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ABSTRACT
Change point detection has recently gained popularity as a method
of detecting performance changes in software due to its ability to
cope with noisy data. In this paper we present Hunter, an open
source tool that automatically detects performance regressions and
improvements in time-series data. Hunter uses amodified E-divisive
means algorithm to identify statistically significant changes in
normally-distributed performance metrics. We describe the changes
we made to the E-divisive means algorithm along with their motiva-
tion. The main change we adopted was to replace the significance
test using randomized permutations with a Student’s t-test, as we
discovered that the randomized approach did not produce deter-
ministic results, at least not with a reasonable number of iterations.
In addition we’ve made tweaks that allow us to find change points
the original algorithm would not, such as two nearby changes. For
evaluation, we developed a method to generate real timeseries, but
with artificially injected changes in latency. We used these data
sets to compare Hunter against two other well known algorithms,
PELT and DYNP. Finally, we conclude with lessons we’ve learned
supporting Hunter across teams with individual responsibility for
the performance of their project.

CCS CONCEPTS
• Information systems→ Database performance evaluation;
• Mathematics of computing → Time series analysis; • Soft-
ware and its engineering → Software performance.
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1 INTRODUCTION
Testing the performance of distributed databases, such as Apache
Casandra, is an integral part of the development process and is
often incorporated into Continuous Integration pipelines where
performance tests and benchmarks can be run periodically or in
response to pushing changes to source code repositories. But given
the complex nature of distributed systems, their performance is
often unstable and performance test results can fluctuate from run
to run even on the same hardware. This result instability is due to a
number of factors including variability of the underlying hardware
[7], background processes and CPU frequency scaling at the OS
level, and application-level request scheduling and prioritisation
[1]. All of this makes the job of identifying whether the change in
performance is the result of a software change or simply noise from
the test extremely difficult to do automatically. Threshold-based
techniques are covered in the literature, but these methods do not
handle noise in benchmark data well and require that threshold
values be set per-test [5]. Additionally, thresholds need to be peri-
odically tuned as performance improvements are added and new
baselines are established.

In the past, we have relied heavily on experienced engineers to
visually inspect graphs and benchmark data to identify changes in
performance. However, this suffers from a number of drawbacks
including:

• Expert knowledge for identifying changes is difficult to teach
other engineers

• Small teams of experts have a limit on the number of tests
they can inspect

• Even experienced engineers can miss changes
Because of these drawbacks, we have recently createdHunter[15],

an open source tool that uses change point detection to find statisti-
cally significant changes in time-series data. Change point detection
has recently gained favour as a method of coping with the inherent
instability, or noise, in performance test and benchmark data [5]
and can identify both performance regressions and improvements.
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Hunter was designed with the goal of eliminating the need for
a dedicated group of engineers to sift through performance test
results. Instead, individual teams can feed their benchmark data to
a central datastore which Hunter pulls from and analyses. We use
Hunter for validating multiple releases across various distributed
database and streaming products which has required that we make
Hunter intuitive and user-friendly for engineers that are experts in
their particular area but not performance experts.

The contributions in this paper are:

• We present an open-source tool that can run change point
detection on any time-series data containingmultiplemetrics
in either a .CSV file or stored on a graphite server.

• We discuss the modifications we have made to the E-divisive
means algorithm to improve its performance and predictabil-
ity of results.

• We develop a method for generating timeseries of real bench-
marking results, with artificially injected changes to latency
at discrete points in time. This allows us to evaluate the ac-
curacy of an algorithm objectively, against a known set of
correct change points.

• We compare Hunter (modified E-divisive means) against two
other change point detection algorithms, DYNP and PELT.

• We share the lessons that we have learned from running
Hunter in a multi-team environment where each team is re-
sponsible for a different product and favors different bench-
marks.

2 HIGH-LEVEL OVERVIEW
Hunter is a command-line tool, written in Python, that detects sta-
tistically significant changes in time-series data stored either in a
CSV file or on a graphite server. It is designed to be easily integrated
into build pipelines [10] and provide automated performance analy-
sis that can decide whether code should be deployed to production.
As well as printing change point data on the command-line, Hunter
also includes support for Slack and can be configured to send results
to a Slack channel.

2.1 Data Source
Hunter can run analysis on data pulled from a graphite server or
from data contained in an CSV file. Graphite support was necessary
to integrate Hunter into our testing and deployment workflow. If
developers are not using graphite as their central repository of
benchmark data, the CSV support provides a common denominator
for feeding data to Hunter.

2.2 Configuration
The data sources that Hunter uses are specified in a YAML configu-
ration file. This configuration file has sections for graphite servers,
Slack tokens, and data definitions. Hunter even supports templat-
ing which allows common definitions to be reused and avoids test
definition duplication. Since we routinely use Hunter on hundreds
of tests and metrics, the template feature helps to keep our con-
figuration file small. For example, we use graphite metric prefixes
to group related metrics together so that all metrics for a specific
Apache Cassandra version are linked by a common string.

One example of this is the test db.20k-rw-ts.fixed, a benchmark
running on Datastax Enterprise that performs read and write op-
erations at a fixed rate of throughput. We run this test in both a
configuration with replication factor 1 and with replication factor
3 and yet despite this difference we can reuse around 95% of the
Hunter configuration because the metric types are the same.

Below is an example configuration file.

graphite:
url: http://graphite.local
suffixes:

- ebdse_read.result

templates:
common_metrics:

metrics:
throughput:

scale: 1
direction: 1

p99:
scale: 1.0e-6
direction: -1

tests:
db.20k-rw-ts.fixed:

inherit:
- common_metrics
tags:
- db.20k-rw-ts.fixed.1-bm2small-rf-1
prefix: performance_regressions.db.20k-rw-ts.fixed

For test data in CSV files, Hunter allows users to specify at-
tributes of the file such as file path, which columns contain times-
tamps, which contains metrics, and the delimiter character used to
separate fields on each line.

2.3 Continuous Integration
Since Hunter is a simple Python application, it has proven trivial to
connect with different teams’ CI pipelines. We use a docker image
to run Hunter against daily performance test results which are
stored on a central graphite server. The Docker image is launched
from a Jenkins job that runs once a day.

2.4 Sending Results to Slack
After running change point detection on a given time-series, Hunter
can submit the results of its analysis to a Slack channel. We have
found that this is the perfect location to notify developers of changes
in performance mainly because each channel is already categorised
by team or project. Developers usually triage the results of Hunter
by investigating any unexpected changes in performance to identify
whether there is a genuine change in performance for the product
or the result was caused by noise in the workload or the platform.

Having Hunter’s results displayed in such a prominent location
as Slack channels has resulted in improvements to the underlying
infrastructure used to run performance tests. When test results
show frequent fluctuations because of noise from the platform, one
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of our teams improved the stability of those platforms so that they
are provided with more actionable results from Hunter.

3 IMPLEMENTATION
Hunter is built on top of the E-divisive Means algorithm available
in the signal_processing_algorithms library from MongoDB [14]
but we have extended it in two ways to improve its efficiency (so
that we can generate results faster) and to get repeatable results
when performing multiple iterations on the same data set.

3.1 E-divisive Means Algorithm
The E-divisive means [12] is an offline change point detection al-
gorithm that uses hierarchical estimation to estimate the number
and locations of change points in a distribution. Since it’s a non-
parametric method, it makes no assumptions about the underlying
data distribution or the change in distribution and is well suited for
use with benchmarking data that is often non-normal. The hierar-
chical aspect comes into play when deciding which collection of
data points to search for change points. E-divisive means divides
the time-series into two parts and recursively searches for change
points.

Individual points are tested using a test statistic from previous
change points which the literature calls q̂, and the p-value of q̂
is determined using random permutation testing which requires
multiple calculations. Using random permutations comes with a
performance cost and we found that detecting change points took
an unreasonably long time for our data set. Additionally, because the
permutations are random we found that the results of Hunter were
non-deterministic and varied from run to run. It is possible to reduce
the non-determinism in the results by increasing the number of
permutations but this has the negative effect of increasing Hunter’s
runtime. In our case running Hunter using the standard E-divisive
means algorithm on hundreds of data points for a single test and
single metric took 2-3 seconds. But to validate a nightly build or
release, developers need the ability to run change point detection
on tens of tests where each test recorded tens of metrics. This would
push the runtime to several minutes, which was no longer ideal.

3.2 Significance Testing
When initially developing Hunter we profiled the code to under-
stand which parts were taking the longest to detect change points
in our data. We discovered that the vast majority of the time was
spent performing significance testing. This wasn’t entirely sur-
prising given the use of the q̂ statistic and its reliance on random
permutations. We switched to using Student’s t-test and saw the
runtime of Hunter reduce by an order of magnitude as well as
providing consistent results when run multiple times on the same
data set. While Student’s t-test is not a robust measure of statistical
significance for arbitrary data sets, it turned out it works extremely
well for our scenario.

We also tested using the Mann-Whitney U test. This would
have been appealing since, unlike the Student’s t-test, it is a non-
parametric test that doesn’t assume the input data is normally
distributed. But it turned out to not behave very well on small
amounts of data, as it requires 30 points to be conclusive. In con-
trast both the original E-Divisive, and our Student’s t-version, are

Figure 1: Temporary anomaly example

able to find changes in extremely short time series with only 4-7
points. Since E-Divisive is a hierarchical algorithm that splits the
original time series into ever smaller windows, this is a significant
difference.

3.3 Fixed-Sized Windows
As we began using Hunter on larger and larger data series, we
discovered that change points identified in previous runs would
suddenly disappear from Hunter’s results. This issue turned out to
be caused by performance regressions that were fixed shortly after
being introduced. This is a known issue with E-divisive means and
is discussed in [5]. Because E-divisive means divides the time series
into two parts, most of the data points on either side of the split
showed similar values. The algorithm therefore, by design, would
treat the two nearby changes as a temporary anomaly, rather than
a persistent change, and therefore filter it out.

Figure 1 illustrates this issue.
Our solution to this problem was to split the entire time series

into fixed-sized windows and run the E-divisive means algorithm
on each window individually. Change points that exist at window
boundaries require special attention since change point detection
algorithms in general are unable to identify whether themost recent
point in a data series is a change point. To address this problem
Hunter allows the windows to overlap and care is taken so that
a change point isn’t reported multiple times because it exists in
multiple windows.

3.4 Weak Change Points
Splitting the data series into windows partially addresses the prob-
lem of missing change points in large data sets, but we also needed
a method of forcing the E-divisive means algorithm to continue re-
cursively analysing the data series. The E-divisive means algorithm
terminates when the significance test, Student’s t-test in Hunter,
fails. If the algorithm first selects a change point with a p-value
above the threshold set by the user (usually 0.05), it will terminate
immediately, even if it would have detected change points below
the p-value had it continued. We refer to change points that fail the
significance test but would lead to other points below the p-value
as weak change points.

The process of handling weak change points has two steps. First,
we use a larger p-value threshold when splitting so that it allows
detection of weak change points. Second, we reevaluate the p-values
and merge the split data series in a bottom-up way by removing
change points that have a p-value above the smaller, user-specified
threshold. We found that without forcing recursion to continue
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Hunter would miss some change points. Our modification results
in much more accurate p-values.

Additionally, we filter out change points that show a small rela-
tive change, e.g. change points where the difference in metric value
is below 5%. This relative threshold acts as a filter to discard change
points that are not actionable, i.e. change points that are too small
for developers to reproduce or verify a fix.

4 EVALUATION
We evaluated our algorithms using benchmark data taken from
a daily Gatling [9] performance test on Datastax Enterprise. The
benchmark data was saved to a CSV file and passed to Hunter using
the following command-line:
poetry run hunter analyse db-gatling.csv

.
The data in db-gatling.csv contains 175 entries and covers 15

months’ worth of data. There are multiple performance changes
contained within, both improvements (higher throughput or lower
latency) and regressions (lower throughput or higher latency).

We opted for reading the data from a CSV file to avoid network
communication delays with the graphite server influencing the
duration of each run. Every algorithm was run 30 times on the
same CSV file and the mean value, along with 95% confidence
intervals, are reported in Table 1.

Since we found that the permutation algorithm produced unsta-
ble results, we have also included the average number of change
points detected for each of the algorithms in Table 1 as well as the
standard deviations.

4.1 Quickly Reverted Regressions
Around 2020-10-10 on the graph in Figure 1 we can see a drop
in the throughput. This performance regression was caused by a
change to the way network packet decoding and processing was
done in Datastax Enterprise. This problematic change was reverted
on 2020-10-21 which explains why the throughput metric returns
to previous values shortly after. Two red lines demarcate the data
range where the regression is present. This is a known problem
with change point detection and is explicitly mentioned in [5].

Both the Student’s t-test and weak change points algorithms
detected this regression and revert in each of the 30 runs through
the data. The permutation based algorithm, only detected these
changes for 15 of the 30 runs, or 50% of the time.

4.2 MongoDB Performance Test Result Dataset
We also used the publicly available MongoDB Performance Test
Result Dataset [13] to compare the performance of E-divisive means
with random permutations, and Student’s t-test with weak change
points filtering as the statistical significance test. This is the same
data set used in [5], so this analysis should be comparable and
familiar to the emerging change point detection community.

We arbitrarily selected 5 tests from the microbenchmark suite,
and only focus on the max_ops_per_sec result. All results are from
task misc_read_commands and variant linux-wt-standalone. The 5
timeseries are shown in Figure 2. To avoid clutter, only one time-
series was decorated with the change points found, but the results
for the other 4 are similar.

Figure 2: 5 tests from the public MongoDB microbench-
marks dataset.

As discussed above, the original E-divisive algorithm is not de-
terministic. Table 2 shows how many change points were found for
100 iterations of each timeseries. The results are alarming. For ex-
ample for Remove.IntNonIdNoIndex (row 5) it finds 4 change points
43% of the time, 3 points 50% of the time, but 7% of the time it finds
zero change points!

Figure 2 also shows the other main issue that we have addressed.
When a regresion is quickly followed by a fix or rebound, then the
original algorithm tends to ignore one or both changes as noise.
The 9th change point in the graph is such an example, it is only
found due to the approach with fixed sized windows in this work.

Finally we can clearly see that our implementation finds many
more change points. (The red diamonds are found only with the
Student’s t-test configuration.) This is an expected result as most
of the modifications are motivated by making the algorithm as
sensitive as possible. Whether all 16 change points are meaningful
is ultimately a subjective judgement, but looking closely at the
graph one can at least understand why the algorithm would have
chosen each point. The implementation offers to filter out changes
that are too small to be actionable, but this feature was not used in
these tests, as we wanted to show the full output of our modified
E-divisive algorithm, without post filtering.

An obvious question we can already anticipate is that if the
original implementation from MongoDB performs this poorly, how
come MongoDB itself has used it so successfully? The answer is
that a higher level in MongoDB’s performance CI was designed
such that if a point was once flagged as a change point, the system
will forever remember it. This way change points would not ran-
domly disappear while a developer is already working to fix it, and
likewise a point marked as a false positive will remain muted and
not re-appear the next day. But the effect relative to the problems
highlighted in this paper is that the overall MongoDB CI system
will eventually find and remember all change points, even if on a
given day the E-divisive algorithm may stop early and only return
a subset. This higher level system was documented in [11] and the
recorded change points are also part of [13].

4.3 Evaluation with a Dataset with Known
Change Points

One weakness in the above analysis, and to our knowledge all
previous literature published on this topic so far, is that judging the
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Table 1: Performance and result accuracy for different significance tests in Hunter’s e.divisive implementation.

Algorithm Mean Duration Mean 95% CI Change points Change points stddev
Permutation 2.221 2.209, 2.233 16 1.174

Student’s t-test 1.863 1.853, 1.873 20 0
Student’s + Weak Change Points 1.594 1.584, 1.603 16 0

Table 2: Distribution of nr of change points found with different statistical tests. (MongoDB data set, 100 iterations)

Algorithm Test name 0 1 2 3 4 5 6 7 8 9 12 14 16 18
Permutation Mixed.FindOneUpdateIntId-50-50 1 1 98
Permutation Mixed.FindThenUpdate-50-50 1 99
Permutation Remove.IntId 64 32 4
Permutation Remove.IntNonIdIndex 61 34 5
Permutation Remove.IntNonIdNoIndex 7 50 43

Student’s + Weak Mixed.FindOneUpdateIntId-50-50 100
Student’s + Weak Mixed.FindThenUpdate-50-50 100
Student’s + Weak Remove.IntId 100
Student’s + Weak Remove.IntNonIdIndex 100
Student’s + Weak Remove.IntNonIdNoIndex 100

accuracy of the algorithm or its implementation is always subjective.
Ultimately it’s the human evaluator who decides whether a reported
change point is a true positive, or "useful", or "actionable". And note
that those may not be the same! This is because an objective truth
about the correct set of change points is not available. If we had
that knowledge, we would not have needed this system to begin
with.

It’s of course possible to generate synthetic timeseries with
changes injected at known steps, such as a sine wave or even white
noise, where the mean or amplitude is changing at discrete points.
However these tests tend to feel naive and E-divisive performs quite
well against them.

To obtain a real data set, we employed Chaos Mesh[3] to artifi-
cially generate network latency in the system under test. In other
words we artificially injected real changes, at known points in time,
into a real benchmark producing otherwise realistic results. The
benchmark used was to test Cassandra with the same toolchain
used for CI[6].

In order to create different time series, we decided on a group of
variables that we varied to generate varying scenarios. We created 9
different scenarios by altering the values of the following variables:
number of changepoints, magnitude of change of variance between
groups, magnitude of change between groups and the length of
groups. A group is defined as the set of points occurring between
two changepoints. Each scenario contains 5 test series, each with a
minor variation. The scenarios themselves can be grouped into three
categories. The first scenario, change inmean, creates change points
by changing the mean of the groups. The variance remains relative
constant. Similarly, change in variance has constant mean and
varying variance. This case is great to replicate noisy environment’s.
Change in both mean and variance realistically replicates noisy
environment’s with random latencies.

Note that the timeseries used for this evaluation is different
from those in previous sections. Whereas previous timeseries have
been a sequence of (nightly) builds, and the data points represent
values like average throughput during a test, in this evaluation the

timeseries is from a single benchmark, and the values are snapshots
each second. This is because waiting for a year to create a time
series of true nightly builds was not practical.

4.3.1 Evaluation Metrics. Having obtained data sets with known
change points, we can now employ objective statistical tests to
measure the accuracy of Hunter. Essentially we have recast the
evaluation task as a machine learning problem, where an algorithm
is expected to produce a known output from a given input training
dataset.

We will evaluate hunter using two metrics, F1 score and Rand
Index. In particular we will be evaluating the p99 metric. p99 in-
dicates that 1 in every 100 users will encounter latency. It is a
common industry standard and also used for performance targets
when developing Cassandra.

4.3.2 True Positives. We will be using the following two variables
to represent the sets of ground truth and predicted points:

𝑋 ∗ : set of ground truth
𝑋 : set of predicted points

True positives are defined as the set of change-points in the
detected class that are real change points i.e they are present in the
set. M represents the scope of error. If the difference between the
predicted points and the true changepoint in less that or equal to
M we will consider it as a correcty predicted changepoint.

𝑇𝑃 (𝑋,𝑋 ∗) := {𝑥 ∈ 𝑋 |∃𝑥∗ ∈ 𝑋 ∗𝑠 .𝑡 .|𝑥 − 𝑥∗ | ≤ 𝑀}
It was important to ensure that there were no duplications ie. if

two points in the predicted set were in the margin of error of the
same point in 𝑋 ∗. A changepoint in 𝑋 ∗ was marked as visited once
a point in 𝑋 was within𝑀 and added to 𝑇𝑃 (𝑋,𝑋 ∗) set and can not
be considered again.

4.3.3 F1 Score. The reasons for using the F1 Score to calculate
the accuracy of hunter are that it is unaffected by the size and
the density of data, it penalizes false positives and credits correct
detections.
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F1 score is defined as

𝐹1 = 2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Precision is the proportion of predicted change points that are
true change points:[17]

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑇𝑃 (𝑋,𝑋 ∗) |

|𝑋 |∗

Recall is the proportion of true change points that are well
predicted:[17]

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑇𝑃 (𝑋,𝑋 ∗) |

|𝑋 |

4.3.4 Rand Index. Another metric we evaluated on was the rand
index.

𝑅𝑎𝑛𝑑𝐼𝑛𝑑𝑒𝑥 (𝑋,𝑋 ∗) = 𝑇𝑃 +𝑇𝑁
𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

• TP : correctly predicts the positive class : True change points
calculated

• TN : correctly predicts the negative class : None in this case
• FP : model incorrectly predicts positive class : |𝑋 ∗ |−|𝑇𝑃 (𝑋,𝑋 ∗) |
• FN :model incorrectly predicts negative class: |𝑋 |−|𝑇𝑃 (𝑋,𝑋 ∗) |

4.3.5 Benchmarking against PELT and DYNP. With an objective
truth to benchmark against, it also becomes possible to compare
Hunter against alternative change point detection algorithms. We
therefore also present results from two other well-known offline
algorithms PELT and DYNP. These algorithms were used using the
ruptures package in python.[17]

4.3.6 Results. We ran hunter over 45 test runs. The test runs were
ran on a GKE cluster using Kubernetes. The cluster was ran on 4 x
n2-standard-4 nodes in zone us-central1-a.

All the algorithms were evaluated on two metrics. It can be seen
that hunter has consistently outperformed both pelt and dynp on
both the metrics. In all the experiments we had an margin of error
as 10 seconds.

Figure 3: Correlation between F1 and number of points

4.3.7 Correlation to the number of points. There is a positive corre-
lation between the number of points and accuracy. As the number
of points increase so does hunter’s performance. For Figure 3 it
can be seen that hunter outperformed both PELT and DYNP with a
huge margine.

4.3.8 Correlation between delta error and algorithms. Hunter’s per-
formance increases if we allow a larger margin of error. Hunter is
able to get an F1 score of 0.1481 with an delta error of one second,
where PELT and DYNP need a margin of error of at least 3 seconds
to get a non-zero score. This is a key characteristic why E-divisive
has served us well for detecting regressions in CI. Preferably we
like to know the exact commit that caused a regression, not just the
general area whereabouts a regression is suspected. E-divisive is
superior in satisfying especially this requirement! The performance
of all algorithms increases drastically as we give them slightly more
flexibility in terms of margin of error. With a margin of error of 4
seconds we see that the performance increases to 0.612 for Hunter.
DYNP starts to catch up with Hunters accuracy at 15 seconds.

Figure 4: Correlation between F1 and delta error

5 LESSONS LEARNED
We have now been operating Hunter for multiple teams for close
to 2 years. In that time we’ve made a number of improvements
in addition to the algorithmic changes covered in Section 3. The
lessons we have learned, and the changes made in response, helped
Hunter to become the de facto choice for statistical significance
detection inside of DataStax.

5.1 More Data Points Are Better
We originally started off with 2 weeks worth of data points. Given
that performance tests were run once a day this gave us 14 data
points. This decision was primarily because we wanted to avoid the
delay in collecting lots of data from our graphite server. This proved
to be far too few data points to get meaningful results from Hunter
and we increased it to a month (around 30) by default. This wider
time range has allowed Hunter to deal with noise in the results
much better and now we see fewer false positive change points. We
plan to experiment with data sets covering a longer period of time
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Table 3: Evaluation results

Algorithm Hunter Pelt Dynp

Metric 𝐹1 𝑅𝑎𝑛𝑑 𝐹1 𝑅𝑎𝑛𝑑 𝐹1 𝑅𝑎𝑛𝑑

Single Change Point

Scenario1 0.261904 0.166667 0.0 0.0 0.0 0.0

Scenario2 0.466667 0.305556 0.027027 0.013698 0.285714 0.166667

Scenario3 0.466667 0.305556 0.040556 0.020698 0.285714 0.166667

Two Change Points

Scenario4 0.666667 0.666667 0.060606 0.031746 0.190476 0.111112

Scenario5 0.888889 0.833334 0.090909 0.047619 0.095238 0.055556

Scenario6 0.490476 0.327777 0.0 0.0 0.0 0.0

Four Change Points

Scenario7 0.925926 0.866667 0.249999 0.142857 0.444445 0.285714

Scenario8 0.731313 0.579365 0.085713 0.045073 0.095238 0.055556

Scenario9 0.818182 0.714286 0.016460 0.00843 0.0 0.0

in the future to see whether we can reduce the false positive rate
even further.

5.2 New Change Points Matter Most
Once a change point has been reported to a developer it does not
make sense to keep reporting it. When Hunter discovers many
change points, reporting them via Slack can make the results over-
whelming and make it difficult for developers to analyse. Things
are made worse if a change point signals a performance regression
that has since been fixed because Hunter will report both the old
regression and more recent improvement as separate changes.

To quieten the output of Hunter’s Slack feature, we capped re-
sults to only show change points from the last 7 days. While this
does ignore valuable data because the magnitude of the change
point can be updated as new data is processed, those changes are
not important enough to spam everyone on the Slack channel. In
the case where developers need to see the full list of results they
can run Hunter manually on the data series.

5.3 Change Point Detection Cannot Fix Noisy
Data

One of the teams using Hunter was afflicted with frequent change
point messages via the Slack bot. After investigating these change
points they discovered that the performance of the application
hadn’t changed, rather the change in benchmark results was caused
by unstable hardware performance in a private data center. Changes
of +- 10% for the median latency were typical.

While Hunter can detect statistically significant changes in time
series data, it is still not impervious to data that contains wildly
fluctuating points such as that produced by running benchmarks
on untuned hardware.

However, the fact that the team was unable to fully take advan-
tage of Hunter motivated them to investigate the underlying issue

Figure 5: Unstable performance example

and then migrate their benchmarks and tests to the cloud, which
was shown to produce more repeatable results than the internal
benchmarking lab hardware. After the migration, the benchmark
results were much more stable and Hunter produced far fewer false
positives. Figure 5 shows benchmark data for a single Paxos-based
performance test. Before running the test on the public cloud on
2021-09-18 Hunter detected 3 change points per month, on average.
All of these were false positives, that is changes in results that were
not caused by software or configuration modifications. After the
migration Hunter hasn’t detected a single false positive.

6 RELATEDWORK
We used the work in [5] directly when creating Hunter and the
novel contributions in this paper address some of the open questions
posed there. Specifically, the authors of [5] noted the bias inherent
in the E-divisive means algorithm which favours detecting change
points in the center of clusters. They make up for this bias by
combining change point detection with anomaly detection which
can identify large changes in performance as soon as the first data
point in the new series is seen. Our use of windows for analysing
data series addresses this same bias without resorting to anomaly
detection which lacks the same sensitivity to changes as change
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point detection. Additionally, we are able to detect changes sooner,
usually within 1-2 days.

Continuous Benchmarking [10] is a common technique for en-
suring the performance of a product is maintained or improved
as new code is merged into the source code repository and the
literature includes examples of using change point detection [4]
and threshold-based methods to identify changes in software per-
formance [16] as part of a continuous integration pipeline. Multiple
change point detection algorithms can also be combined into an en-
semble which can outperform the individual algorithms [19] when
identifying performance changes.

The change point detection literature is vast and [2] and [17]
provide excellent overviews and taxonomies of online and offline,
supervised vs unsupervised, change point detection algorithms. In
[2] in particular, online sliding window algorithms are covered in
detail.

Online change point detection has also been applied to identify-
ing changes in performance. [20] combines change point detection
with probabilistic model checking of interval Markov chains to
promptly detect changes in the parameters of software systems and
verify the system’s correctness, reliability, and performance.

Running performance tests in the cloud is known to be suscepti-
ble to performance variability [18] even when running the same
software on the same hardware at different times. Historical per-
formance data can be used to predict the future performance in
cloud environments and [21] explores two change point detection
algorithms, robseg and breakout, to predict variability in the cloud
which enables users to plan repeatable experiments. [8] uses the E-
divisive means algorithm to answer the question: does performance
stability of serverless applications vary over time?

7 CONCLUSION
Detecting performance regressions across a range of product ver-
sions requires automation to be able to identify them quickly and
without needing expert developers tomanually detect them. Change
point detection has emerged as a solution to this problem because
of its ability to cope with noise in the data that is inherent to per-
formance testing.

Hunter is an open source[15] tool that uses change point detec-
tion to automatically identify changes in time-series data, taken
from either a graphite server or CSV file, and report the presence
of change points. Hunter extends the E-divisive Means algorithm
to incorporate a Student’s t-test which removes the indeterminism
present in the original version and provides reproducible results
every time it is run on a single data series. We also introduced a
sliding window technique to detect change points that are tempo-
rally close to each other. In addition to outperforming the original
E-divisive means implementation, Hunter seems to also outperform
two other well known algorithms, PELT and DYNP.
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