
Packet-Level Analysis of Zoom Performance Anomalies
Mehdi Karamollahi

mehdi.karamollahi@ucalgary.ca
University of Calgary

Calgary, Alberta, Canada

Carey Williamson
cwill@ucalgary.ca

University of Calgary
Calgary, Alberta, Canada

Martin Arlitt
marlitt@ucalgary.ca
University of Calgary

Calgary, Alberta, Canada

ABSTRACT
In this paper, we use Wireshark packet-level traces to study the per-
formance of the Zoom network application. Our work is motivated
by several anecdotal reports of Zoom performance problems on our
campus network during the Fall 2021 semester. Through the collec-
tion and analysis of Wireshark traces from different vantage points,
we are able to pinpoint the root cause of the Zoom performance
problems, which is a congested external Internet link for our cam-
pus network. We also identify several characteristics of the Zoom
application that exacerbate its performance issues on congested
and lossy networks, due to multi-layer protocol interactions.

CCS CONCEPTS
• Networks→ Network measurement; Network performance
analysis.

KEYWORDS
Zoom videoconferencing, network traffic measurement, network
debugging, performance evaluation, Quality of Experience (QoE)
ACM Reference Format:
Mehdi Karamollahi, Carey Williamson, and Martin Arlitt. 2023. Packet-
Level Analysis of Zoom Performance Anomalies. In Proceedings of the 2023
ACM/SPEC International Conference on Performance Engineering (ICPE ’23),
April 15–19, 2023, Coimbra, Portugal. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3578244.3583725

1 INTRODUCTION
Zoom is a videoconferencing network application that is widely
used for remote work and learning. Due to Zoom’s availability and
ease of use, it became the solution of choice for many organiza-
tions during the COVID-19 pandemic when hosting virtual confer-
ences, remote meetings, and online lectures. Zoom’s unprecedented
growth in usage made it one of the most prominent videoconfer-
encing applications during the pandemic [2, 17], and its popularity
continues today in hybrid work settings.

Our university used Zoom for remote teaching and learning
throughout the COVID-19 pandemic. Zoom worked extremely well
during the Fall 2020 semester, when almost all users were working
and learning from home. However, the Zoom application encoun-
tered many performance problems during the Fall 2021 semester,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’23, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0068-2/23/04. . . $15.00
https://doi.org/10.1145/3578244.3583725

when our university switched to a hybrid learning mode (i.e., some
in-person classes, and some online classes using Zoom) with about
50% of students back on campus.

Anecdotally, the Zoom performance problems were attributed
simply to the increased presence of students on campus, and the
concomitant increase in network traffic, including streaming and
WiFi traffic. However, we believe that the Zoom application itself is
at least partly to blame for the network performance issues. We thus
seek to find a technically deeper and more satisfying explanation
for the Zoom performance anomalies that we observed.

As motivation for our work, Figure 1 shows time-series plots of
the Zoom packet traffic collected using Wireshark [25] from two
different Zoom meetings on campus. Figure 1(a) shows a normal
Zoom session that lasted about 40 minutes. This meeting took place
on August 31, 2021, about a week before the start of the Fall 2021
semester. The host of the meeting was on campus, while the other
two participants were not. The meeting entered peer-to-peer (P2P)
mode when the second person joined, and then switched to client-
server mode when the third person joined. The graph shows the
number of Zoom packets observed in each one-second interval of
the Wireshark trace, which was collected by the on-campus user.
Figure 1(b) shows an anomalous Zoom meeting from October 6,
2021, on a busy day in the middle of the Fall 2021 semester. This was
a client-server Zoom meeting with eight participants, one of whom
was on campus. During this one-hour meeting, the participants
experienced audio stalls, choppy video, and several occurrences
of the “Your Internet connection is unstable” warning message in
Zoom. The Wireshark trace shows extreme spikes in the network
traffic, which disrupted the session several times. Each of these
disruptions affected the user-perceived quality of the Zoom session.
Performance problems such as these were fairly common when
using Zoom on campus during the Fall 2021 semester.

Our goal in this paper is to better understand why these Zoom
performance anomalies occurred so often on our campus network.
To do so, we provide a detailed packet-level analysis of Zoom traffic
using Wireshark traces. Using Wireshark to study network applica-
tions is not a new idea in itself. Rather, our main novelty is focusing
on the content of the application-layer headers carried in Zoom
UDP packets. An initial entropy analysis on these headers identi-
fied several fields containing useful information regarding network
application behavior [4]. Our detailed analysis of these traces has
since provided much deeper insight into the structure of Zoom
traffic, and its performance issues on our campus network.

The main contributions of our paper are: (1) packet-level analysis
of Zoom test sessions on our campus network; (2) insights into the
structural characteristics of Zoom traffic; (3) insights into the perfor-
mance problems on our campus network; and (4) recommendations
to improve Zoom performance on enterprise networks.

The main insights that emerge from our work are:

221

https://orcid.org/0000-0001-9265-9686
https://orcid.org/0000-0001-9922-7237
https://orcid.org/0000-0001-6167-2255
https://doi.org/10.1145/3578244.3583725
https://doi.org/10.1145/3578244.3583725

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Mehdi Karamollahi, Carey Williamson, & Martin Arlitt

(a) Trace A (August 31, 2021) (b) Trace B (October 6, 2021)

Figure 1: Time series plots of packet arrival rates during two Zoom test sessions

• Zoom UDP packets carry application-layer header informa-
tion that is unencrypted. Sequence numbers within these
media streams can be used to estimate packet loss, and em-
bedded timing probes can be used to estimate network delay
and jitter;

• Zoom has several resilience mechanisms, such as connection-
level restart and application-layer retransmission;

• Zoom uses aggressive bandwidth probing to dynamically
adapt video bit rates based on network conditions;

• a congested external Internet link is the root cause of Zoom
performance problems on our campus network; and

• multi-layer protocol interactions exacerbate the network
performance problems for Zoom.

The rest of this paper is organized as follows. Section 2 covers
background information and prior related work. Section 3 describes
our measurement methodology for the collection and analysis of
Wireshark packet traces. Section 4 presents results regarding Zoom
traffic analysis and performance problems observed. Section 5 sum-
marizes several takeaways from our work, discusses performance
implications, and provides recommendations to improve Zoom
performance in the future. Finally, Section 6 concludes the paper.

2 BACKGROUND AND RELATEDWORK
2.1 Zoom
In a Zoom meeting, there are multiple Zoom sessions, with one
session for each participating user. If only two users are in ameeting,
then the meeting operates in peer-to-peer (P2P) mode, with direct
communication between the two participants. If there are more
than two users, then Zoom switches to client-server (C-S) mode
with all media content streamed to and from a Zoom Multimedia
Router (MMR) in the cloud [27].

Within a Zoom session, there are multiple transport-layer con-
nections. Zoom uses both TCP and UDP1 at the transport layer. TCP
is used for control and management of the Zoom session, including
operating mode, screen layout, document transfer, and chat. UDP
is used for real-time streaming of audio, video, and screensharing
data. In C-S mode, each of these media streams is associated with a
distinct UDP port at the client. In P2P mode, all media content is
multiplexed onto a single UDP port at each client.

1Though UDP is connectionless, we still refer to these as connections, because of the
application-layer state information associated with each bidirectional UDP flow.

Zoom is a highly resilient network application. It can dynami-
cally adapt its video bit rate to different network conditions [3, 17].
It also has several failure recovery mechanisms, including Forward
Error Correction (FEC), application-layer retransmission, and con-
nection re-establishment [5, 17].

2.2 Related Work
Many researchers have studied the impacts of the COVID-19 pan-
demic on Internet traffic [1, 3, 8–10, 16]. In particular, videoconfer-
encing applications became a key focus with their increasing usage
for remote work and learning [17–19].

Some earlier works [18, 19] focused on the privacy and security of
Zoom, whichwas a concern at the onset of the pandemic. Marczak et
al. [19] studied the cryptographic properties of Zoom, while Mahr et
al. [18] conducted a deeper forensic analysis of Zoom’s packet traffic.
Our own work focuses specifically on Zoom-related performance
issues, as evidenced by its packet-level traffic.

Sander et al. [23] investigated the flow-rate fairness of Zoom
congestion control. They showed that Zoom uses two to three times
the bandwidth of TCP in low-bandwidth scenarios. Other authors
have also documented the bandwidth unfairness of Zoom [17].

Several recent works have studied how Zoom interacts with
other competing network applications, including Meet, Teams, We-
bex, and itself. For example, Chang et al. [3] experimentally evalu-
ated the user-perceived Quality of Experience (QoE) for Meet, We-
bex, and Zoom using a cloud-based framework. They compared the
three applications by emulating geographically distributed video-
conferencing sessions, and measuring the media bit rates and video
quality metrics. As another example, MacMillan et al. [17] com-
pared the performance of Meet, Teams, and Zoom under different
emulated network conditions. They showed that the three applica-
tions vary significantly both in terms of resource utilization and
performance, especially when network capacity is limited.

The most recent and most relevant prior work is by Michel et
al. [20]. These authors conducted a detailed analysis of unencrypted
Zoom packet headers, identifying the RTP/RTCP header informa-
tion embedded within Zoom UDP packets, as well as the Zoom
media encapsulation headers that precede them. They then used
this information to analyze a 12-hour trace of campus network
traffic to assess Zoom performance (e.g., media bit rate, number of
meetings, delay, jitter). Their approach is also effective at detecting
P2P Zoom traffic, which prior approaches were unable to do.

222

Packet-Level Analysis of Zoom Performance Anomalies ICPE ’23, April 15–19, 2023, Coimbra, Portugal

In our own prior work [12], we conducted a longitudinal study
of Meet, Teams, and Zoom on a campus network. This earlier work
provided evidence of issues with Zoom TCP connections and ses-
sion management. In subsequent followup work [5], we provided
an in-depth connection-level analysis of Zoom traffic and showed
how Zoom QoE can suffer on a large campus network. We identi-
fied concurrent meetings, high video bit rates, correlated session
arrivals, and long-lasting sessions as key contributing factors to the
performance problems observed. These two prior works studied
tens of thousands of empirical Zoom sessions on our campus net-
work using passive connection-level analysis, and identified many
sessions with Zoom performance problems. Our current paper uses
packet-level analysis to better understand these performance anom-
alies, using Wireshark traces from Zoom test sessions.

In [13], we developed a synthetic workload model and a simu-
lation model for Zoom traffic. The simulation results showed that
campus network load depends greatly on the location of Zoom
users, and that load-aware policies for Zoom server selection can
improve robustness. Multicast support for Zoom is also suggested
to decrease the load on congested enterprise networks.

Our work is complementary to these previous studies. We study
Zoom traffic “in the wild” on a campus network, rather than em-
ulated or simulated traffic as in many of the foregoing studies.
Furthermore, we use packet-level analysis, rather than connection-
level analysis, to identify specific Zoom performance problems.

3 EXPERIMENTAL METHODOLOGY
This section discusses the methodology that we used to collect and
analyze Zoom traffic at the packet level.

3.1 Network Environment
We study Zoom usage on the University of Calgary network, as
an example of a campus edge network. This network has a user
community of about 35,000 students, faculty, and staff.

Figure 2 shows the network setup used for our experiments.
The three large circles in the diagram show the campus network,
an ISP network, and the Zoom cloud infrastructure. A router (R)
connects the university network (U) to the Zoom network (Z), as
well as to the ISP network. Within the campus network, users (i.e.,
faculty, staff, students) can be on the wireless network (WiFi), or
desktop users on Ethernet LANs. We also consider possible P2P
Zoom users (P1 and P2) on the campus network, who could be on
wired or wireless networks. Inside the ISP network, there can be
home users (H) using Zoom, including possible P2P users P3 and P4.
Regarding Zoom infrastructure, regional data centers in Vancouver
and Toronto handle over 90% of our campus Zoom traffic.

On our campus network, the external U-R link for commercial
Internet traffic is 6 Gbps. As will become evident later in the paper,
this link is a network bottleneck, and is undoubtedly the root cause
for many of the Zoom performance problems observed. As evidence
for this claim, Figure 3 presents a time-series graph of the traffic
volume traversing this link on a per-minute basis on Wednesday,
October 6, 2021. The black line shows the total traffic, while the

Figure 2: Network setup for Zoom traffic measurements

other2 four lines show TCP and UDP traffic volumes, each separated
into inbound and outbound traffic.

Figure 3 shows that our external Internet link was fully saturated
most of the day, roughly from 8:00am to midnight. Zoom UDP
traffic has a distinctive pattern, reflecting the hourly class lecture
slots on this day. Zoom contributes about 1 Gbps of UDP traffic
volume during the main part of the day, indicating a large number
of Zoom participants (faculty and students) on campus. What is
also interesting is how the TCP traffic reacts inversely to the UDP
traffic, declining when UDP rises, and rising when UDP declines.
The explanation is TCP’s congestion control mechanism, which
detects and adapts to the network bottleneck, while Zoom UDP
traffic does not. This behavior provides further evidence that the
external Internet link is indeed “full” most of the time.

Figure 3 indicates that the aggregate network traffic on the exter-
nal link is being capped by a rate-limiting device, either on campus
or in the provider’s network. Analysis of historical campus-level
data (not shown here) indicates that this rate limit has been in ef-
fect since March 2018, though its impact was only noticed recently,
when Zoom usage became prevalent. Interestingly, the 6 Gbps limit
is independent of the direction of the traffic, and protocol-agnostic.
We thus expect the campus network bottleneck to affect all traf-
fic (i.e., inbound and outbound, wired and wireless, TCP and UDP,
Zoom and non-Zoom), though we focus specifically on Zoom traffic
in the rest of the paper.

3.2 Wireshark Traces
We used Wireshark to collect packet-level traces from the client
endpoints in Zoom test sessions. Traces were only collected with
the explicit knowledge and consent of Zoom meeting participants,
who opted in for research data collection.

We collected several Wireshark traces each week, over the span
of about eight weeks during the Fall 2021 semester. Most traces
were collected consistently on the same days and times each week,

2To improve clarity, we have excluded protocols such as ICMP, IPv6, and internal
subnet traffic from the graph. The transient spikes at 6am, noon, 6pm, and midnight
are artifacts of restarting Zeek [22] every 6 hours to avoid crashing during scanning
attacks [12]. These spikes reflect inaccurate traffic counts, which can be ignored.

223

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Mehdi Karamollahi, Carey Williamson, & Martin Arlitt

Figure 3: Daily Traffic Volume on Campus External Link for Commercial Internet Traffic (Wednesday, October 6, 2021)

while others were collected spontaneously when Zoom perfor-
mance problems were particularly apparent on the network. We
varied the locations from which traces were collected, with some
on campus, and some at home. We also varied the number of par-
ticipants in the test sessions, to obtain P2P Zoom examples as well
as C-S Zoom examples.

We have a total of 40 Wireshark traces, a small subset of which
are used in this paper, as shown in Table 1. The leftmost columns
provide metadata about the traces; the remaining columns are ex-
plained later in Section 4. The most valuable traces (C and D) were
those collected concurrently at two different endpoints, with one
user on campus, and one user at home (e.g., P1 to P3 in Figure 2).

For each trace, we ranWireshark in promiscuousmode to capture
the network traffic from all concurrently running applications on
the laptop. However, the analysis in the paper focuses only on the
Zoom traffic. In Trace A, for example, UDP accounts for 96.7% of the
packets. Only 8 of the 277 UDP connections are for Zoom, but they
account for 99.9% of the UDP packets, since the others are mostly
DNS. Similarly, only 12 of 125 TCP connections are Zoom-related,
but they account for 65% of the TCP packets; the other TCP traffic
is mostly HTTPS for Google, Office365, Fortinet VPN, etc.

Running Zoom and Wireshark at the same time does not seem
to be much of an issue on a modern laptop. Trace A, for example,
shows that only 0.1% of the (high-rate) video packets in C-S mode
are missing, and these are most likely due to network losses, rather
than Wireshark drops. Wireshark itself reports an estimate of 0.0%
dropped packets in the Capture File Properties for Trace A (and the
other traces as well).

As with most empirical measurement work, repeatable experi-
ments are a challenge, since ambient campus network congestion
changes each time. We believe that the traces presented in the paper
are a minimal subset to pinpoint and explain the Zoom performance
problems that we have observed. We have dozens of other traces,
many of which show similar problems, and some (such as those
when all users are at home) show no problems at all.

3.3 Empirical Observations
From our analysis of our Wireshark traces, we have made the
following empirical observations about Zoom traffic:

(1) Within the UDP segments carrying Zoom traffic, the data
payload contains a short RTP-like [24] application-level
header that is unencrypted [20, 21]. This header provides
information that is used in demultiplexing UDP Zoom traffic.

(2) In a client-server Zoom session, the first byte of the UDP
data payload (i.e., data[0] inWireshark) indicates an opcode
that is related to the Zoom session [19]. Table 2 shows the
main opcodes observed in this traffic, and our interpretations
of them, based on their timing and location in the Zoom
session. These opcodes occur for each client port used for the
Zoom session. Several of these opcodes match those reported
by Marczak et al. [19], although Zoom’s application-layer
header format has changed slightly since their work.

(3) The vast majority (over 90%) of the UDP packets carry op-
code 0x05, indicating a media data unit (e.g., video, audio, or
screensharing data). In client-server mode, there are three
different UDP ports at the client side, with one for each of
these three streams. At the server side, all Zoom traffic goes
in and out on UDP port 8801 [26].

(4) Within the UDP segments carrying opcode 0x03 (ECHO RE-
QUEST), there is a sequence number and timestamp inserted
by the sender. These values are echoed back by the receiver
using opcode 0x04 (ECHO RESPONSE). These exchanges
happen every 1.0 seconds on the audio stream, and every
3.75 seconds on the video and data streams. Both endpoints
generate these timing probes throughout the session, doing
so for each client UDP port. Each endpoint uses its own
sequence numbers, which start from 1.

(5) Within the UDP segments carrying opcode 0x05 (MEDIA
UNIT), there is an additional type code in UDP payload byte
data[8]. Themost salient ones are summarized in Table 2. In
addition, there is a 16-bit sequence number associated with
the media unit being carried. Sequence numbers start from 0
and typically increase monotonically, but may wrap around
every few minutes, depending on the type of media stream

224

Packet-Level Analysis of Zoom Performance Anomalies ICPE ’23, April 15–19, 2023, Coimbra, Portugal

Table 1: Summary of ZoomWireshark Trace Collection and Analysis

Wireshark Trace Metadata UDP Packet Loss Estimates TCP Packet Events
Trace Date Time Location Mode Duration Packets Video Audio Data Probes Retx Spur Dup
A Tue Aug 31 12:08pm Campus P2P 11 min 315,666 1.27% 1.04% N/A 1.53% 13 8 18

2021 Campus C-S 32 min 559,827 0.10% 0.17% 0.00% 0.50% 117 100 380
B Wed Oct 6 2:08pm Campus C-S 53 min 1,114,451 2.04% 1.67% N/A 1.65% 696 386 1,277
C1 Wed Oct 13 12:58pm Campus P2P 36 min 884,467 0.67% 0.96% N/A 0.96% 1,389 796 2,506
C2 2021 1:00pm Home P2P 34 min 844,538 1.15% 1.45% N/A 0.50% 1,751 655 938
D1 Wed Oct 27 12:57pm Campus P2P 4 min 94,400 1.97% 3.10% N/A 2.17% 151 60 410

2021 Campus C-S 35 min 653,494 3.93% 6.13% N/A 4.54% 649 421 1,270
D2 1:02pm Home P2P 2 min 37,612 4.27% 4.96% N/A 5.26% 1 0 26

Home C-S 32 min 593,973 0.00% 0.00% N/A 0.00% 1 0 189

Table 2: Opcodes Observed in Zoom UDP Traffic (C-S Mode)

Opcode Offset Interpretation Description
0x01 0 READY C-S initialization
0x02 0 GO S-C initialization
0x03 0 ECHO REQUEST Timing probe request
0x04 0 ECHO RESPONSE Timing probe response
0x05 0 MEDIA UNIT Media unit exchange
0x06 0 N/A Not used
0x07 0 QUIT Terminate connection
0x0a 8 DATA Screen-sharing (S-C)
0x0d 8 DATA Screen-sharing (C-S)
0x0f 8 AUDIO Audio media unit
0x10 8 VIDEO Video media unit
0x15 8 BWPROBE Video bandwidth test

being carried. Each endpoint has its own sequence numbers.
Type codes 0x10 and 0x15 share the same sequence number
space. Gaps in the sequence numbers likely indicate lost or
mis-ordered packets, changes in the media encoding format,
or different media sub-streams [20]. Repeats in the sequence
numbers indicate application-layer retransmissions.

(6) In a P2P Zoom session, all UDP traffic is sent and received
using a single UDP port, rather than three client ports. The
opcode functionality mentioned previously is still present, as
shown in Table 3, but it is not always in the same place. For
example, the first few opcodes are the same, and appear in
data[0], but the 0x05 opcode is not used. Rather, the media
type codes appear directly in data[0], and the locations of
sequence numbers and timestamps vary with the media type.
Video timing probes are at 5-second intervals.

(7) Within Wireshark, the packet loss rates can be calculated
based on the starting and ending sequence numbers used for
a particular opcode ormedia type, compared against the num-
ber of such frames captured in the Wireshark trace. An ad-
justment may be needed for sequence number wraparound,
if it occurs.

(8) Within Wireshark, the timing probes can be used to estimate
the network delay and jitter.

Table 3: Opcodes Observed in Zoom UDP Traffic (P2P Mode)

Opcode Offset Interpretation Description
0x0f 0 AUDIO Audio media unit
0x10 0 VIDEO Video media unit
0x15 0 BWPROBE Video bandwidth test
0x1e 0 DATA Screen-sharing (data)
0x20 0 DATA Screen-sharing (control)
0x21 0 VIDEO PROBE Video timing probe
0x22 0 AUDIO PROBE Audio timing probe

With the foregoing knowledge about Zoom UDP payload in-
formation, we can quantify network congestion effects (i.e., delay,
jitter, loss, retransmission) on Zoom traffic, using Wireshark traces.

4 MEASUREMENT RESULTS
This section presents selected results from our packet-level analysis
of Zoom Wireshark traces. Our goals are to understand how Zoom
performance is affected by the campus network, as well as how
Zoom’s behavior affects the campus network.

4.1 Media Stream Analysis
We start our detailed Zoom analysis by looking at the individual
media streams within a Zoom session, to see if any anomalies are
evident. Figure 4 shows the results of this analysis.

Figure 4(a) shows a detailed breakdown of the normal Zoom
session from Trace A. The initial P2P mode is shown in the plot,
while both the P2P and C-S portions are broken down into their
constituent media streams. The main observations here are that
the video traffic dominates, and that P2P mode uses a higher video
bit rate than C-S mode. These observations are as expected, and
consistent with those made by other researchers [3, 5, 17]. One new
observation here is the presence of occasional spikes in the video
traffic, which are attributable to Zoom’s bandwidth probing. We
defer detailed analysis of this feature to Section 4.7.

Figure 4(b) shows a detailed breakdown of the Zoom session
from Trace B. To improve clarity, we only show the audio and
video traffic in this trace, with additional colors used to indicate
the multiple instances of UDP connections used during this session.
We consider the network activity in this trace to be anomalous

225

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Mehdi Karamollahi, Carey Williamson, & Martin Arlitt

(a) Trace A (b) Trace B

Figure 4: Media stream analysis of two Zoom test sessions

due to the extreme spikes observed in the traffic. The spikes affect
audio traffic and video traffic in the same way, suggesting that both
experience significant queueing at the network bottleneck.

Amore detailed analysis of Trace B shows occasional idle periods
of 2-3 seconds with no arriving traffic at all, followed by the back-
to-back arrival of hundreds of packets, as indicated in the graph.
Furthermore, the spikes are quasi-periodic, often appearing about
every 35 seconds. We speculate that the saturation of the bottleneck
link is causing the formation of amassive queue, which takes several
seconds to dissipate. The traffic volume then returns to its usual
level for the next 30 seconds or so, before the next spike occurs.
This pattern occurs many times during this particular trace.

4.2 Packet Loss
We next try to estimate the packet loss ratio for Zoom traffic, using
the sequence numbers embedded in media streams. Table 1 provides
a quantitative summary of these results, in the middle columns of
the table. Note that estimates can be made independently for each
media type, as well as for the timing probes. While the number
of samples vary for each media type, consistency in the estimates
across media types provides greater confidence in the estimates, to
cope with the possibility of Wireshark itself missing packets.

Table 1 shows Zoom packet loss estimates for our Wireshark
traces, based on sequence number analysis for each media type. As
can be seen, the packet loss rates for Trace A are quite low for the
P2P portion of the meeting, and even lower for the C-S portion.
For Trace B, the packet loss rates are much higher, reflecting the
higher load placed upon the campus network in Fall 2021 when
many students were back on campus. The packet loss rates are
even higher for Trace D1 from October 27, which exhibited similar
performance problems as Trace B from three weeks earlier.

The foregoing observations indicate a performance bottleneck
for Zoom traffic, but it is not clear whether this bottleneck is at
the client, at the server, or within the network itself. Our next
experiment offers further insight into this issue.

4.3 Delay and Jitter
The timing probes embedded within Zoommedia traffic can be used
to assess network latency effects. In particular, we use the video
traffic timing probes that are sent by the Zoom server to each user
every 3.75 seconds. Figure 5 shows the results from our analysis,
using Cumulative Distribution Function (CDF) plots to show the

inter-arrival time (IAT) distribution for the timing probes arriving
at the client. These CDF plots are generated from specific individual
traces, each with several hundred measurement samples. The plots
from other traces are qualitatively similar, though unique for each
trace. Statistical analysis and comparison is often noisy because of
several outliers in the distributions.

Figure 5(a) compares the timing probes for Trace A with those
from Trace B. For Trace A on August 31, the server probes arrive
almost unperturbed, resulting in a nearly vertical CDF at the ex-
pected value of 3.75 seconds. For Trace B on October 6, the CDF
is altered a lot, with about 5% of the probes arriving late, and an-
other 5% of the probes seemingly arriving “early”, since the IAT is
shorter for the next probe if the previous probe was late. The graph
shows that some of the probes are up to 3 seconds late, consistent
with the delays noted earlier. Furthermore, the delays are almost
uniformly distributed between 0 and 3 seconds, indicating some
randomness in when these hiccups occur on the network. There is
also a small jump in the IAT distribution at 7.50 seconds, indicating
some missing (lost) timing probes.

Figure 5(b) presents the IAT CDF for Traces D1 and D2 from the
October 27 meeting, for which both the on-campus user and the
at-home user collected Wireshark traces. This graph is particularly
illuminating, showing that the timing probes sent from the server
experience problems when entering the campus network, but not
when traversing the ISP network. This result clearly indicates that
the bottleneck is on the campus network.

For completeness, we also checked the timing probes in Traces C1
and C2 for the P2P Zoommeeting from October 13, 2021. Figure 5(c)
shows these results, broken out by audio probes (1-second intervals)
and video probes (5-second intervals). The plot shows that both
users had similar conditions on the network path, and only small
perturbations to the CDF of probe inter-arrival times. Since these
network conditions were reasonable, the Zoom meeting stayed in
P2P mode (as expected) throughout the session.

4.4 Directionality
We next try to ascertain whether the network bottleneck affects
inbound traffic, outbound traffic, or both. For this purpose, Figure 6
presents time series plots of the packet rates for Traces D1 and
D2 from the October 27 Zoom session, as viewed by the campus
user (Figure 6(a)) and the home user (Figure 6(b)). In each of these
graphs, we have separated the UDP traffic into inbound (green) and

226

Packet-Level Analysis of Zoom Performance Anomalies ICPE ’23, April 15–19, 2023, Coimbra, Portugal

(a) Traces A and B (b) Traces D1 and D2 (c) Traces C1 and C2

Figure 5: CDF analysis of inter-arrival times for Zoom timing probes

outbound (brown), with Zoom’s TCP control traffic shown in red.
All of the following time series plots use data values extracted from
the traces, using Wireshark’s graphical visualization tools. Table 1
summarizes the key statistical properties of these traces.

As a cautionary note, recall that Wireshark traces collected at a
client endpoint inherently show biased timing information. Specif-
ically, Wireshark sees outgoing packets when they are launched,
which is before they have traversed the network bottleneck, while
incoming network packets are seen after they have traversed the
network path, including the bottleneck. As such, traces D1 and D2
both show that outgoing Zoom traffic is unaffected by the bottle-
neck. However, because we have Wireshark traces from each client
endpoint, we can further study this traffic, based on the packet
arrivals at the other endpoint.

Figure 6(a) shows prominent spikes in the packet traffic arriving
from the Zoom server. This observation confirms that the bottleneck
affects the incoming traffic. However, Figure 6(b) for the home user
also shows some spikes (albeit smaller ones) in the incoming traffic
from the Zoom server, indicating that the outgoing traffic from the
campus user was affected by the bottleneck as well. In particular,
this outgoing traffic arrives at the Zoom server with some spikes,
and is relayed to the home user in similar form (recall that the video
timing probes from the Zoom server to the home user in Trace D2
arrived unperturbed).

While the amplitude of the traffic spikes is diminished for the
home user, they are still prominent. This observation confirms that
the campus network bottleneck also affects the outbound traffic.
Further evidence for this claim is the brief 4-minute P2P portion of
these traces, which shows spikes in the packet traffic arriving at
each endpoint, despite the absence of spikes in the outgoing traffic
sent by each client. The spikes again occur about every 35 seconds.
This periodicity seems to arise from the confluence of a 3-second
delay at a networking device (possibly due to a queue, a timeout,
or a software reset) and the 32-second interval used by Zoom’s
bandwidth probes (see Section 4.7) when recovering from such
events. Bandwidth probing seems to be triggered by significant
changes in loss or delay [4].

4.5 Retransmissions
In our next experiment, we study the impact of the network bottle-
neck on TCP traffic, rather than UDP traffic. This experiment offers
further insight into the nature of Zoom performance problems.

Recall that TCP is a connection-oriented reliable data transfer
protocol, unlike UDP, which is connectionless and unreliable. In
particular, TCP uses sequence numbers, acknowledgements, timers,
and retransmissions to achieve reliable data delivery. It also has flow
control and congestion control mechanisms that can detect and
react to the delay and/or loss of TCP packets. Some manifestations
of network performance problems include lost packets, out-of-order
packets, retransmissions, duplicate ACKs, and spurious retransmis-
sions (i.e., retransmissions that occur while a previous copy of the
same packet is still in flight).

The rightmost three columns of Table 1 report the counts for
these TCP-related events, as indicated in our Wireshark traces. We
use “Retx” for ordinary retransmissions, “Spur” for spurious retrans-
missions, and “Dup” for duplicate ACKs. These events occur quite
often, especially in the anomalous traces. These results confirm
that TCP is affected by the network bottleneck just as much as UDP
is, although TCP reacts differently.

Figure 7 shows a time-series plot of the spurious retransmissions
observed on the TCP control connections for the campus user in
Trace D1. The volume of retransmissions is extremely high, as is
the number of duplicate ACKs (see Table 1). Detailed analysis of
the Wireshark traces shows that there are occasional brief delays in
packet delivery for up to 3 seconds, followed by the rapid delivery
of hundreds of backlogged packets, as noted earlier.

These multi-second delays cause numerous problems for TCP.
First, the slow delivery on the forward path to the client causes
the server to retransmit some packets in an attempt to achieve
delivery. Second, these retransmissions lead to multiple copies of
the same TCP packet in the queue for delivery. These are detected by
Wireshark as spurious retransmissions, as shown in Figure 7. Third,
the eventual delivery of duplicate TCP data to the client triggers a
duplicate ACK from the client. Fourth, the delays in the return of
ACKs to the server complicate the RTT estimation, as well as the
setting of the RTO timer and the congestion window. These result in
sub-optimal TCP performance. Finally, the Zoom application itself
sometimes terminates problematic TCP connections, perhaps due

227

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Mehdi Karamollahi, Carey Williamson, & Martin Arlitt

(a) Trace D1 (Campus) (b) Trace D2 (Home)

Figure 6: Analysis of directional properties of UDP traffic in Zoom test sessions (October 27, 2021)

Figure 7: TCP spurious retransmissions in Zoom Trace D1

to excessive delay, loss, or retransmission, before re-establishing a
new one. We study this behavior in the next subsection.

As a side comment, Zoom is not the only application that experi-
ences spurious TCP retransmissions. For example, Figure 7 shows a
long-lived Google application that was captured in our Wireshark
trace as well. This application exchanges a small amount of data
with a Google server every 25 seconds. Occasionally, this appli-
cation encounters a massive queue at the campus network, and
has a spurious retransmission. Zoom experiences more spurious
retransmissions because it is sending TCP packets more frequently.

4.6 Connection Analysis
Figure 8 shows the connection-level view of three Zoom sessions.
These graphs are produced using the traffic analysis tools developed
by Choi et al. [5], which we have adapted and applied to the TCP
and UDP connections in our Wireshark traces.

Figure 8(a) shows the TCP and UDP connections for the normal
Zoom session in Trace A. In this session, there is a single TCP
control connection throughout the meeting, as expected. Initially,
there are three UDP connections (video, audio, data) to the Zoom
server for the meeting host. Once the second participant arrives, the
meeting switches to P2P mode, with a single UDP connection for
the media streams. When the third participant arrives, the meeting
switches back into client-server mode, with three UDP connections
to the Zoom server. This behavior is as expected.

Figure 8(b) shows the different TCP and UDP connections for
Trace D1. Recall that this was a two-person meeting, which was
disrupted3 and restarted several times. Several discontinuities are
evident in this plot, for both UDP and TCP. Detailed analysis of the
Wireshark trace shows that it was the Zoom server (not the client)
that proactively terminated the UDP connections (i.e., opcode 0x07
from Table 2), forcing the client to re-initiate these. Furthermore,
the TCP connection was closed and restarted several times, perhaps
because of the excessive number of TCP retransmissions noted
earlier. Most curious of all, this two-person meeting switched from
P2Pmode to C-Smode, and remained in C-Smode for the remainder
of the meeting. This transition was likely due to the high packet
loss rate experienced during P2P mode (see Table 1).

Finally, Figure 8(c) shows the TCP and UDP connection pro-
files for Trace B. While this session had problems similar to the
previous example, there are new issues as well. Most notably, the
TCP connection to the Zoom server had many disruptions, and
required multiple attempts (about 40) before it was successfully
re-established. Detailed analysis of the Wireshark traces shows
that the problem arose during the TLS handshake, which did not
complete soon enough to avoid a 3.5-second TLS timeout/abort at
the Zoom server. Rather, repeated TLS handshakes were attempted
until one finally succeeded within this time limit.

The anomalous behavior in Figure 8(c) indicates a high volume
of TLS handshake requests arriving at the server, somewhat like a
TLS/SSL flooding attack. The key insight here is that when a single
Zoom user at home has a network connectivity issue, it only affects
one user and one TLS connection, but when hundreds of Zoom
users on the campus network have a connectivity issue, they may
all be re-establishing TLS connections to the same Zoom server at the
same time. This creates a surge of demand at the server, potentially
making it sluggish or unresponsive.

One of Zoom’s resilience mechanisms is to switch to a different
Zoom server when needed. This approach solves the problem here,
with the new Zoom server handling the TCP control connection
(but not the UDP connections) for the remainder of the session.

3In our prior work [5], we showed that our campus community initiated about 3,500
Zoom meetings per day, and that these meetings used about 400 different Zoom MMR
servers, for an average of 9 meetings per server per day. However, some servers
were used far more often than others on a given day. More importantly, we have
empirically observed some Zoom servers concurrently hosting as many as 6 different
Zoom meetings during the busiest part of the day. Cases such as these often exhibited
performance problems.

228

Packet-Level Analysis of Zoom Performance Anomalies ICPE ’23, April 15–19, 2023, Coimbra, Portugal

(a) Trace A (b) Trace D1 (c) Trace B

Figure 8: Connection profiles for several Zoom test sessions

Further evidence for this server-side performance issue is pro-
vided in Figure 9, which provides the TCP and UDP connection
profiles for the P2P Zoom sessions from Traces C1 and C2. The
left graph is for the on-campus user, while the right graph is for
the home user. In both graphs, there is a single direct UDP connec-
tion between the two peers to carry the media traffic throughout
the meeting. This UDP connection operates without any disrup-
tion. However, the TCP control connection to the Zoom server is
disrupted and re-established many times: about 50 times for the on-
campus user, and about 30 times for the home user. This confirms
that the TCP/TLS performance issue is at the server end.

4.7 Bandwidth Probing
The final part of our investigation focuses on Zoom’s bandwidth
probing, to see if and how this contributes to the network perfor-
mance problems observed.

Figure 10 shows the results from this analysis, for both a normal
Zoom session (Trace A) as well as an anomalous one (Trace D1). In
these graphs, the upper line (in green) shows the total Zoom UDP
traffic, while the lower line (in purple) shows the video bandwidth
probing traffic carrying opcode 0x15 (see Tables 2 and 3).

Figure 10(a) shows that bandwidth probing is present through-
out a normal Zoom session. It is particularly prominent during the
initial P2P part of the session, during which higher video bit rates
are observed. During the client-server portion of the session, the
bandwidth probing has distinct sustained 10-second spikes with
hundreds of probe packets, but the frequency at which these spikes
occur diminishes. Detailed analysis suggests a multiplicative de-
crease strategy, with intervals of 256 and 512 seconds observed
here. The probe packets themselves are typically about 1 KB in size,
with each containing dummy byte values (e.g., 0x01, 0x02, . . . 0x20)
in unencrypted form.

Figure 10(b) shows the video bandwidth probing during the prob-
lematic Zoom session in Trace D1. The probing during the brief
P2P part of the session is similar to that in the previous example.
However, the bandwidth probing during the client-server portion
of the session is quite different, in two ways. First, the frequency at
which it occurs is higher, with a 32-second interval between most
probes. This increased frequency is likely because of the appar-
ent instability of the network path. Second, some of the sustained
probes last much longer than 10 seconds, even though the total

number of probe packets sent remains similar. This observation
suggests the inherent sharing of a congested network path with
video bandwidth probes destined for other users.

Figure 11 offers additional insight into the bandwidth probing
issue, by comparing Traces D1 and D2 side-by-side. In Figures 11(a)
and (b) we have also separated the bandwidth probing traffic into
that generated by the server (purple) and that generated by the
clients (yellow). Two important observations are evident here. First,
the Zoom server only does the aggressive bandwidth probing on
the unstable path (Campus), and not the stable path (Home). Sec-
ond, the bandwidth probes occasionally get queued at the network
bottleneck and arrive as a traffic spike. In fact, these spikes occur
almost periodically, about 150 seconds apart. We surmise that the
bandwidth probes for this user are drifting in and out of phase with
those from other campus network users in other Zoom meetings.

The key insight here is that the Zoom servers appear to be con-
ducting bandwidth probes independently for every user in every Zoom
meeting on the congested campus network. This probing adds a lot of
extra load to the network, which is already congested, potentially
leading to the queueing phenomenon noted earlier. Furthermore,
the bandwidth probes for different users can also overlap, analogous
to the router synchronization problem first identified by Floyd and
Jacobson [11]. In our campus network configuration, these traffic
spikes actually contribute to the network performance problems,
which in turn affect Zoom’s user-perceived performance.

5 DISCUSSION
This section reflects upon our measurement results, discusses per-
formance implications, and provides recommendations for improved
Zoom performance on our campus network.

5.1 Reflections
The methods used in our packet-level analysis are simple and gen-
erally applicable on any network where Zoom performance is a
concern. If a performance bottleneck is due to the local network,
then our study acts as a use case for a similar investigation. If a per-
formance bottleneck is due to Zoom infrastructure, then our study
again acts as a use case for how to investigate it, and as evidence
for encouraging Zoom to make design changes to their product.

One takeaway message from our work is the immense value of
Wireshark for the performance debugging of network applications.

229

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Mehdi Karamollahi, Carey Williamson, & Martin Arlitt

(a) Trace C1 (Campus) (b) Trace C2 (Home)

Figure 9: Connection profiles for P2P Zoom test session (October 13, 2021)

(a) Trace A (b) Trace D1

Figure 10: Analysis of video bandwidth probing traffic in Zoom test sessions

(a) Trace D1 (Campus) (b) Trace D2 (Home)

Figure 11: Analysis of video bandwidth probing traffic in Zoom test session (October 27, 2021)

Other than the campus backbone traffic results in Figure 3, all of
our data collection and analysis was done using Wireshark. This
in-depth analysis offered insights into the structure of Zoom traffic
and some of its algorithmic behaviors.

A second takeaway is the importance of understanding new
network applications when they are deployed on existing network
infrastructures. Because Zoom generates high-rate UDP traffic that
is not subject to congestion control, it behaves quite differently
from other protocols or applications, such as Web browsing, QUIC,
or TCP-based on-demand video streaming (e.g., Netflix, YouTube).
Zoom traffic definitely increases congestion on our campus net-
work, and takes bandwidth away from other network applications.
Furthermore, Zoom’s video bandwidth probing is overly aggressive,
and exacerbates the performance problems on our campus network.

5.2 Performance Implications
Two themes pervade our network traffic measurement results: one
is scale, and the other is multi-layer protocol interactions.

Regarding scale, Zoom worked fine on our campus in Fall 2020
when almost everyone was at home, because Zoom traffic bypassed
the campus network. However, Zoom performance suffered in Fall
2021 when half of our user community returned to campus. The
increased traffic volume from on-campus users, as well as Zoom
itself, saturated the external Internet link, causing congestion for
all campus network users. Zoom’s response to this congestion was
very different from other protocols and applications, resulting in
increased bandwidth probing, large traffic spikes, and poor Zoom
session quality. These behaviors only emerged at scale, with thou-
sands of collocated Zoom users.

230

Packet-Level Analysis of Zoom Performance Anomalies ICPE ’23, April 15–19, 2023, Coimbra, Portugal

Multi-layer protocol interactions were also at play here. Some of
these involve the combination of TCP and UDP to manage Zoom
sessions. Others involve the use of WiFi for many campus users.
The most interesting, however, were the failed TCP and UDP con-
nections, due to network congestion, and Zoom’s application-layer
response to this congestion, which involved more TCP connec-
tions, more TLS handshakes, and increased UDP bandwidth probing.
These actions, coupled with potential synchronization across users,
led to numerous repeated TLS handshakes at the server and in-
creased traffic spikes from bandwidth probing. These effects further
degraded Zoom performance on our campus network.

5.3 Recommendations
We have several recommendations for improving Zoom perfor-
mance on our campus network, or any enterprise network for that
matter. These recommendations fall into two categories: those for
network operators, and those for Zoom itself.

Regarding our campus network, nobody within the university
foresaw the potential performance implications of Zoom in a hybrid
learning scenario, with half of our students on campus. Furthermore,
the external Internet link was congested well before the pandemic
occurred. The most obvious technical solution would be to route
Zoom traffic over the uncongested link for research and educa-
tion traffic, rather than the congested link for commercial Internet
traffic. Since our campus Zoom traffic involves only a handful of
network prefixes, Zoom could be manually configured into the net-
work traffic management policies. A second solution, though more
expensive, would be to upgrade the external commercial Internet
link, say from 6 Gbps to 10 Gbps. This should provide adequate
room for growth in Internet traffic over the next few years, whether
for Zoom or other network applications, though it does not address
Zoom’s underlying behavioral properties.

Regarding Zoom itself, three recommendations come to mind.
First, better load balancing across a larger pool of Zoom servers
would reduce the likelihood of a single server hosting multiple
large meetings at the same time. This would help diffuse the load
and potential synchronization issues identified in our paper. Sec-
ond, bandwidth probing should be less aggressive, particularly on
congested network paths. Ideally, this probing should be done on
a per-network-prefix basis, rather than a per-user or per-IP basis,
which would reduce the volume dramatically. Sharing such state
information across multiple meetings hosted by the same Zoom
server would also help. Furthermore, randomization in the tim-
ing and duration of probing might ameliorate some of the traffic
synchronization problems observed. Last, but not least, the Zoom
application seems like a natural fit for classic networking protocols
such as IP multicast, Protocol Independent Multicast (PIM) [6], and
Scalable Reliable Multicast (SRM) [14, 15], or emerging protocols
like QUIC [7], which also support multicast. Such an approach
would help alleviate network congestion in the case of multiple
collocated clients for a Zoom meeting, which was the common
case on our campus network. Finding a practical solution for Zoom
multicast delivery would be a worthwhile pursuit.

6 CONCLUSIONS
The main conclusions from our work are as follows. First, packet-
level analysis of Wireshark traces can provide deep insights into

the structure and performance of Zoom. Our analysis exploited
opcodes, media types, sequence numbers, and timing probes to
quantify delay, jitter, loss, and retransmission behavior in Zoom’s
UDP and TCP traffic. Second, Zoom performance suffers when
traversing a congested network. The 6 Gbps limit on the external
link of our campus network is the root cause of the Zoom perfor-
mance issues we experienced in Fall 2021, when hybrid learning
began. Third, the Zoom application itself is partly to blame for
the problems that we observed. In particular, Zoom’s aggressive
bandwidth probing exacerbates network congestion. Finally, multi-
layer protocol interactions can lead to further performance issues
with Zoom. For example, excessive TCP retransmissions can cause
connection-level restarts and repeated TLS handshakes at Zoom
servers. These problems are most evident when multiple collocated
Zoom users are sharing the same congested network path.

Our ongoing work is investigating empirically-observed perfor-
mance differences between wired and wireless Zoom users, as well
as the dynamics of Zoom’s bandwidth probing algorithm.

ACKNOWLEDGMENTS
The authors are grateful to Albert Choi for his undergraduate hon-
ours project work [4], which laid the foundation for our packet-level
analysis of Zoom. The authors also thank UCIT for access to long-
term campus network traffic measurement data. Financial support
for this research was provided via Canada’s Natural Sciences and
Engineering Research Council (NSERC), as well as the Department
of Computer Science at the University of Calgary.

APPENDIX: WIRESHARK ANALYSIS TIPS
For those unfamiliar with Wireshark, this appendix provides a few
tips on how to work with large packet-level Zoom traces, such as
those used in this paper. There are also several good Wireshark
tutorials and videos available online [25]. Our Top 10 tips follow:

(1) When collecting and saving a Wireshark trace, always check
the Capture File Properties for metadata about your
packet capture, such as date, time, duration, number of cap-
tured packets, lost packets, etc. This feature is available under
the Statistics tab, which offers the main menu for traffic
analysis.

(2) When analyzing a trace, the Conversations tool is a good
starting point. Select the protocol of interest (e.g., TCP, UDP,
IP) for a statistical overview. The displayed data can be sorted
easily (ascending or descending) by clicking on the desired
column (e.g., packets, bytes, time, IP address) to find the
flows, ports, and IP addresses of interest.

(3) By default, the main Wireshark window displays your entire
packet trace, but you can apply a display filter to restrict this
to specific IP addresses, protocols, or ports if you wish (e.g.,
tcp, udp, dns, udp.port==8801, ip.srcaddr==10.0.0.12
&& udp.dstport==8801). The status line at the bottom al-
ways tells you how many packets are displayed. If you text
select any packets, it will also show how many are selected.

(4) If you click on a specific packet in the trace, the window
beneath shows you the detailed content of that packet. You
can select different layers of protocol headers to study here,
as well as the application-layer payload.

231

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Mehdi Karamollahi, Carey Williamson, & Martin Arlitt

(5) You can export displayed packets to a file, using a variety of
different formats (e.g., PCAP, JSON, CSV, XML, text). This
function is available under the Filemenu, via either Export
Specified Packets or Export Packet Dissections. This
processmay be slow if the capture file is large. On a Linux sys-
tem, the editcap utility can be used to manipulate a PCAP
file, such as trimming large packet payloads to a specified
snapshot size, or only keeping packets that match particular
IP addresses, protocols, or ports.

(6) Use the I/O Graph feature for a quick graphical overview
of your captured traffic. By default, it shows all traffic, but
you can also apply filters here to visualize (for example)
TCP and UDP traffic separately, or inbound and outbound
traffic separately. In addition to filtering on protocols, ports,
and addresses, you can also filter on data content in the
payload (e.g., udp.port==8801 && data[0]==0x05). The
same filters used here can also be used in the main window
for packet selection.

(7) If you like a graph that you made, you can export it directly
as a PDF or several other formats. If you just want the data
points and not the graph itself, you can export as a CSV file
instead, and then draw the graph yourself using other tools.

(8) If you are interested in the details of a particular TCP flow,
you can use the TCP Stream Graphs feature to draw a
sequence-number plot, throughput plot, or RTT plot. Mouse
clicks can be used to select a flow, toggle between the two
directions on a TCP connection, or even scroll to the next
TCP stream flow in your trace.

(9) Wireshark may misinterpret some Zoom UDP packets (e.g.,
opcode 0x04) asWireGuard VPN packets, based on its header
detection heuristics for WireGuard. If this happens, you can
force Wireshark to consider them as UDP packets using the
Analyze -> Decode As feature.

(10) When working with multiple trace files that were collected
concurrently from different vantage points, the View ->
Time Display Format feature is useful for switching be-
tween relative and absolute timestamps. Establishing proper
time synchronization between multiple traces is helpful
when looking for Zoom packets, since the start times and
durations of the Wireshark traces will differ a bit.

A video demo of several of these Wireshark tips is available at
pages.cpsc.ucalgary.ca/˜mehdi.karamollahi/Wireshark-Demo.mp4

REFERENCES
[1] Timm Böttger, Ghida Ibrahim, and Ben Vallis, “How the Internet Reacted to

Covid-19: A Perspective from Facebook’s Edge Network”, Proceedings of the
ACM Internet Measurement Conference, Pittsburgh, PA, virtual event, pp. 34-41,
October 2020. doi:10.1145/3487552.3487842

[2] Ashley Carman, “Why Zoom Became So Popular”, https://www.theverge.com/
2020/4/3/21207053/zoom-video-conferencing-security-privacy-risk-popularity

[3] Hyunseok Chang, Matteo Varvello, Fang Hao, and Sarit Mukherjee, “Can You See
Me Now? A Measurement Study of Zoom, Webex, and Meet”, Proceedings of the
ACM Internet Measurement Conference, virtual event, pp. 216–228, November 2021.
doi:10.1145/3487552.3487847

[4] Albert Choi, “Analysis of Zoom Network Traffic”, CPSC 502 Honours Project,
Department of Computer Science, University of Calgary, 8 pages, April 2022.

[5] Albert Choi, Mehdi Karamollahi, Carey Williamson, and Martin Arlitt, “Zoom
Session Quality: A Network-Level View”, Proceedings of Passive and Active Mea-
surement (PAM) Conference, virtual event, Spinger LNCS Vol. 13210, pp. 555–572,
March 2022. doi:10.1007/978-3-030-98785-5_25

[6] Stephen Deering, Deborah Estrin, Dino Farinacci, Van Jacobson, Ching-Gung Liu,
and Liming Wei, “An Architecture for Wide-Area Multicast Routing”, Proceed-
ings of ACM SIGCOMM Conference, London, UK, pp. 126-135, August 1994.
doi:10.1145/190314.190326

[7] Mathis Engelbart and Jörg Ott, “Congestion Control for Real-Time Media over
QUIC”, Proceedings of the 3rdWorkshop on the Evolution, Performance, and Inter-
operability of QUIC (EPIQ), Munich, Germany, virtual event, pp. 1-7, December
2021. doi:10.1145/3488660.3493801

[8] Thomas Favale, Francesca Soro, Martino Trevisan, Idilio Drago, and Marco Mellia,
“Campus Traffic and E-Learning during COVID-19 Pandemic”,Computer Networks,
Vol. 176, Article 107290, pp. 1-9, July 2020. doi:10.1016/j.comnet.2020.107290

[9] Nick Feamster, “2020 Pandemic Network Performance”, Broadband Internet Tech-
nical Advisory Group, 2021.

[10] Anja Feldmann, Oliver Gasser, Franziska Lichtblau, Enric Pujol, Ingmar Poese,
Christoph Dietzel, et al., “The Lockdown Effect: Implications of the COVID-
19 Pandemic on Internet Traffic”, Proceedings of the ACM Internet Mea-
surement Conference, Pittsburgh, PA, virtual event, pp. 1-18, October 2020.
doi:10.1145/3419394.3423658

[11] Sally Floyd and Van Jacobson, “The Synchronization of Periodic Routing Mes-
sages”, Proceedings of ACM SIGCOMM Conference, San Francisco, CA, pp. 33-44,
September 1993. doi:10.1145/166237.166241

[12] Mehdi Karamollahi, Carey Williamson, and Martin Arlitt, “Zoomiversity: A Case
Study of Pandemic Effects on Post-Secondary Teaching and Learning”, Proceedings
of Passive and Active Measurement (PAM) Conference, virtual event, Spinger LNCS
Vol. 13210, pp. 573–599, March 2022. doi:10.1007/978-3-030-98785-5_26

[13] Mehdi Karamollahi and Carey Williamson, “Simulation Modeling of Zoom Net-
work Traffic”, Proceedings of IEEE International Symposium on the Modeling, Anal-
ysis, and Simulation of Computer and Telecommunication Systems (MASCOTS),
Nice, France, hybrid event, pp. 57-64, October 2022.

[14] Sneha K. Kasera, Jim Kurose, and Don Towsley, “Scalable Reliable Multicast using
Multiple Multicast Groups”, Proceedings of ACM SIGMETRICS Conference, Seattle,
WA, pp. 64-74, June 1997. doi:10.1145/258612.258676

[15] Ching-Gung Liu, Deborah Estrin, Scott Shenker, and Lixia Zhang, “Local Error
Recovery in SRM: Comparison of Two Approaches”, IEEE/ACM Transactions on
Networking, Vol. 6, No. 6, pp. 686-699, December 1998. doi:10.1109/90.748082

[16] Andra Lutu, Diego Perino, Marcelo Bagnulo, Enrique Frias-Martinez, and
Javad Khangosstar, “A Characterization of the COVID-19 Pandemic Impact
on a Mobile Network Operator Traffic”, Proceedings of the ACM Internet Mea-
surement Conference, Pittsburgh, PA, virtual event, pp. 19-33, October 2020.
doi:10.1145/3419394.3423655

[17] Kyle MacMillan, Tarun Mangla, James Saxon, and Nick Feamster, “Measuring
the Performance and Network Utilization of Popular Video Conferencing Appli-
cations”, Proceedings of the ACM Internet Measurement Conference, virtual event,
pp. 229–244, November 2021. doi:10.1145/3487552.3487842

[18] AndrewMahr, Meghan Cichon, Sophia Mateo, Cinthya Grajeda, and Ibrahim Bag-
gili, “Zooming into the pandemic! A forensic analysis of the Zoom Application”,
Forensic Science International: Digital Investigation, Vol. 36, pp. 301107, March 2021.
doi:10.1016/j.fsidi.2021.301107

[19] Bill Marczak and John Scott-Railton, “Move Fast and Roll Your Own Crypto:
A Quick Look at the Confidentiality of Zoom”, Citizen Lab, University of
Toronto, April 2020. https://citizenlab.ca/2020/04/move-fast-roll-your-own-
crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/

[20] Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi Netravali, and Jennifer Rex-
ford, “Enabling Passive Measurement of Zoom Performance in Production Net-
works”, Proceedings of ACM Internet Measurement Conference, Nice, France,
pp. 244-260, October 2022. doi:10.1145/3517745.3561414

[21] Antonio Nisticò, Dena Markudova, Martino Trevisan, Michela Meo, and Gio-
vanna Carofiglio, “A Comparative Study of RTC Applications”, Proceedings of
IEEE International Symposium on Multimedia, Naples, Italy, pp. 1-8, December
2020. doi:10.1109/ISM.2020.00007

[22] Vern Paxson, “Bro: A System for Detecting Network Intruders in Real-time”,
Computer Networks, Vol. 31, No. 23, pp. 2435–2463, Dec 1999. doi:10.1016/s1389-
1286(99)00112-7

[23] Constantin Sander, Ike Kunze, Klaus Wehrle, and Jan Rüth, “Video Conferencing
and Flow-Rate Fairness: a First Look at Zoom and the Impact of Flow-Queuing
AQM”, Proceedings of Passive and Active Measurement (PAM) Conference, virtual
event, Springer LNCS Vol. 12671, pp. 3–19, March 2021. doi:10.1007/978-3-030-
72582-2_1

[24] Henning Schulzrinne, Stephen L. Casner, Ron Frederick, and Van Jacobson, “RTP:
A Transport Protocol for Real-Time Applications”, IETF RFC 3550, July 2003.
doi:doi.org/10.17487/rfc3550

[25] Wireshark.org, Wireshark Frequently Asked Questions, https://wireshark.org/
faq.html

[26] Zoom, Network and Firewall Settings for Zoom. https://support.zoom.us/hc/en-
us/articles/201362683-Network-firewall-or-proxy-settings-for-Zoom

[27] Zoom, https://www.zoom.us/docs/doc/ZoomConnectionProcessWhitepaper.pdf

232

https://doi.org/10.1145/3487552.3487842
https://www.theverge.com/2020/4/3/21207053/zoom-video-conferencing-security-privacy-risk-popularity
https://www.theverge.com/2020/4/3/21207053/zoom-video-conferencing-security-privacy-risk-popularity
https://doi.org/10.1145/3487552.3487847
https://doi.org/10.1007/978-3-030-98785-5_25
https://doi.org/10.1145/190314.190326
https://doi.org/10.1145/3488660.3493801
https://doi.org/10.1016/j.comnet.2020.107290
https://doi.org/10.1145/3419394.3423658
https://doi.org/10.1145/166237.166241
https://doi.org/10.1007/978-3-030-98785-5_26
https://doi.org/10.1145/258612.258676
https://doi.org/10.1109/90.748082
https://doi.org/10.1145/3419394.3423655
https://doi.org/10.1145/3487552.3487842
https://doi.org/10.1016/j.fsidi.2021.301107
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://doi.org/10.1145/3517745.3561414
https://doi.org/10.1109/ISM.2020.00007
https://doi.org/10.1016/s1389-1286(99)00112-7
https://doi.org/10.1016/s1389-1286(99)00112-7
https://doi.org/10.1007/978-3-030-72582-2_1
https://doi.org/10.1007/978-3-030-72582-2_1
https://doi.org/doi.org/10.17487/rfc3550
https://wireshark.org/faq.html
https://wireshark.org/faq.html
https://support.zoom.us/hc/en-us/articles/201362683-Network-firewall-or-proxy-settings-for-Zoom
https://support.zoom.us/hc/en-us/articles/201362683-Network-firewall-or-proxy-settings-for-Zoom
https://www.zoom.us/docs/doc/ZoomConnectionProcessWhitepaper.pdf

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Zoom
	2.2 Related Work

	3 Experimental Methodology
	3.1 Network Environment
	3.2 Wireshark Traces
	3.3 Empirical Observations

	4 Measurement Results
	4.1 Media Stream Analysis
	4.2 Packet Loss
	4.3 Delay and Jitter
	4.4 Directionality
	4.5 Retransmissions
	4.6 Connection Analysis
	4.7 Bandwidth Probing

	5 Discussion
	5.1 Reflections
	5.2 Performance Implications
	5.3 Recommendations

	6 Conclusions
	Acknowledgments
	References

