tichy. 2020. Claimed Advantages and
Disadvantages of (dedicated) Model Transformation Languages: A Systematic
Literature Review. Software and Systems Modeling (2020), 1–35. https://doi.org/
10.1007/s10270-020-00815-4

[28] Raffaela Groner, Luis Beaucamp, Matthias Tichy, and Steffen Becker. 2020. An
Exploratory Study on Performance Engineering in Model Transformations. In
MODELS’20: ACM/IEEE 23rd International Conference on Model Driven Engineering
Languages and Systems (MODELS ’20). Association for Computing Machinery,
New York, NY, USA, 308–319. https://doi.org/10.1145/3365438.3410950

[29] Raffaela Groner, Luis Beaucamp, Matthias Tichy, and Steffen Becker. 2020. An
Exploratory Study on Performance Engineering in Model Transformations: Data
of the mixed method study. https://doi.org/10.18725/OPARU-32365

[30] Raffaela Groner, Peter Bellmann, Stefan Höppner, Patrick Thiam, Friedhelm
Schwenker, and Matthias Tichy. 2023. Data Set for Predicting the Performance
of ATL Model Transformations. https://doi.org/10.5281/zenodo.7597582

[31] Raffaela Groner, Sophie Gylstorff, and Matthias Tichy. 2020. A profiler for the
matching process of henshin. In Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings. 1–5. https://doi.org/10.1145/3417990.3422000

[32] Raffaela Groner, Katharina Juhnke, Stefan Götz, Matthias Tichy, Steffen Becker,
Vijayshree Vijayshree, and Sebastian Frank. 2021. A Survey on the Relevance of
the Performance of Model Transformations: Data of the Participant Search and
the Questionnaire. https://doi.org/10.18725/OPARU-38188

[33] Raffaela Groner, Matthias Tichy, and Steffen Becker. 2018. Towards Performance
Engineering of Model Transformation. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering (ICPE ’18). Association for
Computing Machinery, New York, NY, USA, 33–36. https://doi.org/10.1145/
3185768.3186305

[34] Herodotos Herodotou and Shivnath Babu. 2011. Profiling, What-If Analysis,
and Cost-Based Optimization of MapReduce Programs. Proceedings of the VLDB
Endowment 4, 11 (Aug. 2011), 1111–1122. https://doi.org/10.14778/3402707.
3402746

[35] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. 2003. A practical guide
to support vector classification.

[36] Frank Hutter, Youssef Hamadi, Holger H Hoos, and Kevin Leyton-Brown. 2006.
Performance prediction and automated tuning of randomized and parametric
algorithms. In International Conference on Principles and Practice of Constraint
Programming. Springer, 213–228. https://doi.org/10.1007/11889205_17

[37] Rob J Hyndman and Yanan Fan. 1996. Sample quantiles in statistical packages.
The American Statistician 50, 4 (1996), 361–365.

[38] Engin Ipek, Bronis R De Supinski, Martin Schulz, and Sally A McKee. 2005.
An approach to performance prediction for parallel applications. In European
Conference on Parallel Processing. Springer, 196–205. https://doi.org/10.1007/
11549468_24

[39] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. 2008. ATL: A
Model Transformation Tool. Science of Computer Programming 72, 1-2 (2008),
31–39. https://doi.org/10.1016/j.scico.2007.08.002

[40] Frédéric Jouault and Jean Bézivin. 2006. KM3: a DSL for Metamodel Specification.
In International Conference on Formal Methods for Open Object-Based Distributed
Systems. Springer, 171–185. https://doi.org/10.1007/11768869_14

[41] Alexander Jung. 2022. Machine Learning: The Basics. http://dx.doi.org/10.1007/
978-981-16-8193-6 1 Online-Ressource(XVII, 212 p. 77 illus., 42 illus. in color.).

[42] Gerti Kappel, Philip Langer, Werner Retschitzegger, Wieland Schwinger, and
Manuel Wimmer. 2012. Model transformation by-example: a survey of the first
wave. In Conceptual modelling and its theoretical foundations. Springer, 197–215.
https://doi.org/10.1007/978-3-642-28279-9_15

[43] Stefan Kögel and Matthias Tichy. 2018. Dataset of EMF Models from Eclipse
Projects. https://doi.org/10.18725/OPARU-9850

[44] Miroslav Kubat. 2021. An Introduction to Machine Learning. http://dx.doi.org/
10.1007/978-3-030-81935-4 1 Online-Ressource(XVIII, 458 p. 114 illus., 5 illus. in
color.).

[45] Ludmila I. Kuncheva. 2014. Combining Pattern Classifiers: Methods and Algorithms.
John Wiley & Sons.

[46] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. 2015. Deep learning. Nat.
521, 7553 (2015), 436–444. https://doi.org/10.1038/nature14539

[47] Grischa Liebel, NadjaMarko,Matthias Tichy, Andrea Leitner, and JörgenHansson.
2018. Model-based engineering in the embedded systems domain: an industrial

88

https://github.com/openjdk/jmh
https://learning.oreilly.com/library/view/-/9781491989371/?ar
https://learning.oreilly.com/library/view/-/9781491989371/?ar
https://doi.org/10.1007/978-3-540-75209-7_30
https://doi.org/10.1007/978-3-540-75209-7_30
https://doi.org/10.1007/978-3-540-89020-1_32
https://doi.org/10.1002/prs.680220103
https://doi.org/10.1002/prs.680220103
https://doi.org/10.1145/1216993.1217006
https://doi.org/10.1145/1216993.1217006
https://doi.org/10.1109/SSCI47803.2020.9308279
https://doi.org/10.1007/978-3-319-89629-8_4
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1016/B978-0-12-809633-8.20349-X
https://doi.org/10.1016/B978-0-12-809633-8.20349-X
https://doi.org/10.1080/10864415.1997.11518297
https://doi.org/10.1080/10864415.1997.11518297
https://doi.org/10.1145/3239372.3239386
https://doi.org/10.1145/3239372.3239386
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-642-35743-5_6
https://doi.org/10.1007/978-3-642-35743-5_6
https://doi.org/10.1145/276305.276337
https://doi.org/10.1145/276305.276337
https://doi.org/10.1109/ICSE.2012.6227055
https://www.eclipse.org/atl/atlTransformations/
https://www.eclipse.org/atl/atlTransformations/
https://doi.org/10.14279/tuj.eceasst.18.268
https://docs.github.com/en/rest/reference/search
https://doi.org/10.1145/1183512.1183523
https://doi.org/10.1007/s10270-020-00815-4
https://doi.org/10.1007/s10270-020-00815-4
https://doi.org/10.1145/3365438.3410950
https://doi.org/10.18725/OPARU-32365
https://doi.org/10.5281/zenodo.7597582
https://doi.org/10.1145/3417990.3422000
https://doi.org/10.18725/OPARU-38188
https://doi.org/10.1145/3185768.3186305
https://doi.org/10.1145/3185768.3186305
https://doi.org/10.14778/3402707.3402746
https://doi.org/10.14778/3402707.3402746
https://doi.org/10.1007/11889205_17
https://doi.org/10.1007/11549468_24
https://doi.org/10.1007/11549468_24
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1007/11768869_14
http://dx.doi.org/10.1007/978-981-16-8193-6
http://dx.doi.org/10.1007/978-981-16-8193-6
https://doi.org/10.1007/978-3-642-28279-9_15
https://doi.org/10.18725/OPARU-9850
http://dx.doi.org/10.1007/978-3-030-81935-4
http://dx.doi.org/10.1007/978-3-030-81935-4
https://doi.org/10.1038/nature14539

Predicting the Performance of ATL Model Transformations ICPE ’23, April 15–19, 2023, Coimbra, Portugal

survey on the state-of-practice. Software and Systems Modeling 17, 1 (2018),
91–113. https://doi.org/10.1007/s10270-016-0523-3

[48] Alexandre Maros, Fabricio Murai, Ana Paula Couto da Silva, Jussara M Almeida,
Marco Lattuada, Eugenio Gianniti, Marjan Hosseini, and Danilo Ardagna. 2019.
Machine learning for performance prediction of spark cloud applications. In 2019
IEEE 12th International Conference on Cloud Computing (CLOUD). IEEE, 99–106.
https://doi.org/10.1109/CLOUD.2019.00028

[49] Tamás Mészáros, Gergely Mezei, Tihamér Levendovszky, and Márk Asztalos.
2010. Manual and automated performance optimization of model transformation
systems. International Journal on Software Tools for Technology Transfer 12, 3
(2010), 231–243. https://doi.org/10.1007/s10009-010-0151-0

[50] Arnaud De Myttenaere, Boris Golden, Bénédicte Le Grand, and Fabrice Rossi.
2016. Mean Absolute Percentage Error for regression models. Neurocomputing
192 (2016), 38–48. https://doi.org/10.1016/j.neucom.2015.12.114

[51] (OMG) Object Management Group. 2016. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification Version 1.3. https://www.omg.org/
spec/QVT/1.3/PDF Accessed: 19.10.2022.

[52] David Olive. 2017. Linear Regression. Springer International Publishing. https:
//doi.org/10.1007/978-3-319-55252-1

[53] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830.

[54] Andrew S. Philippakis. 1988. Structured what if analysis in DSS models. In [1988]
Proceedings of the Twenty-First Annual Hawaii International Conference on System
Sciences. Volume III: Decision Support and Knowledge Based Systems Track, Vol. 3.
366–370. https://doi.org/10.1109/HICSS.1988.11929

[55] William Piers. 2010. ATL 3.1–Industrialization improvements. In Proceedings
of the 2nd International Workshop on Model Transformation with ATL. Citeseer.
Citeseer.

[56] Pariwat Prathanrat and Chantri Polprasert. 2018. Performance Prediction of
Jupyter Notebook in JupyterHub using Machine Learning. In 2018 International
Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Vol. 3.
157–162. https://doi.org/10.1109/ICIIBMS.2018.8550030

[57] Philipp Probst, Marvin N Wright, and Anne-Laure Boulesteix. 2019. Hyperpa-
rameters and tuning strategies for random forest. Wiley Interdisciplinary Reviews:
data mining and knowledge discovery 9, 3 (2019), e1301. https://doi.org/10.1002/
widm.1301

[58] Hyatt Saleh. 2020. The Deep Learning with PyTorch Workshop: Build deep neural
networks and artificial intelligence applications with PyTorch. Packt Publishing.

[59] Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner, Timo Kehrer,
Manuel Ohrndorf, and Matthias Tichy. 2017. Henshin: A Usability-Focused
Framework for EMF Model Transformation Development. In Proceedings of the
10th International Conference on Graph Transformation (ICGT’17). Springer, 196–
208. https://doi.org/10.1007/978-3-319-61470-0_12 Lecture Notes in Computer
Science, vol 10373.

[60] Hariom Tatsat, Sahil Puri, and Brad Lookabaugh. 2020. Machine Learning and
Data Science Blueprints for Finance. O’Reilly Media.

[61] Patrick Thiam, Viktor Kessler, Mohammadreza Amirian, Peter Bellmann, Georg
Layher, Yan Zhang, Maria Velana, Sascha Gruss, Steffen Walter, Harald C. Traue,
Daniel Schork, Jonghwa Kim, Elisabeth André, Heiko Neumann, and Friedhelm
Schwenker. 2019. Multi-modal Pain Intensity Recognition based on the SenseEmo-
tion Database. IEEE Transactions on Affective Computing 12, 3 (2019), 743–760.
https://doi.org/10.1109/TAFFC.2019.2892090

[62] Matthias Tichy, Christian Krause, and Grischa Liebel. 2013. Detecting Perfor-
mance Bad Smells for Henshin Model Transformations. Amt@ models 1077
(2013).

[63] Marcel Van Amstel, Steven Bosems, Ivan Kurtev, and Luís Ferreira Pires. 2011.
Performance in model transformations: experiments with ATL and QVT. In
International Conference on Theory and Practice ofModel Transformations. Springer,
198–212. https://doi.org/10.1007/978-3-642-21732-6_14

[64] Vladimir Vapnik. 2013. The nature of statistical learning theory. Springer science
& business media.

[65] Dániel Varró. 2006. Model transformation by example. In International Conference
on Model Driven Engineering Languages and Systems. Springer, 410–424. https:
//doi.org/10.1007/11880240_29

[66] Dániel Varró, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István Ráth, and
Zoltán Ujhelyi. 2016. Road to a reactive and incremental model transformation
platform: three generations of the VIATRA framework. Software & Systems
Modeling 15, 3 (2016), 609–629. https://doi.org/10.1007/s10270-016-0530-4

[67] Gergely Varró, Frederik Deckwerth, Martin Wieber, and Andy Schürr. 2012.
An algorithm for generating model-sensitive search plans for EMF models. In
International Conference on Theory and Practice ofModel Transformations. Springer,
224–239. https://doi.org/10.1007/978-3-642-30476-7_15

[68] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,
and Ion Stoica. 2016. Ernest: Efficient performance prediction for large-scale
advanced analytics. In 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16). 363–378.

[69] Vijayshree Vijayshree, Markus Frank, and Steffen Becker. 2020. ExtendedAbstract
of Performance Analysis and Prediction of Model Transformation. In Companion
of the ACM/SPEC International Conference on Performance Engineering (ICPE
’20). Association for Computing Machinery, New York, NY, USA, 8–9. https:
//doi.org/10.1145/3375555.3384935

[70] Attila Vizhanyo, Aditya Agrawal, and Feng Shi. 2004. Towards generation of
efficient transformations. In International Conference on Generative Programming
and Component Engineering. Springer, 298–316. https://doi.org/10.1007/978-3-
540-30175-2_16

[71] Kris Welsh, Nelly Bencomo, Pete Sawyer, and Jon Whittle. 2014. Self-Explanation
in Adaptive Systems Based on Runtime Goal-Based Models. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 122–145. https://doi.org/10.1007/978-3-662-44871-7_5

[72] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell,
and Anders Wesslén. 2012. Experimentation in software engineering. Springer,
Berlin. https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=6314538
1 Online-Ressource (249 pages).

89

https://doi.org/10.1007/s10270-016-0523-3
https://doi.org/10.1109/CLOUD.2019.00028
https://doi.org/10.1007/s10009-010-0151-0
https://doi.org/10.1016/j.neucom.2015.12.114
https://www.omg.org/spec/QVT/1.3/PDF
https://www.omg.org/spec/QVT/1.3/PDF
https://doi.org/10.1007/978-3-319-55252-1
https://doi.org/10.1007/978-3-319-55252-1
https://doi.org/10.1109/HICSS.1988.11929
https://doi.org/10.1109/ICIIBMS.2018.8550030
https://doi.org/10.1002/widm.1301
https://doi.org/10.1002/widm.1301
https://doi.org/10.1007/978-3-319-61470-0_12
https://doi.org/10.1109/TAFFC.2019.2892090
https://doi.org/10.1007/978-3-642-21732-6_14
https://doi.org/10.1007/11880240_29
https://doi.org/10.1007/11880240_29
https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1007/978-3-642-30476-7_15
https://doi.org/10.1145/3375555.3384935
https://doi.org/10.1145/3375555.3384935
https://doi.org/10.1007/978-3-540-30175-2_16
https://doi.org/10.1007/978-3-540-30175-2_16
https://doi.org/10.1007/978-3-662-44871-7_5
https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=6314538

	Abstract
	1 Introduction
	2 Prediction
	3 Regression Analysis Methods
	3.1 Formalization
	3.2 Ordinary Least Squares Linear Regression
	3.3 Random Forests
	3.4 Support Vector Regression
	3.5 Choice of Regression Analysis Approaches
	3.6 Performance Evaluation Metrics

	4 Experiments Design
	4.1 Threats to Validity

	5 Experiments Results
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

