
Evaluating the Energy Measurements of the IBM POWER9
On-Chip Controller

Hannes Tröpgen
Center for Information Services and
High Performance Computing (ZIH)

Technische Universität Dresden
Dresden, Germany

hannes.troepgen@tu-dresden.de

Mario Bielert
Center for Information Services and
High Performance Computing (ZIH)

Technische Universität Dresden
Dresden, Germany

mario.bielert@tu-dresden.de

Thomas Ilsche
Center for Information Services and
High Performance Computing (ZIH)

Technische Universität Dresden
Dresden, Germany

thomas.ilsche@tu-dresden.de

ABSTRACT
Dependable power measurements are the backbone of energy-
efficient computing systems. The IBM PowerNV platform offers
such power measurements through an embedded PowerPC 405 pro-
cessor: The On-Chip Controller (OCC). Among other system-control
tasks, the OCC provides power measurements for several domains,
such as system, CPU, and GPU. This paper provides a detailed de-
scription and an in-depth evaluation of these OCC-provided power
measurements. For that, we describe the provided interfaces them-
selves and experimentally verify their overhead (3.6 µs to 10.8 µs per
access) and readout rate (24.95 Sa/s). We also study the consistency
of the reported sensor readouts across the measurement domains
and compare it to externally measured data. Furthermore, we esti-
mate the internal sampling rate (1996 Sa/s) by provoking aliasing
errors with artificial workloads, and quantify the errors that such
aliasing could introduce in practice (for power consumption of pro-
cessors 12 % in our experimental worst-case scenario). Given these
insights, practitioners using the IBM PowerNV platform can assess
the quality of the embedded measurements, permitting sought-after
energy efficiency improvements.

CCS CONCEPTS
• Hardware → Platform power issues; Chip-level power is-
sues; Post-manufacture validation and debug; Energy metering.

KEYWORDS
On-Chip Controller; POWER9; Power Measurements; Energy Effi-

ciency

ACM Reference Format:
Hannes Tröpgen, Mario Bielert, and Thomas Ilsche. 2023. Evaluating the En-
ergy Measurements of the IBM POWER9 On-Chip Controller. In Proceedings
of the 2023 ACM/SPEC International Conference on Performance Engineering
(ICPE ’23), April 15–19, 2023, Coimbra, Portugal. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3578244.3583729

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’23, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0068-2/23/04. . . $15.00
https://doi.org/10.1145/3578244.3583729

0 20 40 60

Energy E�ciency (GFlops/W)

Heterogenous
systems

Homogenous
systems

Accelerator Vendor
NVIDIA
AMD
Other
None
Intel

Figure 1: Energy efficiency of heterogenous and homogenous
High Performance Computing (HPC) Clusters according to
the GREEN500 list compiled from [29].

1 INTRODUCTION
The growing demand for accelerated computing, especially in ma-
chine learning and artificial intelligence (AI), leads to the develop-
ment of heterogenous architectures comprising prevalent multi-
purpose processors and accelerators. For example, processors of
the IBM PowerNV platform bundle a high-core-count processor
with several NVIDIA accelerators connected through NVLink. IBM
geared this architecture towards scalable and data-intensive work-
loads. Even though such heterogenous systems are generally more
energy-efficient (see Figure 1) when used for suitable tasks, there
are still parameters that influence the effective energy efficiency,
e. g., voltage/frequency selection [27]. Consequently, tuning such
parameters to optimize energy efficiency depends on reliable power
measurements.

This paper thoroughly evaluates the embedded power measure-
ment interface on a POWER9 system as one representative of the
PowerNV platform. We describe the available measurement inter-
faces and their characteristics, such as readout latency and resolu-
tion. We present the functional measurement domains and examine
their accuracy. Lastly, we use artificial workloads to examine the
behavior of the internal measurement setup. We want to establish
how reliable the embedded power measurements are, and ultimately
allow for informed decisions regarding the energy efficiency of ap-
plications running on the PowerNV platform.

67

https://orcid.org/0000-0001-9601-8683
https://orcid.org/0000-0003-3363-1776
https://orcid.org/0000-0002-5437-3887
https://doi.org/10.1145/3578244.3583729
https://doi.org/10.1145/3578244.3583729

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Hannes Tröpgen, Mario Bielert, and Thomas Ilsche

The remainder of this paper is structured as follows: In the next
Section 2, we introduce the background for power measurements
and give an overview of the PowerNV processors. Their power
measurement interface itself is then described in Section 3, and the
interface’s update rate and readout overhead are shown in Section 4.
After that, we focus on the measured values themselves and ex-
amine their accuracy in Section 5, where we also demonstrate our
measurement setup suitable for application tracing and profiling.
In Section 6 we experimentally determine the internal sampling
rate of the measurement. The final Section 7 summarizes our work
and sketches an outlook for future research directions.

Artifacts, including our raw results and programs used to obtain
them, can be found online [39].1 This artifacts archive consists of
multiple subdirectories, which are referred to throughout this paper
with the prefix artifacts/, e. g.:

The data used for Figure 1 can be found in artifacts/green500.

2 RELATEDWORK
This section gives an overview of existing work. First, we cover
available measurements of the power consumption of computing
systems in general. Second, we describe prior work on the investi-
gated architecture and its On-Chip Controller.

2.1 Power Measurements of Computing Systems
While dedicated precision power analyzers can provide excellent
accuracies and sampling rates, their cost and space requirements
are prohibitive for systems with multiple compute nodes. However,
several components in a modern data center power distribution
provide power measurements out-of-the-box. Some power distribu-
tion units (PDUs) offer revenue-grade energy metering, e.g., Raritan
PDUs with a 1 % accuracy per ISO/IEC 62053-21 [30]. In Section 5,
we use a monitored IBM PDU2 that provides power readouts via
the Simple Network Management Protocol (SNMP). To the best of
our knowledge, there is no specification of the accuracy or quality
of its power measurements.

Many server nodes also offer power monitoring via the Base-
board Management Controller (BMC), typically measured at the
power supply unit (PSU). The most prevalent protocols to read the
power measurement data and other sensor data are the Intelligent
Platform Management Interface (IPMI) [19] and the more recent
Redfish [9]. The data can be read in-band or out-of-band via a net-
work connection to the BMC and typical readout rates are 1 Sa/s
(1 sample per second) or lower. Such measurements are not always
reliable, for example, Hackenberg et al. [14] have shown that Dell’s
implementation of power measurements via IPMI exhibits severe
aliasing errors despite a documented 1 % accuracy.

Moreover, many modern server processors provide power or en-
ergy measurements at the CPU level. The most prominent example
is the Running Average Power Limiting (RAPL) mechanism originally
developed by Intel [33] but now also implemented by AMD. Intel’s
documentation [18, Chapter 14.10] describes that the RAPL registers
provide an energy counter that is updated at ∼1 kSa/s. However,
Lipp et al. [26] report higher update rates of up to 20 kSa/s for cer-
tain domains. Naively computing the average power consumption

1https://github.com/tud-zih-energy/2023-power9-occ
2Model number: 01KL833(46M4002)

for short code regions may lead to inaccuracies since RAPL does
not provide an update counter and thus the actual measurement
duration is unknown. Hähnel et al. [16] have demonstrated how
to overcome this limitation and use RAPL to accurately measure
regions in the order of a few milliseconds. Several studies have
shown that the quality highly depends on the specific implemen-
tation in the micro-architecture. In particular, when the energy
counter is implemented with a model rather than a physical mea-
surement, the values can have biases towards certain workloads
(see [7, 14, 15, 34, 35]).

Several projects have demonstrated scalable approaches to add
more sophisticated measurement infrastructure to compute clus-
ters. Examples are ArduPower [8], PowerSensor 2 [31], [17], and
DiG [24]. The available readout rates for these solutions range from
1 kSa/s to 50 kSa/s, but some use higher internal sampling rates for
increased accuracy.

2.2 POWER8, POWER9 & The On-Chip
Controller

In their intro to the POWER8 processor, Fluhr et al. [11] place
emphasis on the requirement to optimize energy and consequently
introduce the On-Chip Controller (OCC) and sketch its monitoring
and control capabilities. The OCC is an embedded PowerPC 405
processor running a real-time operating system (RTOS) [11, Sec. II].
The OCC’s documentation states its main goals are to “keep the
system [thermally & power] safe” [5, Sec. 1.2], while leaving the
P-state selection up to the operating system (OS). Additionally, the
collected sensor data should be provided for external display [5,
Sec. 1.2].

The OCC persists across the PowerNV platform from its launch
with POWER8 to the latest POWER10 processors. However, the
focused features shifted for the POWER9 processors: Gonzalez
et al. [12, 13] describe it as a “scale-out (SO)” [12, Sec. II] proces-
sor, highlighting its input/output (IO) capabilities, namely a total
300 GB/s accelerator, 192 GB/s PCIeGen4 and 230 GB/s memory
bandwidth. They also sketch the general architecture including the
power domains, thereby explaining some of the OCC’s sensors.

The OCC itself runs a firmware of the same name, available under
the terms of the Apache 2 license [28]. Its architecture, interfaces,
and capabilities are sketched in Section 3.

Several submissions for OpenPOWER Summits cover the OCC,
including Rosedahl [32] with a general introduction, and Bhat [2]
with a sketch of possible applications.

3 MEASURING POWER USING THE ON-CHIP
CONTROLLER

The OCC manages the hardware sensors of the system and reports
their readouts to the higher levels. In total, it can report data for 75
types of sensors [5, Sec. 11.3].3 While the existence of an individual
sensor is not guaranteed, over 300 individual sensors were available
during all of our tests. These sensors report various measurement
values, including temperature, voltage, current, and frequency, but
also more abstract formats, e. g., processor “utilization” [5, Sec.

331 of the 75 sensor types may only be collected out-of-band through Automated
Measurement of Systems for Temperature and Energy Reporting (AMESTER [1]) [5, Sec.
11.3.3].

68

https://github.com/tud-zih-energy/2023-power9-occ

Evaluating the Energy Measurements of the IBM POWER9 On-Chip Controller ICPE ’23, April 15–19, 2023, Coimbra, Portugal

Table 1: OCC power sensors (without APSS), excerpt from [5,
Sec. 11.3.2.2] with our domain descriptions

Name reported once per . . . Sampling interval (ms)
↩→ Domain
PWRSYS system 0.5
↩→ bulk power consumption, measured after PSU output
PWRGPU processor 0.5
↩→ GPUs connected to this processor
PWRMEM processor 0.5
↩→ memory connected to this processor
PWRPROC processor 0.5
↩→ this processor itself (without attached components)
PWRVDD processor 1.0
↩→ processor cores, see 𝑉𝑑𝑑 in [12, Fig. 1]
PWRVDN processor 1.0
↩→ processor nest, see 𝑉𝑑𝑛 in [12, Fig. 1]

11.3.2.4], or event counts. The scope varies from sensor to sensor,
most report on the core or processor level. Table 1 lists all supported
power sensors.

The OCC also reports up to 16 further power sensors from the
Analog Power Subsystem Sweep (APSS), whose assignment is system-
dependent and thus not considered in any of the experiments. Some,
but not all APSS-supported sensors are exposed by the OCC: IO,
storage, or fans power consumptions are only available through
the APSS sensors [5, Sec. 6.3.1].

The processor powers domains 𝑉𝑑𝑑 (cores) and 𝑉𝑑𝑛 (nest) are
reported by the OCC, although they do not fully cover the entire
processor. Besides the power of core and nest voltages, the POWER9
processor distinguishes voltages for e. g., caches, memory, and other
IO [13].

On Linux systems, the OCC’s sensor data is available through
two in-band interfaces: hwmon and the OCC main memory interface.
Additionally, the OCC Poll Response interface allows for individ-
ual sensors to be polled, e. g., by the BMC [5, Sec. 2 & 6]. We did
not consider the Poll Response interface in our experiments due
to security considerations: The Poll Response interface is only ac-
cessible for the BMC and Host Thermal Management (HTMGT),
and requires granting write privileges for users to their respective
memory regions for communication. These same interfaces grant
administrative permissions, which is undesirable for regular users.
Granting access purely to the OCC main memory interface/hwmon
is less intrusive, as read-only access is sufficient.

Overall the functionality is similar to those of classical BMCs via
IPMI/Redfish. The power measurements with six different kinds of
measurement locations are comparatively sophisticated.

3.1 The Linux Kernel Interface hwmon
hwmon [25] is the standard interface for hardware monitoring of the
Linux kernel. Sensor data may be queried independently of the
underlying hardware by reading files under /sys/class/hwmon
(sysfs), using the library libsensors, or the program sensors.
The reported values are provided by different drivers, depending

Table 2: Power sensor data reported by the OCC main mem-
ory interface [5, Sec. 11.3.1.3]

name size description
(byte)

gsid 2 global sensor ID
timestamp 8 512 MHz-based timestamp
sample 2 measured value
accumulator 8 continuous sum
update_tag 4 number of samples stored in accumula-

tor

on the hardware [38, Documentation/hwmon/hwmon-kernel-api
.rst, Documentation/hwmon/sysfs-interface.rst].

The Linux kernel reads the list of available sensors and creates
the corresponding hwmon entries [38, drivers/hwmon/ibmpowernv.
c]. When accessing a sensor through hwmon, the corresponding call-
backs read the requested value from the OCC main memory inter-
face [37, hw/occ-sensor.c, l. 246 ff.]. Even though hwmon indirectly
uses the same data source as all other programs reading sensor data
on PowerNV, through its more generalized structure, it can not rep-
resent all aspects of the values: E. g., the OCC provides the sensor
data in a buffer, which is updated regularly, consequently provid-
ing a timestamp of the last update [5, Sec. 11.3.1.3.1]. hwmon em-
ploys callbacks [38, Documentation/hwmon/hwmon-kernel-api.
rst, l. 147 ff.] and hence treats the values as being read on demand
in real-time, ignoring said timestamp under this assumption.

A patch series exposing more details from the OCC to hwmon
has been discussed on the Linux kernel mailing list [21], but was
ultimately not implemented.

3.2 The OCC Main Memory Interface
The OCC is connected to the main memory and periodically writes
data for its sensors through this connection. Note that the OCC
documentation [4, 5] does not use a consistent name for this inter-
face, calling the corresponding chapter OCC Main Memory Sensor
Data, however not using this term anywhere else. We will use the
term OCC main memory interface to refer to the interface described
here.

The Linux kernel exposes the memory region to which the OCC
writes sensor data to the userspace as-is at /sys/firmware/opal/
exports/occ_inband_sensors. [38, arch/powerpc/platforms/
powernv/opal.c, l. 881 ff.] Every OCC (i. e., every processor) cre-
ates one Sensor Data Block of 150 kB containing data for this partic-
ular processor. Additionally, the first block also contains data for
the entire system, e. g. the bulk power consumption. Every block
contains two data buffers (ping and pong buffer), which are used in
an alternating fashion, such that always at least one buffer is not
being written to and hence contains valid data [5, Sec. 11.3].

The data reported for power sensors is shown in Table 2. The
resolution of an individual sample for all power sensors is 1 W. No-
tably, the OCC format [28, src/occ_405/sensor/sensor_info.c]
would support a more fine-grained resolution—which is not used
for any power sensor. Even though the documentation promises an
update rate of 1 or 2 kSa/s for power sensors [5, Sec. 11.3.2.2], the

69

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Hannes Tröpgen, Mario Bielert, and Thomas Ilsche

OCC main memory interface update is only triggered every 8 ms [28,
src/occ_405/amec/amec_slave_smh.c].4 Hence, the update rates
of 1 or 2 kSa/s only apply to the accumulator, the exposed individ-
ual samples have a much lower update rate. The 1 or 2 kSa/s that
make up this accumulator are not stored separately, only their sum,
i. e., the accumulator may be retrieved. This leads to a theoretical
resolution of 1 mJ (1 kSa/s) or 0.5 mJ (2 kSa/s) for the energy. Due
to this structure, in the following, we will distinguish between the
external update rate at which the interfaces expose their data, and
the internal update rate at which the OCC operates, e. g., updates
timestamps and the accumulator.

4 INTERFACE PROPERTIES
In this section, we aim to measure the behavior of the interfaces
themselves, namely the readout latency and external update rate of
hwmon and the OCC main memory interface. The remaining system
is not taken into account.

4.1 Setup
All experiments were performed on our local High Performance
Computing (HPC) cluster taurus.

The jobs are distributed through the batch system and (exclu-
sively) run on one of the 32 POWER9 nodes. All 32 nodes are AC922
systems (code name Newell, formerly Witherspoon) by IBM. Every
node holds two POWER9 processors (model 02CY209, code name
Monza) with 22 cores each, resulting in a total of 176 threads with
four-way simultaneous multithreading (SMT) enabled. Each pro-
cessor has a thermal design power (TDP) of 250 W; the nominal
frequency is 2.8 GHz (up to 3.1 GHz possible). The machines use
256 GB DDR4 main memory with a design bandwidth of 170 GB/s.
They are primarily used for their six NVIDIA V100 (Volta) GPUs,
which are entirely ignored in these experiments. The power is
supplied by two 2.2 kW power supply units (PSUs) following the
standard 80+ Platinum [6]. The PSUs run on 230 V alternating cur-
rent (AC). The nodes run Red Hat Enterprise Linux Server, release
7.6 (Maipo) as the operating system with a version 4.14.0 Linux
kernel. The OCC version is the commit 9047e57, skiboot version
v6.5.3-29-g74a7a87a. The OCC main memory interface is con-
figured to be readable for non-root users.

This experiment’s code and results are included in artifacts/
sampling_frequency_external_interface.

4.2 Approach
To observe the external update rate and readout latency of the inter-
faces, the system is used as-is, i. e., no specially crafted workloads
are used. The two interfaces (hwmon, OCC main memory interface)
are observed separately, one after the other.

The measurement program collects 224 samples in a loop using
the respective interface and saves each read value together with a
timestamp to an in-memory buffer. After the execution is finished,
this buffer is dumped into a file. The program takes approx. 1 min
per run, chosen as a trade-off between accuracy and total experi-
ment time.

4We could not recreate these update rates in our experiments, neither the 8 ms OCC
main memory interface update rate (see Section 4.3), and 2 kSa/s sample rate given in
the documentation only with a measurable error (see Section 6).

For hwmon the readout consists of a single read to the sysfs sensor
file; for the OCC main memory interface the exposed sensor data is
copied into a buffer, from which the desired value is extracted fol-
lowing the specification [5, Sec. 11.3], similar to an implementation
presented by Bhat [3]. This extraction includes a lookup at which
address the respective sensor is stored. Although the specification
does not guarantee that this sensor address stays constant [5, Sec.
11.3], during test runs, it never changed. Hence, we also include an
optimized version to read the OCC main memory interface, which
breaks the specification by only reading the sensor address once and
then only accessing the region for the respective sensor (instead of
reading the entire file and always checking where the sensor data
is located). All methods allow us to monitor only one measurement
domain at a time. We use the bulk power of the system.

We inspect the produced dumps for two separate properties:
First, we discuss the readout latency, i. e., the duration of a single
access to the respective interface. This ignores the reported data
and purely uses the timestamps in the dumps. In the second step,
we examine the reported data itself to determine the external update
rate, i. e., at which interval new data is exposed by the OCC.

4.3 Results
The (mean) readout latency is the mean duration of a single interface
access, i. e., the mean time between two successive interface read-
outs’ timestamps. The readout latency is 4.3 µs for hwmon, 10.8 µs
for the OCC main memory interface (normal)/3.8 µs (optimized) as
Figure 2 details. Both hwmon and the normal OCC main memory
interface readout exhibit a single large spike in Figure 2: Their read-
out latency is practically constant. (Tiny secondary spikes can be
seen for both methods, which we consider negligibly small. They
are most likely caused by the scheduler briefly halting the execution
of the experiment.) This is not the case for the optimized access to
the OCC main memory interface. Here, Figure 2 shows two spikes.
These originate in the two used data buffers (ping and pong buffer,
see Section 3.2). If only one buffer contains valid data, the overhead
is lower (3.6 µs mean). If both buffers contain valid data, the readout
routine checks which buffer has a newer timestamp. This additional
check increases the overhead to 4.8 µs (mean), which was required
for 16 % of the samples in this experiment.

On average, the value provided by the interface changed every
40.08 ms for both the OCC main memory interface and hwmon: The
external update rate is 24.95 Sa/s. To compensate for a sensor re-
porting the same value in a new measurement interval again, only
value changes within a 60 ms window have been respected. Due to
its nature, the accumulator always changes between two readouts
and is not affected by this.

The resolution of this experiment is limited by the duration
of a single sample collection, i. e., the readout latency. As this is
three orders of magnitude smaller than the external update rate,
its determination remains accurate enough for the purposes of this
experiment.

This difference in the orders of magnitude also makes the 60 %-gap
between reading hwmon vs. reading the OCC main memory inter-
face negligible: One readout per update interval introduces approx-
imately less than 0.03 % overhead, considering a single thread.

70

Evaluating the Energy Measurements of the IBM POWER9 On-Chip Controller ICPE ’23, April 15–19, 2023, Coimbra, Portugal

0 × 106
2 × 106
4 × 106
6 × 106
8 × 106

10 × 106
12 × 106
14 × 106

0 5 10 15 20

nu
m

b e
ro

fs
am

pl
es

(#
)

readout latency (µs, bin width 0.1 µs)

OCC
hwmon

OCC optimized

Readout Latency of OCC Interfaces

Figure 2: Separation between two readouts of the OCC inter-
faces

As discussed in Section 3.2, updates are expected exactly at mul-
tiples of 8 ms, i. e., here every 40 ms. However, with 40.08 ms the
measurement deviates from that by approx. 0.2 %: The same differ-
ence occurs when measuring the internal sampling rate of the OCC
(see Section 6).

Li et al. [23, Sec. II, III-A] performed similar measurements on
Google’s Zaius platform. They use hwmon and report a duration of
17 ms to query the sensors. They do not describe the process of
obtaining these in detail, hence the factor of ∼1300 between their
and our results can’t be explained here. Moreover, their mentioned
properties of the sensors do not align with our specifications at
hand: They mention “processor core data”5 as an example with an
update rate of 8 ms. In a reiteration of this experiment monitoring
the power consumption of a single processor, the external update
rate remained at approx. 40 ms.

5 CONSISTENCY ACROSS DIFFERENT
MEASUREMENTS

To verify the values themselves, we compare them across different
power measurement sources. Figure 3 shows the monitoring do-
mains available to us along the power delivery path from the PDUs
to the consumers. First, the PDUs themselves report AC power
output values via SNMP (cf. Section 2). Next, the BMC reports both
per-PSU input power as well as bulk power of the node. The OCC
also reports the bulk (total) power value. Note that this value may
not necessarily correspond to a single physical measurement point
but could possibly be computed as a sum of multiple sensors at
multiple voltages. Finally, the OCC measurement points are detailed
by Table 1.

To quantify the accuracy, multiple data sources for the same
measurement domain are necessary. The only domain with more
than one data source in our setup is the total/bulk power (reported
by OCC and BMC). In initial tests, we observed that the reported
bulk power from the BMC matches the corresponding values from
the OCC—but they can both plausibly come from the same sensors.

5Notably, according to the current OCC specification [5], the smallest reported power
domain is the processor. Data for individual cores are not available.

Therefore, we can not quantify the accuracy for any of the OCC’s
reported power domains.

Lacking multiple sensors for the same measurement domain, we
compare sensors of neighboring measurement domains: (1) OCC-
reported bulk power against the PSU input, and (2) OCC-reported
bulk power against the sum of individual components’ power con-
sumptions. Since these comparisons do not cover the same measure-
ment domain and even include a voltage conversion, a difference
is expected. That difference, as already shown in Figure 3, could
contain both conversion losses as well as unaccounted consumers,
e.g., small fans.

Nevertheless, this comparison demonstrates plausibility and
would reveal workload biases. Furthermore, the processor mea-
surement domains comprise multiple voltages and also contain
conversion losses and possibly unaccounted voltages, but we do
not evaluate them in detail. We confirmed that the PDU outlet and
PSU input powers match closely.

5.1 Measurement Setup
For examination of the OCC’s response to certain workloads, the
setup is much more similar to typical application profiling: The
desired workload is defined using the synthetic workload generator
roco2 [14], which provides Score-P [22] user instrumentation.6
The OCC’s values are loaded via the IBM PowerNV Score-P Plugin,
outlined in the following section. The execution produces an OTF2
trace file [10], which records OCC-reported values and the sections
of the workload. The raw trace and its processed forms are included
in artifacts/psu_comparison.

5.2 Score-P PowerNV Plugin
To record the sensor readouts reported by the OCC, we developed a
metric plugin for the Score-P plugin interface [36], the IBM PowerNV
Score-P Plugin.7 This plugin reads the OCC main memory interface
and records all available power sensors at a configurable interval
into an OTF2 trace. For every OCC power sensor (see Table 1) the
plugin records the current sample, the timestamp, and the total
energy based on the accumulator, as well as the number of samples
in this accumulator.

According to the documentation [5, Sec. 11.3.2.2], the accumu-
lator has a sampling rate of 1 or 2 kSa/s, depending on the sen-
sor. Therefore, between two readouts of the OCC main memory
interface (which are 40 ms apart), multiple samples are collected
internally, i.e., 40 or 80 samples, respectively. These samples are
not exposed individually, but their sum is reported as the accumula-
tor. By tracing the changes in the number of accumulated samples
and the accumulator itself, the average power consumption can be
computed:

𝑝𝑜𝑤𝑒𝑟 𝑓 𝑟𝑜𝑚 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑡1, 𝑡2) =
𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 (𝑡2) − 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 (𝑡1)
𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑢𝑛𝑡 (𝑡2) − 𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑢𝑛𝑡 (𝑡1)

As this equation uses energy (here the accumulator), the result
is referred to as power from energy.

6When tracing an application, roco2 would be replaced by the instrumented
application.
7https://github.com/score-p/scorep_plugin_ibmpowernv

71

https://github.com/score-p/scorep_plugin_ibmpowernv

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Hannes Tröpgen, Mario Bielert, and Thomas Ilsche

PDU Outlet B

PDU Outlet A

PSU 1

PSU 0

bulk

unaccounted

proc 1

proc 0

gpu 1
gpu 0
mem 1
mem 0
unaccounted

vdd 1
vdn 1
vdd 0
vdn 0
unaccounted

Reported by PDU BMC both BMC and OCC OCC computed

Figure 3: Power delivery scheme and monitored power domains. Colors indicate the data source. Band heights are scaled
relatively based on a configuration from Section 5.3.

The resulting traces contain two metrics tracking the current
power consumption in W: The direct samples, a single sample re-
ported every 40 ms by the OCC, and the power from energy, the
average power consumption of the last 40 ms based on 40 or 80
samples.

5.3 Approach
To gain a fine-grained profile of the sensor behavior, we test a wide
range of power levels. These levels are achieved by running seven
workloads8 defined by roco2 [14] on 1, 2, . . . , 44 cores (with four
threads per core). During run-time, each workload executes for
60 s to create a stable environment, and to circumvent problems in
the synchronization with the external data source. This particular
configuration is bundled as an example with roco2 [14] under the
name P9 Longrun. During execution, the power consumption as
reported by the two PSUs was continuously collected and stored in
the trace.

The tested system has two 2.2 kW power supplies, whose power
budget is not exhausted even with both processors under full load,
where the bulk power consumption is approximately 1 kW.9 One
such configuration is shown in Figure 3, here the kernel memory
write running on all cores draws a total 1055 W for both PSU inputs
combined.

5.4 Results
Figure 4 compares the power consumption reported by the PSUs to
the power consumption reported by the OCC. Modeling the PSUs’
efficiency using a quadratic fit10 yields plausible results: To this
regression the workloads have a 0.2 % mean absolute percentage
error (MAPE) and 1.7 W mean absolute error (MAE). Across all
workloads, the efficiency is 77 %. This low efficiency is rooted in the
load on the PSUs with 458 W to 859 W OCC-reported bulk power,
which is well below the design capacity of the two 2.2 kW PSUs.

8These workloads are busy wait, compute, matmul, memory copy, memory read,
memory write, and sine.
9Their larger design capacity is due to the six graphics processing units (GPUs) of the
node, which are entirely ignored for this test.
10From our experience, PSUs do not exhibit linear efficiency. In this particular value
range a linear regression would be sufficient, but still has approx. twice the error with
0.4 % MAPE, 3.2 W MAE.

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

O
CC

-r
ep

or
te

d
bu

lk
(W

)

PSUs total input power (W)
roco2 workloads

quadratic fit
id

Figure 4: PSU input power vs. bulk power reported by OCC

This experiment also uncovered a discrepancy in the OCC-re-
ported bulk power: Recalculating the bulk power consumption
by adding the reported power consumptions of GPUs, CPUs, and
memories has an inconsistent difference when compared to the
reported bulk power of the system.11 This discrepancy is shown in
Figure 5, where the re-calculated sum vs. the reported bulk power
consumption show 3.8 % MAPE, 25.5 W MAE. The cause of this
is not clear; one or multiple components not measured individu-
ally, but included in the bulk power could be responsible for this
difference.

The bulk powers reported by the OCC and the BMC match very
well (MAPE 0.2 %, MAE 1.3 W). The OCC and BMC could use the
same underlying data source, as the BMC could query the OCC
using its Poll Response interface [5, Sec. 1.6]. Further investigation
of this possibility is not possible with the used setup.

Even though OCC and BMC-reported values match, this experi-
ment is no verification of the OCC-reported values: We conclude
that the OCC-reported values are plausible, but may not verify their
correctness.
11This is marked as unaccounted in Figure 3.

72

Evaluating the Energy Measurements of the IBM POWER9 On-Chip Controller ICPE ’23, April 15–19, 2023, Coimbra, Portugal

0
100
200
300
400
500
600
700
800
900

0 100 200 300 400 500 600 700 800 900

re
ca

lc
ul

at
ed

bu
lk

(W
)

OCC-reported bulk (W)
roco2 workloads

id

Figure 5: Bulk power as reported by OCC vs. re-calculated
sum

po
w

er

time
load

load (sampled)

Figure 6: Concept of aliasing during sampling

6 INTERNAL SAMPLING RATE
The OCC provides an accumulator for its power sensors but does
not expose individual samples that contribute to its value. In this
section, we measure the internal sampling rate of the accumulator.

6.1 Setup & Approach
The setup is identical to Section 4, but lacking the PSU observation.
For simplicity, here we use a single sensor: The power consumption
of the first processor (proc 0).12

We assume that the OCC internally samples with 2 kSa/s (as the
corresponding “sample time” is given with 500 µs in the specifica-
tion [5, Sec. 11.3.2.2]), and that these samples are added without any
further processing into the accumulator. Based on these assump-
tions, we design a workload that idles when it is being sampled and
creates a high load when it is not sampled (or vice versa), effectively
provoking aliasing. For this, the frequencies of sampling and work-
load have to match perfectly—which, in practice, they do not: A
slight mismatch of frequencies causes this effect to shift over time,
i. e., first only idle is sampled, after some time this shifts and only
high load (work) is sampled, shifting back after some more time
etc. However, throughout this shift, there remains only approx. 1
sample per period. This is sketched in Figure 6.

12The approach can be applied to other sensors as long as a workload can be generated.

This aliasing affects the traces indirectly: Due to the update rate
of the interface (approx. 40 ms), the OCC does not expose all of
these individual samples. Only the mean of all accumulated samples
since the last interface update is stored as power from energy (see
Section 5.2); here the mean across the last 80 samples is recorded
to the trace.

Typically, some of the 80 samples are captured during the low
power level, and some during the high power level, resulting in the
power from energy-values hovering in between these two levels. In
particular, as half the time is spent idle and half working, the power
from energy-values are the mean of the low and high power levels.
Hence, the sketch in Figure 6 would produce a stable power from
energy level, as every 5 samples the sampled power level changes
between high and low level.

The power from energy deviates from the mean only if almost
all of the 80 samples between two interface readouts are captured
during idle (or almost all during work). I. e., the aliasing only be-
comes apparent in the traces when workload and sampling rate are
almost equal.

Combining this deviation from the mean of power from energy
with the shift from sampling only high to sampling only low—due
to small frequency deviations described above (see Figure 6)—yields
typical aliasing patterns: The power from energy slowly alternates
between a higher and a lower level. If we observe such a pattern, we
know the sampling rate and workload frequency are almost equal.
Based on the frequency of power from energy alternating between
the two levels, and the relation of this alternating pattern to the
(known) frequency of the underlying workload changing between
idle and work, we can derive the sampling rate of the accumulator.

To produce such an effect, we employed an alternating synthetic
workload around 0.5, 1, 2, and 2.05 kHz. Half of each period is spent
idling, the other with computing.13 This configuration is bundled
as an example with roco2 [14] under the name P9 Highlow. The
resulting traces and scripts for post-processing are provided in
artifacts/sampling_frequency_internal_accumulator.

This particular workload creates another indicator for the afore-
mentioned aliasing: The OCC main memory interface provides the
latest individual sample (direct sample), which have a larger spread
compared to the power from energy: As the power from energy
is based on an average across 80 samples, which contains samples
during idle and work, they are evening out—opposed to the single
sample directly provided by OCC, which is captured during either
idle or work14. In a non-aliasing scenario, all direct samples exhibit
a larger spread compared to the power from energy.

During aliasing, all samples within the 80-sample window that
power from energy uses are captured during idle (or all during
work). Consequently, as all 80 samples record the same power level,
the mean is identical to the single direct sample: When aliasing
occurs, the spread of power from energy and direct samples is pretty
much identical.

13The commands are selected to create low and high power levels. Idle corresponds to
setting medium thread priority [20, Sec. 3.2, p. 838], high load is created by a naive
vector dot product implementation. Setting the thread priority is also used by the
Linux kernel to idle on PowerNV [38, arch/powerpc/kernel/idle.c].
14or during the transition between those, but for this approach we consider this
transition period to be negligibly short

73

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Hannes Tröpgen, Mario Bielert, and Thomas Ilsche

2
1
0
1
2

power (W, 2 W bins)

du
ra

tio
n

(s)

499 Hz

2
1
0
1
2

power (W, 2 W bins)

du
ra

tio
n

(s)

499 Hz

998 Hz

2
1
0
1
2

power (W, 2 W bins)

du
ra

tio
n

(s)

499 Hz

998 Hz

1996 Hz

8
6
4
2
0
2

150 200 250 300

power (W, 2 W bins)

du
ra

tio
n

(s)

499 Hz

998 Hz

1996 Hz

2045 Hz

direct samples
power From Energy

Figure 7: Spread of direct samples versus power from energy
for workloads of different frequencies

1,179s +10s +20s +30s +40s +50s +60s

W

200
225
250
275
300

node taurusml10, Values of Metric "occ_power_proc.0.power_from_energy" over Time

1996 Hz 1997 Hz1995 Hz

Figure 8: Power from energy for the first processor during
workloads alternating with 1995 Hz to 1997 Hz

6.2 Results
Exactly this effect on the spread of power from energy and direct
samples can be observed: For a workload with 499, 998, and 2045 Hz
the spread of direct samples and power from energy values show
a clear difference—which is lacking for a workload at 1996 Hz, as
Figure 7 shows.

This indicates that aliasing is occurring for the 1996 Hz workload
and only one sample per period (of the workload) is collected, as
discussed above. The aliasing pattern itself, i. e., the power from
energy shifting between a high and a low level is shown in Figure 8.
(Note that the apparent slow shift between high and low power
levels is purely a measuring artifact: The underlying workload still
loops with 1995 Hz to 1997 Hz.)

Table 3: Internal OCC sampling rate, computed from the
results in Figure 8

𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (Hz) 𝑓𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 (Hz) 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 (Hz)

24 ÷ 19.4 s ≈ 1.24 1995 1996.24
4 ÷ 16.5 s ≈ 0.24 1996 1996.24

14 ÷ 18.3 s ≈ 0.77 1997 1996.23

We use the pattern visible in Figure 8 to compute the accu-
mulator sampling rate. For that, we manually read the frequen-
cies of the emerging aliasing pattern from Figure 8 and apply
|𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 − 𝑓𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 | = 𝑓𝑝𝑎𝑡𝑡𝑒𝑟𝑛 , which yields the results shown
in Table 3. The internal sampling rate is approx. 1996 Sa/s, which
is 0.2 % slower than the 2 kSa/s noted in the specification [5, Sec.
11.3.2.2]—the same 0.2 % as for the update rate of the interface noted
above (see Section 4.3).

This leads us to hypothesize that the clocks of the system and
the OCC diverge. The experiment also recorded the timestamps
and number of accumulated samples reported by the OCC: Over
the approx. 30 min total experiment duration the clock deviates by
less than one part per million (PPM) from the expected 512 MHz,15

whereas the accumulator reports 1996.16 collected samples per
second.

6.3 Potential Errors and Implications
For this experiment, the power from energy slowly shifts between
225 W and 285 W as visible in Figure 8. By further adjusting the
frequency of the workload closer to the internal sampling rate,
it would be possible to stretch out this pattern further. This may
potentially hide its periodic behavior—in such a worst-case scenario
only the low or only the high level might be sampled. Assuming
a 255 W true average power consumption in the middle between
both levels (as the workload is split evenly between idle and work),
a sampling of only low (or only high) levels would yield a 12 %
error in comparison. Such an error occurs only under very specific
circumstances and represents a worst-case scenario. Hence, for
practical applications the error is likely much lower.

One should prefer the accumulator-based power from energy to
measure power consumption, as its sampling rate of ∼2 kSa/s yields
more precise results compared to the individual samples reported
with ∼25 Sa/s at every interface update (i. e., every ∼40 ms). The
magnitude of the observed error depends on the ability of the
monitored component to change the power consumption within
one sampling period. Observing GPUs or the entire system may
result in different errors, depending on the particular setup.

In general, the observed 0.2 % deviation from the advertised
2 kSa/s internal sampling rate is hardly relevant to measuring ap-
plications: As the OCC reports the number of accumulated samples
(see Table 2), the computation of the power from energy (see Sec-
tion 5.2) remains correct. For practical applications in general we
do not expect a relevant impact in accuracy introduced through
aliasing.

15The trace is recorded on the same system; but the accuracy of neither the trace nor
the system is validated. For this particular experiment, a single update cycle of the
interface takes 40 ms, which corresponds to 20 PPM.

74

Evaluating the Energy Measurements of the IBM POWER9 On-Chip Controller ICPE ’23, April 15–19, 2023, Coimbra, Portugal

7 SUMMARY AND FUTUREWORK
In this paper, we presented a detailed description of the On-Chip
Controller (OCC) of PowerNV platform processors. We described the
available power sensors (see Table 1) and the interfaces that can be
used to retrieve their readouts. We measured that such readouts take
between 3.8 µs to 10.8 µs (mean) depending on the interface, and
that new values are provided every 40.08 ms (24.95 Sa/s)—which
is 0.2 % slower than we expected. Then, we compared the OCC
measurement with an external measurement and presented our
Score-P plugin to integrate these sensor readouts into OTF2 traces.
This comparison of values collected from PSUs, BMC, and OCC
did not verify the correctness of the OCC-reported data, but still
confirms its plausibility. Furthermore, we discovered an emerging
aliasing effect for workloads with a frequency matching the OCC’s
internal sampling rate, through which we produce 12 % error in
carefully crafted experiments. This aliasing also exposes that the
internal sampling rate is 1996 Sa/s, which is 0.2 % slower than spec-
ified in the documentation—similar to the external update rate of
the interfaces.

The used workload generator only supports CPUs, hence the
sensor behavior under load is only experimentally verified for CPUs.
By extending the workload generator to GPUs these experiments
could cover more load scenarios. All sensors, including those for
GPUs, are processed by the same mechanisms of the OCC. Hence,
we expect no discrepancies to the general behavior described in the
paper. In particular, the principle for provoking the 12 % error of
the measured energy for CPUs through aliasing can be applied to
GPUs as well, but the magnitude of this error heavily depends on
the installed hardware. To confirm the values reported by the OCC
additional sensors are required. This can be achieved by manually
instrumenting the node to measure the power consumption of the
entire system, CPUs, and GPUs externally.

While in this paper we discussed the entire measurement pipeline
of the OCC and quantified worst-case errors, additional measure-
ments, e. g., using external hardware, could further strengthen the
confidence in the out-of-the-box power measurements provided by
the OCC.

ACKNOWLEDGMENTS
This work is supported in part by the German National High Per-
formance Computing (NHR@TUD). The authors are grateful to the
Center for Information Services and High Performance Comput-
ing at TU Dresden for providing the Power9 Systems used in the
measurements and the support during them.

REFERENCES
[1] Sheldon Bailey, Charles Lefurgy, Andrew Jeffery, Stewart Smith, and Markus

Hilger. 2020. AMESTER. https://github.com/open-power/amester
[2] Shilpasri G Bhat. 2016. Enabling Instrumentation Using Programmable on-chip

Components to Monitor Sensors. https://openpowerfoundation.org/enabling-
instrumentation-using-programmable-on-chip-components-to-monitor-
sensors

[3] Shilpasri G Bhat. 2018. Openpower based Inband OCC sensors. https://github.
com/shilpasri/inband_sensors

[4] Martha Broyles. 2016. OCC Firmware Interface Specification for Open Power (1.3
ed.). IBM, Hopewell Junction, New York. https://raw.githubusercontent.com/
open-power/docs/master/occ/OCC_OpenPwr_FW_Interfaces.pdf

[5] Martha Broyles. 2019. OCC Firmware Interface Specification for POWER9 (0.24 ed.).
IBM, Hopewell Junction, New York. https://raw.githubusercontent.com/open-
power/docs/master/occ/OCC_P9_FW_Interfaces.pdf

[6] CLEAResult. 2022. What is 80 PLUS certified? https://www.clearesult.com/
80plus/program-details

[7] Spencer Desrochers, Chad Paradis, and Vincent M. Weaver. 2016. A Validation
of DRAM RAPL Power Measurements. In Proceedings of the Second International
Symposium on Memory Systems (Alexandria, VA, USA) (MEMSYS ’16). Association
for Computing Machinery, New York, NY, USA, 455–470. https://doi.org/10.
1145/2989081.2989088

[8] Manuel F. Dolz, Mohammad Reza Heidari, Michael Kuhn, Thomas Ludwig, and
Germán Fabregat. 2015. ArduPower: A Low-cost Wattmeter to improve Energy
Efficiency of HPC Applications. In 2015 Sixth International Green and Sustainable
Computing Conference (IGSC). 1–8. https://doi.org/10.1109/IGCC.2015.7393692

[9] DTMF. 2018. Redfish Scalable Platforms Management API Specification. https:
//www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.6.0.pdf

[10] Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Knüpfer, Wolf-
gang E. Nagel, and Felix Wolf. 2012. Open Trace Format 2: The Next Generation
of Scalable Trace Formats and Support Libraries. In Applications, Tools and Tech-
niques on the Road to Exascale Computing (Advances in Parallel Computing, Vol. 22).
481–490. https://doi.org/10.3233/978-1-61499-041-3-481

[11] Eric J. Fluhr, Steve Baumgartner, David Boerstler, John F. Bulzacchelli, Timothy
Diemoz, Daniel Dreps, George English, Joshua Friedrich, Anne Gattiker, Tilman
Gloekler, Christopher Gonzalez, Jason D. Hibbeler, Keith A. Jenkins, Yong Kim,
Paul Muench, Ryan Nett, Jose Paredes, Juergen Pille, Donald Plass, Phillip Restle,
Raphael Robertazzi, David Shan, David Siljenberg, Michael Sperling, Kevin Staw-
iasz, Gregory Still, Zeynep Toprak-Deniz, James Warnock, Glen Wiedemeier, and
Victor Zyuban. 2015. The 12-Core POWER8™ Processor With 7.6 Tb/s IO Band-
width, Integrated Voltage Regulation, and Resonant Clocking. IEEE Journal of
Solid-State Circuits 50, 1 (2015), 10–23. https://doi.org/10.1109/JSSC.2014.2358553

[12] Christopher Gonzalez, Michael Floyd, Eric Fluhr, Phillip Restle, Daniel Dreps,
Michael Sperling, Rahul Rao, David Hogenmiller, Christos Vezyrtis, Pierce
Chuang, Daniel Lewis, Ricardo Escobar, Vinod Ramadurai, Ryan Kruse, Juer-
gen Pille, Ryan Nett, Pawel Owczarczyk, Joshua Friedrich, Jose Paredes, Timo-
thy Diemoz, Saiful Islam, Donald Plass, and Paul Muench. 2018. The 24-Core
POWER9 Processor With Adaptive Clocking, 25-Gb/s Accelerator Links, and
16-Gb/s PCIe Gen4. IEEE Journal of Solid-State Circuits 53, 1 (2018), 91–101.
https://doi.org/10.1109/JSSC.2017.2748623

[13] Christopher Gonzalez, Eric Fluhr, Daniel Dreps, David Hogenmiller, Rahul Rao,
Jose Paredes, Michael Floyd, Michael Sperling, Ryan Kruse, Vinod Ramadurai,
Ryan Nett, Saiful Islam, Juergen Pille, and Donald Plass. 2017. 3.1 POWER9™: A
processor family optimized for cognitive computing with 25Gb/s accelerator links
and 16Gb/s PCIe Gen4. In 2017 IEEE International Solid-State Circuits Conference
(ISSCC). 50–51. https://doi.org/10.1109/ISSCC.2017.7870255

[14] Daniel Hackenberg, Thomas Ilsche, Robert Schöne, Daniel Molka, Maik Schmidt,
and Wolfgang E. Nagel. 2013. Power measurement techniques on standard
compute nodes: A quantitative comparison. In 2013 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). 194–204. https://doi.
org/10.1109/ISPASS.2013.6557170

[15] Daniel Hackenberg, Robert Schöne, Thomas Ilsche, Daniel Molka, Joseph
Schuchart, and Robin Geyer. 2015. An Energy Efficiency Feature Survey of
the Intel Haswell Processor. In 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop. IEEE. https://doi.org/10.1109/ipdpsw.2015.70

[16] Marcus Hähnel, Björn Döbel, Marcus Völp, and Hermann Härtig. 2012. Measur-
ing energy consumption for short code paths using RAPL. ACM SIGMETRICS
Performance Evaluation Review 40, 3 (dec 2012), 13–17. https://doi.org/10.1145/
2425248.2425252

[17] Thomas Ilsche, Robert Schöne, Joseph Schuchart, Daniel Hackenberg, Marc
Simon, Yiannis Georgiou, and Wolfgang E. Nagel. 2018. Power Measurement
Techniques for Energy-Efficient Computing: Reconciling Scalability, Resolution,
and Accuracy, In SICS Software-Intensive Cyber-Physical Systems. Computer
Science - Research and Development. https://doi.org/10.1007/s00450-018-0392-9

[18] Intel Corporation. 2021. Intel® 64 and IA-32 ArchitecturesSoftware Developer’s
Manual.

[19] Intel Corporation, Hewlett-Packard, NEC, and Dell. 2013. IPMI Specification.
Technical Report. https://www.intel.com/content/www/us/en/servers/ipmi/
ipmi-second-gen-interface-spec-v2-rev1-1.html

[20] International Business Machines and OpenPOWER Foundation. 2020. Power
ISA™. https://files.openpower.foundation/s/XXFoRATEzSFtdG8

[21] Edward A. James, Guenter Roeck, and Rob Herring. 2017. [PATCH v3 00/12]
hwmon: Add On-Chip Controller hwmon driver. https://lore.kernel.org/lkml/
1511222021-562-1-git-send-email-eajames@linux.vnet.ibm.com thread on linux
kernel mailing list.

[22] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Mal-
ony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk
Schmidl, Sameer Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg, and
Felix Wolf. 2012. Score-P: A Joint Performance Measurement Run-Time Infras-
tructure for Periscope,Scalasca, TAU, and Vampir. In Tools for High Performance
Computing 2011, Holger Brunst, Matthias S. Müller, Wolfgang E. Nagel, and
Michael M. Resch (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 79–91.

75

https://github.com/open-power/amester
https://openpowerfoundation.org/enabling-instrumentation-using-programmable-on-chip-components-to-monitor-sensors
https://openpowerfoundation.org/enabling-instrumentation-using-programmable-on-chip-components-to-monitor-sensors
https://openpowerfoundation.org/enabling-instrumentation-using-programmable-on-chip-components-to-monitor-sensors
https://github.com/shilpasri/inband_sensors
https://github.com/shilpasri/inband_sensors
https://raw.githubusercontent.com/open-power/docs/master/occ/OCC_OpenPwr_FW_Interfaces.pdf
https://raw.githubusercontent.com/open-power/docs/master/occ/OCC_OpenPwr_FW_Interfaces.pdf
https://raw.githubusercontent.com/open-power/docs/master/occ/OCC_P9_FW_Interfaces.pdf
https://raw.githubusercontent.com/open-power/docs/master/occ/OCC_P9_FW_Interfaces.pdf
https://www.clearesult.com/80plus/program-details
https://www.clearesult.com/80plus/program-details
https://doi.org/10.1145/2989081.2989088
https://doi.org/10.1145/2989081.2989088
https://doi.org/10.1109/IGCC.2015.7393692
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.6.0.pdf
https://doi.org/10.3233/978-1-61499-041-3-481
https://doi.org/10.1109/JSSC.2014.2358553
https://doi.org/10.1109/JSSC.2017.2748623
https://doi.org/10.1109/ISSCC.2017.7870255
https://doi.org/10.1109/ISPASS.2013.6557170
https://doi.org/10.1109/ISPASS.2013.6557170
https://doi.org/10.1109/ipdpsw.2015.70
https://doi.org/10.1145/2425248.2425252
https://doi.org/10.1145/2425248.2425252
https://doi.org/10.1007/s00450-018-0392-9
https://www.intel.com/content/www/us/en/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html
https://www.intel.com/content/www/us/en/servers/ipmi/ipmi-second-gen-interface-spec-v2-rev1-1.html
https://files.openpower.foundation/s/XXFoRATEzSFtdG8
https://lore.kernel.org/lkml/1511222021-562-1-git-send-email-eajames@linux.vnet.ibm.com
https://lore.kernel.org/lkml/1511222021-562-1-git-send-email-eajames@linux.vnet.ibm.com

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Hannes Tröpgen, Mario Bielert, and Thomas Ilsche

[23] B Li and E A Leon. 2018. Understanding Power Measurement Capabilities on
Zaius Power9. (March 2018). https://www.osti.gov/biblio/1466115

[24] Antonio Libri, Andrea Bartolini, and Luca Benini. 2019. DiG: Enabling Out-
of-Band Scalable High-Resolution Monitoring for Data-Center Analytics, Au-
tomation and Control. In The 2nd International Industry/University Workshop on
Data-center Automation, Analytics, and Control.

[25] Linux Kernel Contributors. 2021. Linux hwmon Subsystem. https://hwmon.
wiki.kernel.org/

[26] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon,
Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based Power
Side-Channel Attacks on x86. In 2021 IEEE Symposium on Security and Privacy
(SP). IEEE.

[27] Xinxin Mei, Ling Sing Yung, Kaiyong Zhao, and Xiaowen Chu. 2013. A measure-
ment study of GPU DVFS on energy conservation. In Proceedings of the Workshop
on Power-Aware Computing and Systems. 1–5.

[28] OCC Firmware Contributors. 2020. OCC Firmware. https://github.com/open-
power/occ

[29] PROMETEUS Professor Meuer Technologieberatung und -Services GmbH. 2022.
Green500 List - June 2022. https://www.top500.org/lists/green500/2022/06/

[30] Raritan. 2020. Technical Specifications / Engineering SubmittalsRaritan Model
Number: PX3-5871I2U-F1N2. https://d3b2us605ptvk2.cloudfront.net/product-
selector/pdus/PX3-5871I2U-F1N2/PX3-5871I2U-F1N2-spec.pdf

[31] John W. Romein and Bram Veenboer. 2018. PowerSensor 2: a Fast Power Mea-
surement Tool. In 2018 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). https://doi.org/10.1109/ISPASS.2018.00020

[32] Todd Rosedahl. 2015. On Chip Controller (OCC) Overview. Tech. rep
(2015). https://cdn.openpowerfoundation.org/wp-content/uploads/2015/03/
RosedahlTodd_OPFS2015_IBM_-031615.pdf

[33] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weissmann,
and Doron Rajwan. 2012. Power-Management Architecture of the Intel Mi-
croarchitecture Code-Named Sandy Bridge. IEEE Micro 32, 2 (3 2012), 20–27.
https://doi.org/10.1109/MM.2012.12

[34] Robert Schöne, Thomas Ilsche, Mario Bielert, Andreas Gocht, and Daniel Hack-
enberg. 2019. Energy Efficiency Features of the Intel Skylake-SP Processor and
Their Impact on Performance. arXiv:1905.12468 [cs.DC] accepted for publication.

[35] Robert Schöne, Thomas Ilsche, Mario Bielert, Markus Velten, Markus Schmidl,
and Daniel Hackenberg. 2021. Energy Efficiency Aspects of the AMD Zen 2 Ar-
chitecture. In 2021 IEEE International Conference on Cluster Computing (CLUSTER).
562–571. https://doi.org/10.1109/Cluster48925.2021.00087

[36] Robert Schöne, Ronny Tschüter, Thomas Ilsche, Joseph Schuchart, Daniel Hack-
enberg, and Wolfgang E. Nagel. 2017. Extending the Functionality of Score-P
Through Plugins: Interfaces and Use Cases. In Tools for High Performance Comput-
ing 2016, Christoph Niethammer, José Gracia, Tobias Hilbrich, Andreas Knüpfer,
Michael M. Resch, and Wolfgang E. Nagel (Eds.). Springer International Publish-
ing, Cham, 59–82.

[37] SkiBoot Contributors. 2021. SkiBoot. https://github.com/open-power/skiboot
[38] Linus Torvalds et al. 2017. Linux. https://kernel.org
[39] Hannes Tröpgen, Mario Bielert, and Thomas Ilsche. 2023. Dataset Related to

"Evaluating the Energy Measurements of the IBM POWER9 On-Chip Controller".
https://doi.org/10.5281/zenodo.7670506

76

https://www.osti.gov/biblio/1466115
https://hwmon.wiki.kernel.org/
https://hwmon.wiki.kernel.org/
https://github.com/open-power/occ
https://github.com/open-power/occ
https://www.top500.org/lists/green500/2022/06/
https://d3b2us605ptvk2.cloudfront.net/product-selector/pdus/PX3-5871I2U-F1N2/PX3-5871I2U-F1N2-spec.pdf
https://d3b2us605ptvk2.cloudfront.net/product-selector/pdus/PX3-5871I2U-F1N2/PX3-5871I2U-F1N2-spec.pdf
https://doi.org/10.1109/ISPASS.2018.00020
https://cdn.openpowerfoundation.org/wp-content/uploads/2015/03/RosedahlTodd_OPFS2015_IBM_-031615.pdf
https://cdn.openpowerfoundation.org/wp-content/uploads/2015/03/RosedahlTodd_OPFS2015_IBM_-031615.pdf
https://doi.org/10.1109/MM.2012.12
https://arxiv.org/abs/1905.12468
https://doi.org/10.1109/Cluster48925.2021.00087
https://github.com/open-power/skiboot
https://kernel.org
https://doi.org/10.5281/zenodo.7670506

	Abstract
	1 Introduction
	2 Related Work
	2.1 Power Measurements of Computing Systems
	2.2 POWER8, POWER9 & The On-Chip Controller

	3 Measuring Power Using the On-Chip Controller
	3.1 The Linux Kernel Interface hwmon
	3.2 The OCC Main Memory Interface

	4 Interface Properties
	4.1 Setup
	4.2 Approach
	4.3 Results

	5 Consistency across different measurements
	5.1 Measurement Setup
	5.2 Score-P PowerNV Plugin
	5.3 Approach
	5.4 Results

	6 Internal Sampling Rate
	6.1 Setup & Approach
	6.2 Results
	6.3 Potential Errors and Implications

	7 Summary and Future Work
	Acknowledgments
	References

