
DrGPU: A Top-Down Profiler for GPU
Yueming Hao
yhao24@ncsu.edu

North Carolina State University
Raleigh, North Carolina, USA

Nikhil Jain
nikhijain@nvidia.com
Nvidia Corporation

Santa Clara, California, USA

Rob Van Der Wijngaart
robv@nvidia.com
Nvidia Corporation

Santa Clara, California, USA

Nirmal Saxena
NSAXENA@nvidia.com
Nvidia Corporation

Santa Clara, California, USA

Yuanbo Fan
Yfan@tenstorrent.com

Tenstorrent Incorporated
San Francisco, California, USA

Xu Liu
xliu88@ncsu.edu

North Carolina State University
Raleigh, North Carolina, USA

ABSTRACT

GPUs have become common in HPC systems to accelerate scientific
computing and machine learning applications. Efficiently mapping
these applications to rapid evolutions of GPU architectures for high
performance is a well-known challenge. Various performance in-
efficiencies exist in GPU kernels that impede applications from
obtaining bare-metal performance. While existing tools are able to
measure these inefficiencies, they mostly focus on data collection
and presentation, requiring significant manual efforts to under-
stand the root causes for actionable optimization. Thus, we develop
DrGPU, a novel profiler that performs top-down analysis to guide
GPU code optimization. As its salient feature, DrGPU leverages
hardware performance counters available in commodity GPUs to
quantify stall cycles, decompose them into various stall reasons,
pinpoint root causes, and provide intuitive optimization guidance.
With the help of DrGPU, we are able to analyze important GPU
benchmarks and applications and obtain nontrivial speedups — up
to 1.77× on V100 and 2.03× on GTX 1650.

CCS CONCEPTS

• Software and its engineering → Compilers; General pro-
gramming languages; • General and reference → Measure-

ment; Metrics.

KEYWORDS

CUDA, profiler, GPU, performance optimization, measurement

ACM Reference Format:

Yueming Hao, Nikhil Jain, Rob Van Der Wijngaart, Nirmal Saxena, Yuanbo
Fan, and Xu Liu. 2023. DrGPU: A Top-Down Profiler for GPU. In Proceedings
of the 2023 ACM/SPEC International Conference on Performance Engineering
(ICPE ’23), April 15–19, 2023, Coimbra, Portugal. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3578244.3583736

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’23, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0068-2/23/04. . . $15.00
https://doi.org/10.1145/3578244.3583736

1 INTRODUCTION

General-purpose graphics processing units (GPGPU) have become
common in HPC systems to accelerate various parallel applications.
Among the latest Top 500 list [7], more than 100 supercomputers
employ CPU+GPU heterogeneous architectures. At present, two of
the supercomputers—Summit and Sierra—employ GPUs to provide
most of the FLOPS on their compute nodes. Moreover, emerging
U.S. exascale systems will be all powered by GPUs.

Unlike traditional CPUs, GPUs typically offer a unique program-
ming and architectural scenario. For instance, they employ thou-
sands of threads, which are divided into warps on NVIDIA GPUs or
wavefronts on AMD GPUs. With the Single-Instruction Multiple-
Threads (SIMT) programming model, all the threads in one warp
share the same program counter and execute in lockstep. Moreover,
a warp is able to coalesce multiple memory requests to adjacent
memory words into one single request, so threads can benefit from
spatial locality. Caches on GPUs are often limited in capacity and
shared across threads.

A variety of programming models, such as CUDA [21], HIP [8],
OpenACC [35], and OpenCL [32] are developed to help program-
mers offload computation kernels to GPUs (aka GPU kernels). In
modern HPC applications, GPU kernels take a big portion of the
whole program execution. However, without careful programming,
it is easy to introduce inefficiencies that impede GPU kernels from
obtaining bare-metal performance. For example, control flow and
memory divergence can significantly hurt GPU parallelism; heavy
type, which is that the array’s data type is overused based on the
values of this array, can result in wasted memory bandwidth since
values will be copied with useless bits; over-synchronization across
threads can result in execution serialization. It is important to op-
timize GPU kernels for optimal performance. Typically, these in-
efficiencies can be buried deep in complex HPC applications, and
manual analysis is tedious and error-prone.

Optimizing compilers, such as nvcc [20], LLVM [1, 3, 36],
DPC++ [15], are adept at improving GPU code performance, such
as removing redundant computation, and efficiently utilizing regis-
ters. However, they have a narrower view of the program, which
limits their analysis to a small scope—individual functions or files.
Moreover, layers of abstractions, dynamically loaded libraries, multi-
lingual components, aggregate types, aliasing, sophisticated flows
of control, and the combinatorial explosion of execution paths make
it practically impossible for compilers to obtain a holistic view of an
application to apply its optimizations. Moreover, without dynamic

43

https://doi.org/10.1145/3578244.3583736
https://doi.org/10.1145/3578244.3583736

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Yueming Hao et al.

information, static analysis has no insights into the execution be-
haviors in GPU memory subsystems and pipelines, resulting in
suboptimal optimization. Advanced compiler optimizations such
as link-time optimization (LTO) and profile-guided optimization
(PGO) enlarge the optimization scope and add some dynamic infor-
mation, but they are still conservative. Thus, compilers often fail to
eliminate many kinds of inefficiencies.

Orthogonal to the static analysis is evaluating GPU execution
with simulators (e.g., GPGPUSim [9]) or emulators (e.g., Ocelot [14]).
While simulators and emulators provide rich execution insights,
they incur unaffordable overhead to simulate every detail of a state-
of-the-art GPU architecture, which is impractical to be deployed
to supercomputers to measure HPC applications. Instead, selective
instrumentation with tools such as NVBit [34], GTPin [2], SASSI [6],
and GVProf [37] can reduce the overhead. However, they identify
pure software inefficiencies, with no insights into inefficiencies due
to software-hardware interactions.

Another popular approach is profiling that identifies program
inefficiencies at runtime with performance monitoring units (PMU)
available in GPU architectures. Profiling tools such as Nsight Com-
pute (NCU) [24], NVProf [28], HPCToolkit [38], TAU [31], Score-
P [16], and ROCProfiler [5] leverage PMUs to collect a variety of
performance events, such as cache misses, memory divergences,
stall cycles, and many others. Based on these events, these tools
can derive many metrics, such as instructions per cycle and cache
miss ratios to measure the performance of GPU kernels.

However, existing profiling tools require substantial expertise
and manual efforts to obtain actionable optimization insights. On
one hand, GPU can support tens of thousands of performance
events [25], monitoring all the events is impractical, so users need to
manually filter out unnecessary events for monitoring. On the other
hand, existing tools mostly focus on data collection and attribution
with little emphasis on data analysis for actionable optimization
guidance.

To address the limitations of existing tools, we develop DrGPU,
an end-to-end profiler that automatically measures GPU kernel exe-
cution and provides intuitive optimization guidance. We implement
DrGPU for NVIDIA GPUs but the technique is generally applica-
ble to AMD and Intel GPUs. In summary, we make the following
contributions in DrGPU:
• DrGPU is a novel top-down profiler for GPU kernels. DrGPU
quantifies stall cycles and decomposes them according to various
hardware events for root causes.

• DrGPU provides focused, hierarchical performance deficit attri-
bution with minimum manual interference. Moreover, DrGPU
provides detailed actionable optimization guidance that can be
interpreted by non-experts.

• DrGPU has been deployed to Summit and used to optimize a va-
riety of well-known GPU benchmarks and applications, yielding
significant speedups.

2 BACKGROUND AND RELATEDWORK

2.1 NVIDIA GPU and CUDA

To efficiently utilize the GPU hardware, NVIDIA introduced
CUDA [21], a general purpose parallel computing platform and
programming model that leverages the parallel compute engine in

NVIDIA GPUs. With the help of CUDA, NVIDIA GPUs can solve
complex computational problems. CUDA C++ extends C++ to sup-
port user defined functions, aka GPU kernels, to run on GPUs with
multiple CUDA threads. These threads are organized into multiple
equally-shaped thread blocks or CTAs, and blocks could be formed
to a grid whose dimension is up to three. Thread blocks are further
divided into warps, which consist of 32 consecutive threads each.

In CUDA programming, there are multiple memory types. Each
thread has its own private local memory. Each thread block has
shared memory visible to all threads in this block. All threads have
accesses to the global, constant, and texture memory, which are
optimized for different usages. Local, global, texture, constant, and
surface memories all reside on device memory, which is the main
and slowest memory layer on GPU. In contrast, shared memory is
able to be configured to various sizes and is expected to be as fast
as the L1 cache.

2.2 PMUs on NVIDIA GPUs

NVIDIA GPUs support tens of thousands of PMU events for pro-
gram monitoring, such as sm__warps_active, lts__t_requests,
and many others. One can count these event occurrences for any
given GPU kernel.

Moreover, NVIDIA GPUs support an advanced monitoring fa-
cility: PC sampling [17], which performs device-wide sampling of
the program counter (PC) in execution. In a fixed interval of cycles,
the PMU in each GPU streaming multiprocessor collects program
counters; the minimum interval can be 32 or 2048 cycles given
different GPU generations. In the meanwhile, the PMU reports stall
cycles with no warp scheduled for execution as well as the stall
reasons, such as memory access, barriers, instruction dependencies,
and others.

To program the PMUs, NVIDIA provides CUDA Profiling Tools
Interface (CUPTI) [23], which can also capture GPU kernel launch
and return. CUPTI has become the de-facto interface for perfor-
mance analysis tools on NVIDIA GPUs.

2.3 Related Work

Existing GPU profilers mainly fall into two categories: exhaustive
and lightweight analyses.

Exhaustive profilers. GPU code instrumentation engines, such
as NVIDIANVBit [34], SASSI [6], Sanitizer API [18], Intel GTPin [2],
and LLVM infrastructure [3] support powerful exhaustive analysis
by monitoring each executed instruction instance. For example,
GVProf [37], atop Sanitizer API, is able to identify redundant values
used in each memory access; CUDAAdvisor [30], based on LLVM,
tracks control and data flow in GPU kernels; CUDA Flux [11] in-
struments GPU code via LLVM to identify redundant instructions.
While exhaustive analysis tools provide unique insights with mi-
croscopic views, they incur large overhead (100-1000×) and lack
architecture-specific insights. In contrast, DrGPU is a lightweight
profiler.

Lightweight profilers. Vendor-provided tools, such as NVIDIA
NVProf [28], Nsight Compute [24], and Nsight Systems [26] lever-
age CUPTI [23] and NVTX [27] to monitor hardware or user-
defined events. ROCProfiler [5] onAMDGPUs andHPCToolkit [38],

44

DrGPU: A Top-Down Profiler for GPU ICPE ’23, April 15–19, 2023, Coimbra, Portugal

TAU [31], and Score-P [16] in the research community provide sim-
ilar functionality. These tools rely on GPU PMUs for data collection,
usually incurring low measurement overhead. However, these tools
usually need significant expert knowledge. On one hand, users need
to identify necessary events to monitor; on the other hand, users
need to interpret the results and identify appropriate optimization
strategies. While Nsight Compute provides some optimization guid-
ance on unit level, it is difficult to understand how inefficiency in
one unit impacts other units and users, especially non-experts, to
optimize the GPU kernels.

HPCToolkit [39] recently added CUPTI API-based support for
performance bottleneck and root cause analysis. It constructs the
CPU-GPU call paths to understand performance inefficiencies
across CPU and GPU. It also leverages PC sampling and a small set
of hardware events to pinpoint GPU kernel inefficiencies. It mostly
pinpoints the hot spots in GPU kernels. Unlike DrGPU, it does not
exhaustively analyze inefficiencies in different GPU units and pro-
vides actionable optimization guidance for non-experts. Perhaps,
GPA [40, 41] is the most related tool to DrGPU. GPA uses PC sam-
pling to quantify GPU stall cycles and performs on-the-fly program
slicing to identify instructions that cause the stalls. However, un-
like DrGPU, GPA does not collect hardware events to understand
inefficient software-hardware interactions.

We elaborate on the comparison of DrGPUwith Nsight Compute
and GPA in Section 5.2.

3 METHODOLOGY

DrGPU leverages NVIDIA Nsight Compute (NCU) to collect neces-
sary hardware events and outputs a top-down analysis tree with
rich performance insights in any GPU kernel. Figure 1 shows the
top level of the tree. DrGPU builds these nodes by analyzing the PC
sampling results. For the root node, DrGPU derives the total stall
cycles of the given GPU kernel as the GPU cycles not fully utilizing
the issue slots. Starting from the Volta architecture, each streaming
multiprocessor can issue four warp instructions per cycle (IPC).
DrGPU calculates the percentage of stall cycles as

𝑠𝑡𝑎𝑙𝑙 𝑐𝑦𝑐𝑙𝑒% =
𝑖𝑑𝑒𝑎𝑙 𝐼𝑃𝐶 − 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 𝐼𝑃𝐶

𝑖𝑑𝑒𝑎𝑙 𝐼𝑃𝐶
(1)

It includes both horizontal and vertical stalls1 [33] for instruction
issuing. Moreover, DrGPU shows the IPC and quantifies the mem-
ory and compute intensity for the entire GPU kernel in the tree
root.

Under the root, DrGPU categorizes stall cycles according to their
causes. In recent NVIDIA GPU generations (including Volta, Turing,
and Ampere), NCU provides 18 warp scheduler states. DrGPU
identifies 13 of them that are related to warp issuing stalls and have
a clear association with particular GPU units. DrGPU groups these
13 stall reasons in five categories, and decomposes the percentage
of stall cycles to each stall reason (child node in Figure 1). When
the future GPU generation supports more stall states, DrGPU can
be easily extended.

In the remaining section, we detail the construction of each
sub-tree by identifying the root cause of various stalls, generating

1Vertical stall is introduced when the GPU issues no instructions in a cycle, horizontal
stall when not all issue slots can be filled in a cycle.

optimization guidance, and using examples to show the effective-
ness of the top-down analysis.

3.1 Device Memory Stalls

Memory subsystem in GPU devices is a major source of perfor-
mance bottlenecks. The stall reason related to device memory is
mainly device memory accesses. If a device memory access instruc-
tion has been issued but cannot be executed because of cachemisses,
or throughput limitation, the warp will be stalled. Moreover, the
warp could also be stalled when memory accesses cannot be issued
due to the congestion in the memory bandwidth.

Root Cause Analysis. When a warp accesses global memory, it
coalesces accesses of the threads within the warp into one or more
memory transactions. It depends on the size of the word accessed
by each thread and the distribution of the memory addresses across
the threads. These memory transactions are then transferred to L1
cache2. If L1 misses occur, L2 accesses happen. If L2 misses occur,
accesses to device memory are necessary.

Unit Cycles (𝐶𝑖)
L1 𝐿1𝑙𝑎𝑡𝑒𝑛𝑐𝑦 + 𝑐𝑐 ∗ (𝐿1_𝑝𝑒𝑟_𝑖𝑛𝑠𝑡 − 1)
L2 𝐿1𝑚𝑖𝑠𝑠_𝑟𝑎𝑡𝑖𝑜 ∗ 𝐿2𝑙𝑎𝑡𝑒𝑛𝑐𝑦

Device Memory 𝐿1𝑚𝑖𝑠𝑠_𝑟𝑎𝑡𝑖𝑜 ∗ 𝐿2𝑚𝑖𝑠𝑠_𝑟𝑎𝑡𝑖𝑜 ∗𝐷𝑀𝑙𝑎𝑡𝑒𝑛𝑐𝑦

Table 1: Average stall cycles on each memory unit. The 𝑐𝑐 is

the conflict cost per extra L1 access, and it equals to 2 cycles.

We compute 𝐿1_𝑝𝑒𝑟_𝑖𝑛𝑠𝑡 as the ratio of all L1 cache accesses

over the total memory requests in a warp.

We build the sub-tree of device memory access stalls based on
the average stall cycles of different layers in the GPU memory
hierarchy. Table 1 shows the formula DrGPU derives for the stall
cycle calculation. We decompose the average stall cycles of all warp
memory instructions into L1 cache, L2 cache, and device memory.
For a warp memory instruction, if all memory accesses in this warp
are coalesced into one memory transaction for one L1 cache access,
the latency of this instruction is 𝐿1𝑙𝑎𝑡𝑒𝑛𝑐𝑦 whose value is 28 cycles
on V100 GPU according to NVIDIA data sheet. But if these memory
accesses are coalesced into multiple memory transactions, there is a
penalty for extra memory transactions: each extra one costs 2 cycles
known as conflict cost (𝑐𝑐) in Table 1. We compute 𝐿1_𝑝𝑒𝑟_𝑖𝑛𝑠𝑡 as
the ratio of all L1 cache accesses over the total memory requests in a
warp; both events can be monitored by the NVIDIA PMU counters.
Thus, the average stall cycles due to L1 cache accesses per memory
instruction in a warp are calculated as follows.

𝐶𝐿1 = 𝐿1𝑙𝑎𝑡𝑒𝑛𝑐𝑦 + 𝑐𝑐 ∗ (𝐿1_𝑝𝑒𝑟_𝑖𝑛𝑠𝑡 − 1) (2)

Since only memory transactions missed in L1 cache are trans-
ferred to L2 cache, the average stall cycle per warp memory instruc-
tion on L2 cache is calculated as follows.

𝐶𝐿2 = 𝐿1𝑚𝑖𝑠𝑠_𝑟𝑎𝑡𝑖𝑜 ∗ 𝐿2𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (3)

Memory transactions missed in both L1 and L2 caches access
device memory. Thus, the average stall cycle per warp memory
instruction is calculated as follows.

𝐶𝐷𝑀 = 𝐿1𝑚𝑖𝑠𝑠_𝑟𝑎𝑡𝑖𝑜 ∗ 𝐿2𝑚𝑖𝑠𝑠_𝑟𝑎𝑡𝑖𝑜 ∗ 𝐷𝑀𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (4)
2Global memory accesses for devices of compute capability 3.5 or 3.7 are normally not
cached in L1. Moreover, ld instructions with modifier cg will bypass L1 cache.

45

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Yueming Hao et al.

No-issue cycles
Unit with highest util/SOL

Issue IPC

Delay due to device
memory accesses

Delay in issuing device
memory loads

Delay due to constant
cache accesses

Delay due to pending
global stores before exit

Delay due to dispatch stall

Delay due to branch
evaluation

CTA (Block) waiting
at barriers

No InstructionsDelay in issuing shared
memory accesses

Threads waiting for
memory barriers

Delay due to shared memory
accesses

Delay due to pipe
contention

Delay due to instruction
dependency

Device Memory Stalls Synchronization
Related Stalls

Instruction Related Stalls Shared Memory
Related Stalls

Other Stalls

Figure 1: DrGPU derives the total stall cycles ratio as the root node and identifies 13 stall reasons in five categories.

Delay due to device
memory accesses

L1 latency contribution
ratio of average latency(weighted)

avg cycles spend at this level

L2 latency contribution
ratio of average latency(weighted)

avg cycles spend at this level

Device memory latency contribution
ratio of average latency(weighted)

avg cycles spend at this level

L1 hit rate Set conflicts
ratio Lines per request Bytes per request Intra-req coalsecing ratio

L2 hit rate L2 bank conflict rate

Max active warps
Theoretical active warps

Achieved active warps
Register per thread, Block size
Limited by : Register, Blocksize

Figure 2: The sub-tree of stalls due to device memory ac-

cesses.

𝐿2𝑙𝑎𝑡𝑒𝑛𝑐𝑦 is about 200 cycles on V100 GPU, and 𝐷𝑀𝑙𝑎𝑡𝑒𝑛𝑐𝑦 is
250 cycles on V100 GPU according to NVIDIA data sheet. PMUs
events 𝐿1𝑚𝑖𝑠𝑠_𝑟𝑎𝑡𝑖𝑜 and 𝐿2𝑚𝑖𝑠𝑠_𝑟𝑎𝑡𝑖𝑜 are available for monitoring.

The percentage of stall cycle contribution on each memory layer
is normalized to the sum of average stalls in all the layers. For
example, the stall cycle contribution of L1 is 𝐶𝐿1

𝐶𝐿1+𝐶𝐿2+𝐶𝐷𝑀
.

DrGPU can further derive various metrics, such as hit rate, con-
flicts, bytes per request in each memory layer as shown in the
sub-tree to give deep insights about cycle stalls.

Suggestions. DrGPU provides rich suggestions for this sub-tree.
If L1 cache latency is high, DrGPU suggests to use temporary vari-
ables in registers to reduce L1 cache utilization. If the cache conflict
rate or miss rate of L1 or L2 caches are high, DrGPU suggests to
change memory access patterns, such as reordering code, unrolling

1 __global__ void findRangeK(...){
2 for(i = 0; i < height; i++){
3 if((knodesD[currKnodeD[bid]].keys[thid] <= startD[bid])
4 && (knodesD[currKnodeD[bid]].keys[thid+1] > startD[bid])){
5 if(knodesD[currKnodeD[bid]].indices[thid] < knodes_elem)
6 offsetD[bid] = knodesD[currKnodeD[bid]].indices[thid];
7 }
8 if((knodesD[lastKnodeD[bid]].keys[thid] <= endD[bid]) &&

(knodesD[lastKnodeD[bid]].keys[thid+1] > endD[bid])){↩→
9 if(knodesD[lastKnodeD[bid]].indices[thid] < knodes_elem){
10 offset_2D[bid]=knodesD[lastKnodeD[bid]].indices[thid];
11 ... }

Listing 1: In kernel findRangeK, loop invariant endD[bid] in

Line 4-12 still incursmemory requests that can be optimized

by moving out of the for loop.

loops, or moving frequently used data to shared memory. For Am-
pere and successors, DrGPU further suggests to change L2 cache
persistence policy for frequently used data blocks.

Example. In kernel findRangeK of Rodinia b+tree, device
memory access stalls account for 63.34% of no-issue cycles. The
L1 miss rate is 26.68%. DrGPU reports the bottlenecks resid-
ing in L1 cache and suggests to reduce the L1 cache trans-
actions. DrGPU further shows the problematic code in List-
ing 1. With further investigation, we find that memory ac-
cesses to startD[bid], endD[bid], knodesD[currKnodeD[bid],
and knodesD[lastKnodeD[bid]] are all loop invariant; the com-
piler fails to hoist them outside of the loop. Therefore, we manually
hoist these loop invariants out of the loop, which reduces total stall
cycles by 35.48% and yields a 5.15× speedup on NVIDA GTX 1650
and a 1.15× speedup on NVIDA V100, V100 receives less speedup
because V100’s memory bandwidth is 7× of GTX 1650.

3.2 Synchronization-Related Stalls

There are two stall reasons related to synchronization: block barri-
ers and memory barriers. Stalled warps can wait at block barriers
for their sibling warps in the same CTA/block under execution.
The API __syncthreads() provided by CUDA can perform ex-
plicit block synchronization. All threads in the same block must
wait at this API, which are treated as stalls. In addition, warps can
be stalled due to waiting at memory barriers. The membar/fence

46

DrGPU: A Top-Down Profiler for GPU ICPE ’23, April 15–19, 2023, Coimbra, Portugal

CTA (Block) waiting at
barriers

Blocks size Max active warps

Theoretical activate warps:

Achieved activate warps:

Limited by : Register, Blocksize

Thread divergence. The
average number of threads

execution with predicate
on.

Figure 3: The sub-tree of stall reason that CTA (Block) wait-

ing at barriers.

Delay due to instruction
dependency

FP64 inst ratio integer inst ratio memory inst
ratio ...

Figure 4: The sub-tree of stall due to instruction dependency.

instructions are such memory barriers that guarantee the order of
memory operations.

Root Cause Analysis. When there are too many block bar-
riers and significant workload imbalance across threads, warps
may be stalled waiting for threads synchronization. Figure 3 illus-
trates different root causes for the stalls due to the block barrier.
Blocks are executed independently on stream multiprocessors and
__syncthreads() only works for threads belonging to one block.
Thus, if we reduce the block size, fewer threads need to wait for
the block barrier. Moreover, an insufficient number of active warps
may also lead to stalls due to the failure of scheduling active warps
to overlap the stalled ones.

For GPU architectures prior to Volta, warps execute instructions
in a lock-step mode, which means that all threads in the same
warp share the same program counter. Branches can significantly
hurt performance resulting in thread divergence. Although Volta
generation independently schedules threads in a warp, high thread
divergence can still introduce workload imbalance across threads,
causing block barrier stalls.

The memory barriers can synchronize threads beyond a single
block. Over-synchronizing a large scope of threads can trigger
unnecessary stalls.

Suggestions. For block barrier stalls, if the block size is larger
than the warp size, we suggest to reduce the block size. If the block
size could be reduced to 32 which is the fixed number of threads in a
warp, we suggest to replace __syncthreads()with __syncwarp(),
which has less overhead when the data dependency could be guar-
anteed by access pattern. If the amount of theoretical active warps
is low, and register usage pressure is easy to reduce without signifi-
cant performance loss, we suggest to add more concurrent warps.
For memory barrier stalls, we suggest to reduce the scope of the
memory barrier to warp or thread block by restructuring code.

3.3 Instruction-Related Stalls

There are three stall reasons related to instruction dependencies
or distributions: instruction dependency, pipeline contention, and

Delay due to pipeline
contention

Interger and logic pipe
active ratio

Barrier, convergence,
and branch pipe

active ratio
FP32 and IMA pipe

active ratio
...

Figure 5: The sub-tree of stall due to pipeline contention.

1 __global__ void calculate_temp(...)
2 ...
3 temp_t[ty][tx] = temp_on_cuda[ty][tx] + step_div_Cap * (power_on_cuda[ty][tx] +
4 ▶ (temp_on_cuda[S][tx] + temp_on_cuda[N][tx] - 2.0 * temp_on_cuda[ty][tx]) *
5 ▶ Ry_1 + ... - 2.0 * temp_on_cuda[ty][tx]) * Rx_1 +

Listing 2: Inappropriate constant floating point number us-

age in hotspot. The constant floating point number 2.0 oc-

curs unnecessary type conversion.

pending global stores before exit. Figure 4 and Figure 5 show the
sub-trees of the first two reasons; the last one does not have a
sub-tree.

Root Cause Analysis. If two instructions depend on each other
and there are not enough other intervening instructions for over-
lapping, GPU stalls occur. Figure 4 analyzes the instruction mix and
understands the type of instructions that cause the stalls.

Furthermore, NVIDIA GPUs have multiple pipelines, which
could execute different kinds of instructions concurrently. If a ker-
nel could utilize these pipelines efficiently, instruction latency can
be hidden nicely. If a kernel oversubscribes some pipelines, e.g.,
FP32 pipelines, warps need to be stalled until the pipelines be-
come available again. DrGPU computes the active ratios of various
pipelines as shown in Figure 5 to locate pipeline contentions.

Finally, pending global stores before exit are triggered when a
large amount of data are written back to memory at the end of the
kernel.

Suggestions. For stalls due to instruction dependency, DrGPU
suggests to restructure or unroll the problematic codes to have
enough independent instructions hiding the stalls. Moreover,
DrGPU suggests to reduce the instruction latency on the criti-
cal path. For example, DrGPU recommends using compiler op-
tion use_fast_math or changing functions to their fast versions to
minimize the stalls, though this should always be attempted with
extreme caution and with the concurrence of domain scientists.

For stalls due to pipeline contention, DrGPU suggests to balance
the instruction mix to avoid the contention in a subset of pipelines.

Example. DrGPU reports that the kernel calculate_temp in
Rodinia hotspot accounts for 5.37% stall cycles due to instruction
dependency; FP32 operations account for 12.46% of all instructions
and type conversion related instructions account for 5.8% of all
instructions. DrGPU suggests to check the F2F conversion instruc-
tions. List 2 highlights the source codes identified by DrGPU, which
shows the constant floating point values (i.e., 2.0) used in the com-
putation. As the compiler automatically assigns the FP64 type to the
constant FP value, the computation needs to convert all the other
FP32 values to FP64 for computation. To remove these unnecessary
type conversion instructions, we explicitly declare these constant

47

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Yueming Hao et al.

1 __global__ void dynproc_kernel(...){
2 __shared__ int result[BLOCK_SIZE];
3 result[tx] = shortest + gpuWall[index];
4 if (computed) // Assign the computation range
5 ▶ prev[tx] = result[tx];
6 gpuResults[xidx] = result[tx];

Listing 3: Overused shared memory in pathfinder.

Delay due to shared memory
accesses

shared memory load
conflicts per request

shared memory store

conflicts per request

Max active warps:
Theoretical activate warps:

Achieved activate warps:

Register per thread:

Block size:

Limited by : Register, Blocksize

Figure 6: The sub-tree of stalls due to shared memory ac-

cesses.

values as FP32, which yields 5.15× and 1.15× speedups on NVIDIA
GTX 1650 and NVIDIA V100, respectively.

3.4 Shared Memory Stalls

Figure 6 shows the sub-tree for the stalls due to shared memory
accesses. DrGPU shows active warps, shared memory load, and
store conflicts per requests in this sub-tree to further understand
the root causes of stalls.

Root Causes Analysis. To achieve high bandwidth, shared
memory is divided into equally-sized memory banks, which can
be accessed concurrently. However, bank conflict can happen if
multiple operations access to the same back together [19], which
serializes these memory accesses. The stalls due to shared memory
can be caused by large amounts of bank conflicts and the saturation
of shared memory bandwidth.

Suggestions. If the number of bank conflicts is high, DrGPU
suggests to restructure code or use loop unrolling to hide shared
memory latency. If applicable, DrGPU further suggests to hoist
values in registers to reduce share memory accesses. For stall due to
shared memory bandwidth saturation, DrGPU suggests to reduce
the number of concurrent shared memory loads via restructuring
code, issuing wider loads, spreading the loads, or reducing the loop
unrolling factor. For Ampere and newer generations, DrGPU also
suggests to use asynchronous shared memory copy to reduce the
stalls.

Example. In the kernel dynproc_kernel of Rodinia
pathfinder, accessing to the shared memory accounts for
6.17% of no-issue cycles. Line 7 in Listing 3 accounts for 60.32% of
total shared memory access stalls. With the guidance of DrGPU,
we further study the source code and find that each thread only
accesses one element in array result. Thus, we replace result
allocated in the shared memory with scalar variables, yielding
1.14× and 1.07× speedups on NVIDIA GTX 1650 and NVIDIA V100,
respectively.

3.5 Other Stalls

There are other four stall reasons DrGPU is able to identify: dis-
patch, constant cache accesses, no instructions, and branch eval-
uation. When a kernel has excessive branches, warps are stalled
waiting for branch targets to be resolved. The dispatch stalls could
be due to the limited register read bandwidth. "No instructions"
stall occurs when warps are stalled at instruction cache misses.

For branch evaluation stalls, DrGPU suggests to reduce control
divergence. For constant cache access stalls, DrGPU suggests to
replace constant memory usage with device memory or change
memory access patterns.

4 IMPLEMENTATION

Figure 7 shows the workflow of DrGPU. DrGPU accepts fully op-
timized binary code and leverages NVIDIA Nsight Compute (NCU)
to collect necessary hardware events. DrGPU then processes the
performance data offline and outputs the top-down analysis tree
with rich performance insights. We implement DrGPU to monitor
applications running on single and multiple GPUs, but with a focus
on GPU, not network or CPU activity. DrGPU works on NVIDIA
GPUs of Maxwell architectures and its successors whose compute
capability is 5.2 and beyond.

4.1 Online Data Collection

DrGPU configures NCU to perform PC sampling as well as collect
69 necessary hardware events out of over thousands of events
supported in NVIDIA GPUs. We select these events according to
experiences from NVIDIA performance engineers as well as our
experiments. The details of these hardware events are available
via this paper’s artifacts. To collect all these events, DrGPU may
need to run a program multiple times. By default, DrGPU monitors
every GPU kernel in a program. To reduce the overhead, DrGPU
is able to profile selected GPU kernels that are hotspots.

With the help of NCU, DrGPU records the performance details
of any GPU kernel under investigation in a profile, including kernel
names, statistics of the hardware events, and detailed line mapping.
In a multi-GPU execution, DrGPU outputs a profile per GPU.

4.2 Offline Data Processing

The offline component of DrGPU accepts all the profiles produced
by the online component. There are three main tasks done offline:
merging profiles from multiple GPUs, creating a top-down analysis
tree, and generating optimization guidance.

Profile Coalesce. DrGPU coalesces the profiles from different
GPUs to give an aggregate analysis. The coalescing process em-
ploys a hierarchical strategy: DrGPU first merges kernels of the
same names and then the program counters of the same value; the
statistics of cycle stalls and hardware events are summed up during
the merging process. All the follow-up analyses are based on the
aggregate profile.

Tree Construction. DrGPU creates the top-down analysis tree
based on the technique described in Section 3. Figure 11 shows part
of the tree in dot format produced by DrGPU. The root denotes
the percentage of no-issue cycles among all execution cycles and
the unit with the highest utilization. From the root node, we could

48

DrGPU: A Top-Down Profiler for GPU ICPE ’23, April 15–19, 2023, Coimbra, Portugal

NCU Profiling

Offline Data ProcessingOnline Data Collection

Fully Optimized
Binary

GPU0GPU0GPU0 Profile Coalesce Tree Construction Optimization
Guidance

Figure 7: Workflow of DrGPU.

GPU GPU Memory L1 Cache L2 Cache Linux Kernel GPU Driver CUDA Toolkit Nsight Compute GCC
GTX 1650 4GB up to 64KB/SM 1MB Linux 5.8.0 460.27 11.2.0 2020.3.1 9.3.0

V100 16GB up to 128KB/SM 6MB Linux 4.14.0 418.116 11.2.0 2020.3.0 7.4.0
Table 2: The configurations of two GPU systems to evaluate DrGPU: GTX 1650 and V100 GPUs.

immediately know the kernel’s optimization state. We observe that
usually when no-issue cycles are less than 50% of all cycles in an
HPC application, one of the relevant hardware units is fully utilized
and the application has been fairly well optimized. The node in the
first level denotes the ratio of stall due to instruction dependency
of no-issue cycles. And the leaf nodes (in gray) in this branch are
the decomposition of this stall reason. The leaf nodes in pink show
corresponding kernel code contributions, which is the percentage
following each line, to the current stall. The leaf nodes in green are
suggestions provided by DrGPU.

Guidance Generation. DrGPU produces optimization guid-
ance according to the experiences from NVIDIA performance en-
gineers as well as our experiments. DrGPU has 39 optimization
guidance. The thresholds are defined in the tree nodes to enable
DrGPU highlights the top-down path reaching to the optimization
guidance that users can immediately take actions. For example, Fig-
ure 9 shows the performance analysis tree for PeleC, we can easily
change the functions used in the source code block to the fast ver-
sion by following the suggestion. DrGPU defines these thresholds
empirically. The details are in DrGPU’s artifact. DrGPU is highly
extensible with providing additional optimization guidance and
configurable thresholds to make accurate optimization decisions
for applications running on NVIDIA GPUs of different generations.
For example, besides the suggestions for Volta (V100) and Turing
(GTX 1650), DrGPU supports additional optimization suggestions
for A100 (Ampere) GPUs, such as adding asynchronous shared
memory copy.

4.3 Tool Usage

DrGPU can launch an application and generate the profiling report,
with no need to modify or recompile the application code. Users can
then revise the code according to DrGPU’s optimization suggestions
in the report. It is worth noting that the difficulty of applying
DrGPU’s optimization suggestions varies. Some suggestions only
need to change a compilation flag, while some others suggest to
overhaul the GPU algorithms if possible. Users need to make the
decision whether to take the suggestions or not.

5 EVALUATION

We evaluate DrGPU on two NVIDIA GPU platforms: a desktop
with GTX 1650 GPU and a Summit node with V100 GPUs. Table 2
elaborates the configurations.

We utilize DrGPU to analyze all programs of Rodinia bench-
marks [13] and three real CUDA applications in important HPC
and deep learning domains. We describe these applications as fol-
lows:

• YOLOv4 [10], which is a state-of-the-art real-time object detec-
tor. YOLOv4 is based on Darknet [29], a popular deep learning
framework. We run YOLOv4 with a built-in neural network and
pre-trained yolov4.weights to detect dogs.

• PeleC [4], a DoE Exascale Computing Project (ECP) application,
performs adaptive-mesh compressible hydrodynamics for react-
ing flows. We run PMF test in PeleC with its default input.

• Castro [12], an adaptive mesh, radiation hydrodynmics applica-
tion to model astrophysical reacting flows. We study the exam-
ple Sedov of Castro with input inputs.2d.cyl_in_cartcoords.
We run Castro on multi-GPUs to evaluate DrGPU.

All the programs are compiled with -O3 and run 10 times on a
single GPU device. Monitoring and optimizing applications running
on multi-GPUs and multi-nodes follow the same way. DrGPU relies
on NCU to collect all the necessary PMU events and replay a GPU
kernel for 35 passes on GTX 1650 and 73 passes on V100, given
different NCU versions and different GPU architectures. Table 3
summarizes the optimizations done on these applications guided
by DrGPU, including 13 Rodinia benchmarks and all four real
applications. With the guidance of DrGPU, a Ph.D. student with
no prior knowledge about the programs spends about 1.5 hours
on each program for optimization. On average, we receive a 1.58×
kernel-level speedup on GTX 1650 and a 1.36× kernel-level speedup
on V100.

5.1 Discussions

Optimization Summary. Besides the nontrivial speedups
guided by DrGPU, we obtain several insights from our optimiza-
tion. First, loop unrolling is one of the most actionable optimization
methods; CUDA compilers do not unroll loops in an efficient way,
even with the highest optimization. Second, the speedups guided
by DrGPU vary in different GPU architectures with the same opti-
mization. For example, the optimization for hotspot on GTX 1650
is much larger than V100, because GTX 1650 has a weaker FP64
capability compared to V100. Furthermore, DrGPU identifies bot-
tlenecks in V100, but not in GTX 1650 for heartwall. The loop
unrolling does not work for GTX 1650 because it increases the
burden on the relatively weaker memory units compared to V100.

49

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Yueming Hao et al.

Application Kernel State Optimization Newly Found
by DrGPU

GTX 1650 V100
Original Speedup Original Speedup

bfs Kernel Long Scoreboard Loop unrolling 6829us 1.02x 570us 1.09x
heartwall kernel Wait Loop unrolling 194ms 0.95x 85ms 1.36x
huffman vlc_encode_kernel_sm64huff Barriers Restruct code 774us 1.04x 123us 1.06x
kmeans kmeansPoint Wait Loop unrolling 7134us 1.12x 806us 1.16x

lud lud_diagonal
Wait/

Short Scoreboard/
No instruction

Restruct code 212us 1.39x 223us 1.44x

myocyte solver_2 Short Scoreboard Function spliting 472ms 1.07x 281ms 1.22xMath Pipe Throttle Add use_fast_math

backprop bpnn_layerforward_CUDA Barrier Remove unnecessary barriers 144us 1.35x 17.4us 1.36x
Wait Restruct code

b+tree findRangeK Long Scoreboard Restruct code 425us 2.03x 50us 1.55x
Barrier Reduce blocksize

hotspot calculate_temp Wait Remove inappropriate FP convertion 336us 5.84x 13us 1.33x
Add use_fast_math

lavaMD kernel_gpu_cuda Long Scoreboard/Wait Loop unrolling 241ms 1.50x 3492us 1.77x
Wait Replace speical FP functions

nw needle_cuda_shared_1 Barriers Remove unnecessary barriers 12ms 1.11x 834us 1.25x
Replace syncthreads with sync warp safely

sradv1 reduce Short Scoreboard Loop unrolling 63us 1.57x 19us 1.38x
Barrier Reduce blocksize

pathfinder dynproc_kernel Short Scoreboard Replace shared memory with variables 560us 1.22x 94us 1.15x
Wait Remove unnecessary iterations

Darknet im2col_gpu_kernel_ext Wait Loop unrolling 1543us 1.06x 214us 1.00x

LULESH2 ApplyMaterialProperties
AndUpdateVolume_kernel Wait Add use_fast_math 9586us 2.26x 8712us 2.56x

Pelec react_state Long Scoreboard Increase occupancy 757ms 1.34x 32ms 1.36x
Wait Replace speical FP functions

Castro trace_ppm long scoreboard Increase occupancy 1431ms 1.04x 152ms 1.11x
Average 1.58x 1.36x

Table 3: Optimization summary of all the programs investigated byDrGPU.We show the problematic GPUkernels, root causes

of inefficiencies, optimization techniques, and speedups. Adding use_fast_math or replacing special FP functions may cause

accuracy loss. Many optimizations are firstly reported by DrGPU.

Application GTX 1650 V100
Runtime Overhead Runtime Overhead

LULESH 3.10× 11.07×
Darknet 5.16× 4.78×
PeleC 8.65× 118.47×
Castro 3.02× 83.68×
Average 4.98× 54.50×

Table 4: We measure the overhead of DrGPU with four real

applications on GTX 1650 and V100.

Overhead Analysis. Table 4 shows the overhead of DrGPU.We
evaluate four real applications on GTX 1650 and V100. Since offline
data processing always finishes in several milliseconds, we only
measure the overhead of online data collection when using NCU to
collect needed events. On average, DrGPU occurs 4.98× overhead
on GTX 1650 and 54.50× overhead on V100. Summit has a relatively
old version of GPU driver and NCU, which are the potential reason
for the fact that DrGPU incurs a much larger overhead on V100
than on GTX 1650. The latest GPU driver and NCU, which are
installed in GTX 1650 GPU, largely reduces the kernel reply times
and improves the data collection overhead.

5.2 Comparison with Past Work

GPA and Nsight Compute are two state-of-the-art tools that are
most related to DrGPU. We give a detailed comparison with them
to distinguish our approaches.

Comparison with GPA. First, unlike DrGPU, GPA does not
monitor hardware events via performance counters on GPU. Sec-
ond, GPA analyzes the instruction dependencies for the root causes,
limiting the insights to individual threads; instead, DrGPU moni-
tors the entire GPU execution, avoidingmyopic insights. Third, GPA
works on Volta generation only, but DrGPU is applicable to wide
generations such as Volta, Turing, and Ampere. Thus, DrGPU out-
performs GPA in identifying more bottlenecks and guiding higher
optimization speedups. We compare the insights obtained from
the two tools in Rodinia benchmarks and PeleC because they are
common programs investigated by both tools. First, we find that all
the optimization opportunities identified by GPA are also identified
by DrGPU. Moreover, DrGPU pinpoints unique bottlenecks that
GPA does not identify. Table 3 highlights the performance issues
newly found by DrGPU compared with GPA. Figure 8 highlights
that DrGPU provides additional guidance to optimize inefficiencies
in six Rodinia benchmarks and PeleC, and yields more speedups
over GPA. Furthermore, we elaborate more insights obtained by
DrGPU in PeleC in Section 6.1. The overhead of GPA depends
on the size of GPU kernels. GPA typically incurs 100× overhead
for the applications studied in this paper, while DrGPU incurs 5×
overhead.

Comparison with Nsight Compute. DrGPU employs Nsight
Compute for collecting hardware events for its analysis. As de-
scribed in Section 2, while Nsight Compute presents and analyzes

50

DrGPU: A Top-Down Profiler for GPU ICPE ’23, April 15–19, 2023, Coimbra, Portugal

5.18 5.84

Figure 8: Comparing the optimization speedups under the guidance of GPA and DrGPU on common benchmarks and appli-

cations. DrGPU is able to guide higher speedups on both GTX 1650 and V100 GPUs. The left figure is the result on GTX 1650

GPU and the right figure is on V100 GPU.

the gathered data at unit level, e.g. SM, L2 Caches, etc., DrGPU
uses hardware events to conduct cross-unit analysis as well. This
relieves the end users from requiring to understand how different
units interact, how the inefficiencies reported at unit level impact
other units, and how these relate to the root cause of performance
degradation. Given the top-down analysis, DrGPU provides more
targeted and actionable suggestions, such as reducing the block size
to reduce barrier stalls, unrolling loops for better memory accesses,
trying the fast math option, and many more.

6 CASE STUDIES

With the help of DrGPU, we are able to optimize PeleC, Castro,
LULESH 2.0, and YOLOv4. Many of the bottlenecks in these appli-
cations DrGPU identifies are firstly reported.

6.1 PeleC

DrGPU identifies the hot GPU kernel react_state, which ac-
counts for 57.0% of total execution time. Figure 9 shows the analysis
tree produced by DrGPU for this kernel running on GTX 1650.
DrGPU produces a similar tree on V100. DrGPU reports 97.81%
stall cycles due to device memory accesses and instruction depen-
dency. SMs has the highest utilization 48.54% among units in GPU.
The max active warps limited by GTX 1650 is 32. According to this
kernel’s resource usage and block size, the number of theoretical
active warps is 8 and its achieved active warps is 7.98. DrGPU also
reports that kernel occupancy is limited by register and block size.
DrGPU first suggests to increase active warps for higher kernel
occupancy. Since kernel occupancy is limited by register and block
size, reducing thread register usage and block size are two ways to
increase occupancy. DrGPU reports the per-thread register usage
is as high as 254, so reducing register usage with maxregcount
compilation flag can significantly hurt the performance. Instead,
we explore the technique to reduce the block size. By reducing
block size from 256 to 128, we get 1.19× speedup on GTX 1650 and
1.24× speedup on V100.

DrGPU further reports 3.92% stall cycles due to instruction de-
pendency. 62% of all instructions are FP64(64-bit floating point)

No-issue cycles

97.81%

Util/SOL: 48.54%(SM)

Issue IPC: 0.09

Delay due to instruction
dependency

3.92% of no-issue cycles

FP64

62% of all inst

integer

14% of all inst

Try to change functions to their fast
version to minimize the stalls.

Note: There may be an accuracy loss.

chemistry_file.H:
2425 logFcent = log10(15.90%
2490 qr[1] *= Corr * k_f / (exp(-g_RT[5] - g_RT[5] + g_RT[7]) * refC); 9.71%

Max active warps: 32

Theoretical active warps: 8

Achieved active warps: 7.98

Register per thread: 254

Block size: 256

Limited by : Register, Blocksize

Delay due to device
memory accesses

95.50% of no-issue cycles

Try to reduce block size to 128
to increase active warps.

Figure 9: A portion of the performance analysis tree for the

hot GPU kernel in PeleC, which shows the performance bot-

tlenecks due to memory accesses and FP64 instruction de-

pendencies. DrGPU gives detailed guidance for these two

bottlenecks. The bottom box shows corresponding source

code lines with their line indexes and contributions to this

stall.

related, thus DrGPU suggests to balance the floating point instruc-
tions by changing specific functions to the fast versions with lower
precision. We manually changed double precision functions high-
lighted in the source code block (in pink) in Figure 9 to single
precision functions. Specifically, we change log10 to log10f, and
exp to expf. We use the fcompare tool provided by AMRex to check
the accuracy loss of the program output, and observe less than 0.1%
relative error among all metrics.

With these two optimizations, we obtained 1.34× speedup on
GTX 1650 and 1.36× speedup on V100 for kernel react_state. It

51

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Yueming Hao et al.

No-issue cycles

95.74%

Util/SOL: 25.92%(SM)

Issue IPC: 0.17

Max active warps: 32

Theoretical active warps: 8

Achieved active warps: 7.98

Register per thread: 196

Block size: 256

Limited by : Register

Delay due to device
memory accesses

88.80% of no-issue cycles

Try to reduce block size to
128 via maxregcount

compilation flag to increase
active warps.

Figure 10: A portion of the performance analysis tree for

the hot GPUkernel in Castro, which shows the performance

bottlenecks due to memory accesses. DrGPU suggests to re-

duce register usage to increase occupancy.

1 __global__ void im2col_gpu_kernel_ext(const int n, const float* data_im, const

int kernel_h, const int kernel_w, ...){↩→
2 + #pragma unroll 4
3 + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < n;
4 + index += blockDim.x * gridDim.x){
5 - CUDA_KERNEL_LOOP(index, n) {
6 for (int i = 0; i < kernel_h; ++i) {
7 for (int j = 0; j < kernel_w; ++j) {

Listing 4: Unrolling the important loop in YOLOv4.

is worth noting that GPA reports the first performance issue but
not the second one.

6.2 Castro

We study the hottest kernel trace_ppm, which accounts for 19.65%
of the entire program execution on GTX 1650. Figure 10 shows
the analysis tree produced by DrGPU for this kernel running on
GTX 1650. DrGPU produces a similar tree on V100. DrGPU reports
88.80% stall cycles caused by device memory accesses. With further
drilling down of the tree, we find that the number of theoretical
active warps is 8, which is much smaller than the max allowable
active warps, i.e., 32. DrGPU reports the occupancy is limited by
the register usage, which is 192 per thread. To increase occupancy,
DrGPU suggests to reduce register usage to 128 with maxregcount
compilation flag. By applying this optimization, we obtain a 1.04×
speedup on GTX 1650 and 1.11× speedup on V100 for this kernel.

We also run Castro with 4 GPUs across 4 Summit nodes: each
node has oneMPI process and eachMPI process uses a GPU. DrGPU
produces a similar tree and gives the same suggestion for this
kernel optimization. Our optimization yields a 1.04× speedup for
this kernel across all GPUs.

6.3 YOLOv4

YOLOv4 is built atop Darknet, which utilizes cuBLAS [22], a
closed-source library from NVIDIA to perform basic linear algebra
operations. Figure 11 shows the analysis tree produced by DrGPU

No-issue cycles
50.87%

Util/SOL: 60.29%(Dram)
Issue IPC: 1.98

Delay due to instruction
dependency

21.12% of no-issue cycles

memory
6.74% of all inst

integer
78.80% of all inst

control
4.59% of all inst

Try to restructure or unroll the problematic
codes to have enough independent

instructions hiding the stalls.

im2col_kernels.cu:
2256 *data_col_ptr = 56.67%
2240 CUDA_KERNEL_LOOP(index, n) { 15.00%
2252 for (int i = 0; i < kernel_h; ++i) { 9.17%

Figure 11: The portion of performance analysis tree for

im2col_gpu_kernel_ext in YOLOv4, which shows a perfor-

mance bottleneck due to instruction dependencies. Opti-

mization with loop unrolling is suggested.

on GTX 1650, which highlights the two hot GPU kernels. The
cuBLAS kernel (sgemm) accounts for half of the entire application
execution time. Unfortunately, we cannot directly optimize the
kernel even with the optimization guidance. However, this insight
is useful for cuBLAS developers to improve their libraries.

We further study the second hottest kernel
im2col_gpu_kernel_ext, which accounts for 18.79% of to-
tal execution time. This kernel transforms a row-major image array
into a column-major one. DrGPU reports 76.34% stall cycles in this
kernel, and the top two stall reasons—device memory accesses and
instruction dependency—account for 95% of total idle cycles in this
kernel. DrGPU suggests to restructure the kernel or unroll the
loops to reduce the control instructions and increase the length
of instructions sequences, which can help overlap long latency
instructions.

With the code investigation, we find that this GPU kernel has
three for loops and the compiler does not unroll them for some
unknown reasons even with the highest optimization option. Fig-
ure 11 represents related codes. The first loop is in Line 2240. Based
on DrGPU’s suggestion, we unroll these three loops with a factor
of 4 as List 4 shows. This optimization reduces the stall cycles by
15.45%, yielding a 1.06× speedup to this kernel, and a 1.04× speedup
to the entire application on GTX 1650.

It is worth noting that DrGPU does not report such a bottleneck
on V100 GPU. DrGPU shows a significantly smaller amount of
stall cycles for this GPU kernel running on V100. It is because the
memory bandwidth of V100 is 7 times to GTX 1650’s, also it has 80
SMs while GTX 1650 only has 14 SMs. To verify DrGPU produces
the correct guidance, we apply the same loop unrolling optimization
anyway but receive no noticeable speedup.

52

DrGPU: A Top-Down Profiler for GPU ICPE ’23, April 15–19, 2023, Coimbra, Portugal

7 CONCLUSIONS AND FUTUREWORK

This paper introduces DrGPU, a novel top-down profiler for GPU
kernels. DrGPU quantifies stall cycles and decomposes them ac-
cording to various hardware events for root causes. To provide
intuitive optimization guidance, DrGPU automatically collects all
the necessary hardware events and generates a performance analy-
sis tree for each investigated GPU kernel. The performance analysis
tree consists of rich information on the inefficiencies, including
source code location, root causes, and actionable guidance. With
the insights provided by DrGPU, we are able to optimize Rodinia
benchmarks, HPC applications, and a machine learning framework
with nontrivial speedups on both desktop and Summit NVIDIA
GPUs. On average, we receive a 1.58× kernel-level speedup on GTX
1650 and a 1.36× kernel-level speedup on V100. DrGPU is ready
for deployment.

We plan to extend DrGPU in three ways. First, we will further
extend DrGPU to identify more performance inefficiencies and pro-
vide more intuitive optimization guidance. Second, we will work
with the NVIDIA team to integrate DrGPU with their Nsight Com-
pute performance tool. Third, we will port DrGPU to AMD and
Intel GPUs by exploring their performance monitoring units.

ACKNOWLEDGEMENTS

We thank anonymous reviewers for the constructive feedback. This
work is partially supported by NSF grants of No. 2125813 and
2050007.

REFERENCES

[1] 2021. Compiling CUDA with clang. https://llvm.org/docs/
CompileCudaWithLLVM.html [Accessed May 29, 2021].

[2] 2021. GTPin - A Dynamic Binary Instrumentation Framework. https://software.
intel.com/content/www/us/en/develop/articles/gtpin.html [Accessed April 6,
2021].

[3] 2021. The LLVM Compiler Infrastructure. https://llvm.org/ [Accessed April 6,
2021].

[4] 2021. PeleC. https://github.com/AMReX-Combustion/PeleC [Accessed April 6,
2021].

[5] 2021. ROC-profiler. https://github.com/ROCm-Developer-Tools/rocprofiler
[Accessed April 6, 2021].

[6] 2021. SASSI Instrumentation Tool for NVIDIA GPUs. https://github.com/NVlabs/
SASSI [Accessed April 6, 2021].

[7] 2021. Top 500 List. https://www.top500.org [Accessed August 25, 2021].
[8] AMD Corporation. 2021. HIP Programming Guide. https://rocmdocs.amd.com/

en/latest/Programming_Guides/HIP-GUIDE.html [Accessed April 6, 2021].
[9] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.

2009. Analyzing CUDA workloads using a detailed GPU simulator. In 2009 IEEE
Int’l Symp. on Performance Analysis of Systems and Software. IEEE, 163–174.

[10] Alexey Bochkovskiy, Chien-YaoWang, and Hong-YuanMark Liao. 2020. YOLOv4:
Optimal Speed and Accuracy of Object Detection. arXiv:2004.10934 [cs.CV]

[11] Lorenz Braun and Holger Fröning. 2019. CUDA flux: A lightweight instruction
profiler for CUDA applications. In 2019 IEEE/ACM Performance Modeling, Bench-
marking and Simulation of High Performance Computer Systems (PMBS). IEEE,
73–81.

[12] Almgren A CASTRO. 2010. A New Compressible Astrophysical Solver. I. Hy-
drodynamics and Self-gravity/A. Almgren, et al. The Astrophysical Journal 715
(2010), 1221–1238.

[13] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE Int’l Symp. on workload characterization (IISWC). Ieee,
44–54.

[14] Gregory Diamos, Andrew Kerr, Sudhakar Yalamanchili, and Nathan Clark. 2010.
Ocelot: A dynamic compiler for bulk-synchronous applications in heterogenous
systems. In 19th Int’l Conference on Parallel Architecture and Compilation Tech-
niques (PACT-19), Vol. 10.

[15] Intel Inc. 2021. Data Parallel C++. https://software.intel.com/content/
www/us/en/develop/documentation/oneapi-programming-guide/top/oneapi-
programming-model/data-parallel-c-dpc.html [Accessed April 6, 2021].

[16] Dieteran Mey, Scott Biersdorf, Christian Bischof, Kai Diethelm, Dominic Es-
chweiler, Michael Gerndt, Andreas Knapfer, Daniel Lorenz, Allen Malony, Wolf-
gangE. Nagel, Yury Oleynik, Christian Rassel, Pavel Saviankou, Dirk Schmidl,
Sameer Shende, Michael Wagner, Bert Wesarg, and Felix Wolf. 2012. Score-P:
A Unified Performance Measurement System for Petascale Applications. In
Competence in High Performance Computing 2010, Christian Bischof, Heinz-Gerd
Hegering, Wolfgang E. Nagel, and Gabriel Wittum (Eds.). Springer Berlin Heidel-
berg, 85–97.

[17] NVIDIA Corporation. [n.d.]. NVIDIA PC sampling view. http://docs.nvidia.com/
cuda/profiler-users-guide/index.html#pc-sampling.

[18] NVIDIA Corporation. 2020. NVIDIA Compute Sanitizer. https://docs.nvidia.com/
cuda/compute-sanitizer/index.html [Accessed March 26, 2021].

[19] NVIDIA Corporation. 2021. CUDA C++ Programming Guide. https://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html [Accessed March 8, 2021].

[20] NVIDIA Corporation. 2021. CUDA compiler driver, NVCC. https://docs.nvidia.
com/cuda/cuda-compiler-driver-nvcc/index.html [Accessed April 6, 2021].

[21] NVIDIA Corporation. 2021. CUDA Toolkit. https://developer.nvidia.com/cuda-
toolkit [Accessed April 6, 2021].

[22] NVIDIA Corporation. 2021. NVIDIA cuBLAS. https://developer.nvidia.com/cublas
[Accessed March 26, 2021].

[23] NVIDIA Corporation. 2021. NVIDIA CUPTI. https://docs.nvidia.com/cupti/Cupti/
index.html [Accessed May 9, 2021].

[24] NVIDIA Corporation. 2021. NVIDIA Nsight Compute. https://developer.nvidia.
com/nsight-compute [Accessed Aug 9, 2021].

[25] NVIDIA Corporation. 2021. NVIDIA Nsight Compute Kernel Profiling Guide.
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html [Accessed
March 8, 2021].

[26] NVIDIA Corporation. 2021. NVIDIA Nsight Systems. https://developer.nvidia.
com/nsight-systems [Accessed March 9, 2021].

[27] NVIDIA Corporation. 2021. NVIDIA Tools Extension (NVTX). https:
//docs.nvidia.com/gameworks/content/gameworkslibrary/nvtx/nvidia_tools_
extension_library_nvtx.htm [Accessed May 9, 2021].

[28] NVIDIA Corporation. 2021. The user manual for NVIDIA profiling tools for opti-
mizing performance of CUDA applications. https://docs.nvidia.com/cuda/profiler-
users-guide [Accessed March 9, 2021].

[29] Joseph Redmon. 2013–2016. Darknet: Open Source Neural Networks in C. http:
//pjreddie.com/darknet/.

[30] Du Shen, Shuaiwen Leon Song, Ang Li, and Xu Liu. 2018. Cudaadvisor: Llvm-
based runtime profiling for modern gpus. In Proceedings of the 2018 Int’l Symp.
on Code Generation and Optimization. 214–227.

[31] Sameer S Shende and Allen D Malony. 2006. The TAU parallel performance
system. The Int’l Journal of High Performance Computing Applications 20, 2 (2006),
287–311.

[32] The Khronos Group Inc. 2021. OPENCL. https://www.khronos.org/opencl/
[Accessed April 6, 2021].

[33] Dean M Tullsen, Susan J Eggers, and Henry M Levy. 1995. Simultaneous mul-
tithreading: Maximizing on-chip parallelism. In Proceedings of the 22nd annual
Int’l Symp. on Computer architecture. 392–403.

[34] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W Keckler. 2019.
Nvbit: A dynamic binary instrumentation framework for nvidia gpus. In Proceed-
ings of the 52nd Annual IEEE/ACM Int’l Symp. on Microarchitecture. 372–383.

[35] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey. 2012.
OpenACC—first experiences with real-world applications. In European Conference
on Parallel Processing. Springer, 859–870.

[36] JingyueWu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary, Jacques
Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng, and Robert Hundt. 2016.
gpucc: an open-source GPGPU compiler. In Proceedings of the 2016 Int’l Symp. on
Code Generation and Optimization. 105–116.

[37] Keren Zhou, Yueming Hao, John Mellor-Crummey, Xiaozhu Meng, and Xu Liu.
2020. GVProf: a value profiler for GPU-based clusters. In 2020 SC20: Int’l Con-
ference for High Performance Computing, Networking, Storage and Analysis (SC).
IEEE Computer Society, 1263–1278.

[38] Keren Zhou, Mark Krentel, and John Mellor-Crummey. 2020. A tool for top-down
performance analysis of GPU-accelerated applications. In Proceedings of the 25th
ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming. 415–416.

[39] Keren Zhou, Mark W Krentel, and John Mellor-Crummey. 2020. Tools for top-
down performance analysis of GPU-accelerated applications. In Proceedings of
the 34th ACM Int’l Conference on Supercomputing. 1–12.

[40] Keren Zhou, Xiaozhu Meng, Ryuichi Sai, Dejan Grubisic, and John Mellor-
Crummey. 2021. An automated tool for analysis and tuning of gpu-accelerated
code in hpc applications. IEEE Transactions on Parallel and Distributed Systems
33, 4 (2021), 854–865.

[41] Keren Zhou, Xiaozhu Meng, Ryuichi Sai, and John Mellor-Crummey. 2021. GPA:
A GPU Performance Advisor Based on Instruction Sampling. In 2021 IEEE/ACM
Int’l Symp. on Code Generation and Optimization (CGO). 115–125. https://doi.
org/10.1109/CGO51591.2021.9370339

53

https://llvm.org/docs/CompileCudaWithLLVM.html
https://llvm.org/docs/CompileCudaWithLLVM.html
https://software.intel.com/content/www/us/en/develop/articles/gtpin.html
https://software.intel.com/content/www/us/en/develop/articles/gtpin.html
https://llvm.org/
https://github.com/AMReX-Combustion/PeleC
https://github.com/ROCm-Developer-Tools/rocprofiler
https://github.com/NVlabs/SASSI
https://github.com/NVlabs/SASSI
https://www.top500.org
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://arxiv.org/abs/2004.10934
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/oneapi-programming-model/data-parallel-c-dpc.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/oneapi-programming-model/data-parallel-c-dpc.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/oneapi-programming-model/data-parallel-c-dpc.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html#pc-sampling
http://docs.nvidia.com/cuda/profiler-users-guide/index.html#pc-sampling
https://docs.nvidia.com/cuda/compute-sanitizer/index.html
https://docs.nvidia.com/cuda/compute-sanitizer/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cublas
https://docs.nvidia.com/cupti/Cupti/index.html
https://docs.nvidia.com/cupti/Cupti/index.html
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://docs.nvidia.com/gameworks/content/gameworkslibrary/nvtx/nvidia_tools_extension_library_nvtx.htm
https://docs.nvidia.com/gameworks/content/gameworkslibrary/nvtx/nvidia_tools_extension_library_nvtx.htm
https://docs.nvidia.com/gameworks/content/gameworkslibrary/nvtx/nvidia_tools_extension_library_nvtx.htm
https://docs.nvidia.com/cuda/profiler-users-guide
https://docs.nvidia.com/cuda/profiler-users-guide
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://www.khronos.org/opencl/
https://doi.org/10.1109/CGO51591.2021.9370339
https://doi.org/10.1109/CGO51591.2021.9370339

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 NVIDIA GPU and CUDA
	2.2 PMUs on NVIDIA GPUs
	2.3 Related Work

	3 Methodology
	3.1 Device Memory Stalls
	3.2 Synchronization-Related Stalls
	3.3 Instruction-Related Stalls
	3.4 Shared Memory Stalls
	3.5 Other Stalls

	4 Implementation
	4.1 Online Data Collection
	4.2 Offline Data Processing
	4.3 Tool Usage

	5 Evaluation
	5.1 Discussions
	5.2 Comparison with Past Work

	6 Case Studies
	6.1 PeleC
	6.2 Castro
	6.3 YOLOv4

	7 Conclusions and Future Work
	References

