
A Systematic Approach for Benchmarking of Container
Orchestration Frameworks

Martin Straesser
University of Würzburg
Würzburg, Germany

martin.straesser@uni-wuerzburg.de

Jonas Mathiasch
University of Würzburg
Würzburg, Germany

jonas.mathiasch@informatik.uni-wuerzburg.de

André Bauer
University of Würzburg
Würzburg, Germany

andre.bauer@uni-wuerzburg.de

Samuel Kounev
University of Würzburg
Würzburg, Germany

samuel.kounev@uni-wuerzburg.de

ABSTRACT
Container orchestration frameworks play a critical role in mod-
ern cloud computing paradigms such as cloud-native or serverless
computing. They significantly impact the quality and cost of ser-
vice deployment as they manage many performance-critical tasks
such as container provisioning, scheduling, scaling, and network-
ing. Consequently, a comprehensive performance assessment of
container orchestration frameworks is essential. However, until
now, there is no benchmarking approach that covers the many dif-
ferent tasks implemented in such platforms and supports evaluating
different technology stacks. In this paper, we present a systematic
approach that enables benchmarking of container orchestrators.
Based on a definition of container orchestration, we define the core
requirements and benchmarking scope for such platforms. Each re-
quirement is then linked to metrics and measurement methods, and
a benchmark architecture is proposed. With COFFEE, we introduce
a benchmarking tool supporting the definition of complex test cam-
paigns for container orchestration frameworks. We demonstrate
the potential of our approach with case studies of the frameworks
Kubernetes and Nomad in a self-hosted environment and on the
Google Cloud Platform. The presented case studies focus on con-
tainer startup times, crash recovery, rolling updates, and more.

CCS CONCEPTS
• Software and its engineering → Software performance; •
Computer systems organization→ Cloud computing; • Net-
works → Network performance analysis.

KEYWORDS
container orchestration; benchmarking; kubernetes; nomad; per-
formance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’23, April 15–19, 2023, Coimbra, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0068-2/23/04. . . $15.00
https://doi.org/10.1145/3578244.3583726

ACM Reference Format:
Martin Straesser, Jonas Mathiasch, André Bauer, and Samuel Kounev. 2023.
A Systematic Approach for Benchmarking of Container Orchestration
Frameworks. In Proceedings of the 2023 ACM/SPEC International Conference
on Performance Engineering (ICPE ’23), April 15–19, 2023, Coimbra, Portugal.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3578244.3583726

1 INTRODUCTION
Container orchestration (CO) frameworks are the engines of mod-
ern cloud environments. According to the CNCF Annual Survey
2021 [9], 96% of surveyed organizations and 5.6 million developers
are using or evaluating Kubernetes, the most popular container
orchestration framework. CO frameworks act as an abstraction
layer for access to a computing cluster and can have different roles.
In cloud-native computing, developers interact directly with CO
frameworks and use them for container deployment, maintenance,
storage, and more. In serverless computing, they are the backbone
of serverless platforms, responsible for critical tasks such as con-
tainer provisioning, placement, and scaling. In either use case, CO
frameworks fulfill multiple performance-critical tasks. From a per-
formance engineering perspective, it is therefore essential to evalu-
ate frameworks like Kubernetes because they significantly impact
the performance of cloud applications, as shown in several stud-
ies [24, 26, 33, 34].

Both conceptual and technical challenges arise for comprehen-
sive performance evaluation and benchmarking of container or-
chestration frameworks. Conceptually, a clear benchmarking scope
has to be established, which is not trivial as the term container
orchestration is not used uniformly. However, a wide range of tasks
is usually associated with CO frameworks, for example, load balanc-
ing, networking, scaling, scheduling, and availability. All these tasks
influence each other and come with different metrics for which
measurement methods have to be defined. Another challenge is the
interference between the application and orchestrator performance.
On the one hand, we want to look at the performance of CO frame-
works as isolated as possible. On the other hand, we do not want to
lose sight of the application, which, in practice, strongly influences
end-to-end metrics like response times that are crucial for users.
From a technical point of view, one problem is that different frame-
works have very different technology stacks and interfaces. Existing
benchmarking approaches are limited to analyzing single orches-
tration tasks or only considering one specific CO framework and
technology stack. To the best of our knowledge, there is currently

187

https://doi.org/10.1145/3578244.3583726
https://doi.org/10.1145/3578244.3583726
https://www.acm.org/publications/policies/artifact-review-badging

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Martin Straesser, Jonas Mathiasch, André Bauer, & Samuel Kounev

no approach that supports benchmarking multiple orchestration
frameworks and covers the plurality of container orchestration
tasks.

In this paper, we take a systematic approach to benchmarking
of container orchestration frameworks. Based on a review of differ-
ent definitions of container orchestration, we derive a meaningful
benchmarking scope and use cases. Next, we define generic core
requirements for CO frameworks and associate them with spe-
cific performance metrics. We then design an orchestrator-agnostic
benchmark architecture for evaluating these metrics. Our bench-
marking framework COFFEE implements the designed architecture
and allows the definition of complex benchmarking campaigns
through a user-friendly script-like language. We use COFFEE to
analyze and compare the performance of the CO frameworks Ku-
bernetes and Nomad in a self-hosted environment as well as on the
Google Cloud Platform.

The goal of this paper is to bring the topic of benchmarking con-
tainer orchestration frameworks into the public eye and enable com-
prehensive performance evaluation through orchestrator-agnostic
benchmarking methodology and framework. The proposed met-
rics and the framework developed in this work can help users to
decide which orchestration framework to use depending on their
use case and compare different configuration options. In summary,
the contributions of this paper are:

• We define a benchmarking scope for container orchestra-
tion frameworks, including core requirements, performance
metrics, workloads, and methodology;

• We present a benchmark architecture and COFFEE, a flexible
and extensible tool for benchmarking of CO frameworks, as
an implementation of our approach;

• We provide empirical evidence for the usability of our ap-
proach by conducting case studies in two different environ-
ments with Kubernetes and Nomad as frameworks under
test.

The remainder of this paper is structured as follows: In Section 2,
we give some background on the term container orchestration and
the two frameworks evaluated in this work. In Section 3, we derive
requirements for container orchestration frameworks and asso-
ciate metrics with every requirement. Furthermore, we present a
benchmark architecture for container orchestration frameworks.
Section 4 presents our benchmarking framework COFFEE, which
implements the proposed architecture. Section 5 then features sev-
eral case studies, including Kubernetes and Nomad as frameworks
under test. We discuss the limitations of our work and open chal-
lenges in Section 6. Section 7 summarizes related work and outlines
shortcomings. Finally, Section 8 concludes the paper.

2 BACKGROUND
This section focuses on the term container orchestration and intro-
duces Kubernetes and Nomad, two state-of-the-art CO frameworks
investigated in this work. There is not one commonly accepted
and highly cited definition of the term container orchestration.
Casalicchio [6] states that container orchestration is concerned
with managing containers at runtime and supporting deployment,
execution, and maintenance. Common features are resource limit
control, scheduling, load balancing, health check, fault tolerance,

Cluster Control Plane

Control Plane Nodes

Node Agent

Container Engine

Operating System

Hardware

Worker Node

Node Agent

Container Engine

Operating System

Hardware

Worker Node

Node Agent

Container Engine

Operating System

Hardware

Worker Node

Figure 1: Components of a container cluster with container
orchestration (green).

and autoscaling. Khan [18] names seven capabilities of container
orchestration platforms: cluster state management and scheduling,
high availability and fault tolerance, security, networking, service
discovery, continuous deployment, monitoring, and governance. Ro-
driguez and Buyya [28] propose a container orchestration reference
architecture with the key tasks of container provisioning, monitor-
ing, scheduling, as well as accounting and admission control. As
over the past years, CO frameworks experienced massive growth
in usage and community development, none of these definitions
covers the full feature bandwidth of modern platforms.

Looking at non-scientific sources and analyzing the definitions
from technology leaders like IBM [14], VMware [10], and others, we
found the definition of Red Hat [15] especially helpful, as it matches
the features of modern frameworks well. It states that container
orchestration automates the deployment, management, scaling, and
networking of containers. The following typical tasks are named:
provisioning and deployment, configuration and scheduling, re-
source allocation, container availability, scaling, load balancing
and traffic routing, health monitoring, application configuration,
and securing container interaction. This definition overlaps with
the ones from the scientific literature but has two advantages in
particular. It introduces container orchestration as a generic and
broad term but also names concrete responsibilities of modern CO
frameworks. We use this definition as a basis for deriving the scope
of benchmarking we target in this work.

From a technical point of view, CO frameworks represent an
abstraction layer for accessing a cluster capable of running con-
tainerized applications. Figure 1 schematically shows the main
components of a container cluster. Usually, a control plane (e.g.,
a set of master nodes) interacts with several other nodes (worker
nodes) via a node agent. The worker nodes run a container engine
(e.g., containerd1). The container engine uses kernel functions or
low-level software like cgroups to allocate resources.

We use two container orchestration frameworks in our case stud-
ies. Our first framework under test is Kubernetes,2 which is the
current market leader [9]. Initially developed by Google, Kuber-
netes nowadays has a large community. Containers in Kubernetes
1https://containerd.io/
2https://kubernetes.io/

188

https://containerd.io/
https://kubernetes.io/

A Systematic Approach for Benchmarking of Container Orchestration Frameworks ICPE ’23, April 15–19, 2023, Coimbra, Portugal

are organized in so-called pods, and each pod is assigned an IP
for networking. Kubernetes uses a declarative interaction concept
where desired states (like the number of running service instances)
are constantly compared to observed states. Our second frame-
work under test is Nomad,3 a container orchestration platform
developed by HashiCorp. Nomad supports both containerized and
non-containerized applications. It uses Consul4 to enable service
networking. The equivalents to pods in Kubernetes are so-called
tasks. Compared to Kubernetes, Nomad claims more simplicity and
high scalability, supporting clusters of over 10,000 managed nodes.
The Nomad website [25] lists companies that use the framework in
production.

3 BENCHMARKING APPROACH
In this section, we explain our approach to enable benchmarking of
CO frameworks. First, we define the use cases and the benchmark-
ing scope. We then formulate core requirements for CO frameworks
and link performance metrics to each requirement. The section ends
with our proposed benchmark architecture, which allows one to
measure and evaluate the performance of CO frameworks.

3.1 Benchmarking Use Cases and Scope
Various implications and use cases for benchmarking are created
from the technical scheme of container orchestration frameworks
presented in Figure 1. When we evaluate the performance of a CO
framework, we automatically examine the entire technology stack;
that is, the software and hardware of the nodes also play a role.
This has to be considered when interpreting benchmarking results.
In general, we identify three use cases for the benchmarking of
container clusters:

1. Comparing different CO frameworks: In this case, a fixed re-
source landscape is given, and different CO frameworks are eval-
uated in this context. The use case in practice is to choose a CO
framework for a specific environment.

2. Comparing configuration options of one CO framework: Similar
to the first use case, the environment is not changed. Instead, a
different configuration of the CO framework is used (e.g., a different
scheduling algorithm or networking solution). The use case in prac-
tice is fine-tuning a specific framework (e.g., comparing different
networking plugins for Kubernetes).

3. Comparing different cluster environments: In this case, the focus
is not on the CO framework but on the nodes. There can be different
configurations of the nodes (e.g., container engines, operating sys-
tems, or hardware resources). One use case in practice is selecting
the size of VM instances in public clouds.

We focus on use cases 1 and 3 and present respective case stud-
ies in Section 5. To enable benchmarking of CO frameworks, we
have to define a benchmarking scope, that is, the (performance-
relevant) tasks a CO framework is assumed to fulfill that are subject
to evaluation through benchmarking. In Section 2, we discussed
that the term container orchestration is not clearly defined. How-
ever, we also discovered overlaps between different definitions and
associated tasks of CO frameworks. In this paper, we assume the
following performance-critical tasks of CO frameworks:

3https://www.nomadproject.io/
4https://www.consul.io/

• T1: Container provisioning and deployment
• T2: Container scheduling
• T3: Resource allocation
• T4: Container availability
• T5: Health monitoring
• T6: Scaling
• T7: Load balancing and traffic routing
• T8: Inter-container networking

This list correlates strongly with the definition by Red Hat [15].
However, we omit the security properties of CO frameworks, as they
are hard to generalize across different frameworks. Given this list of
assumed tasks of CO frameworks and the environment setting from
Figure 1, three necessary properties for our benchmarking approach
emerge. First, it must provide a level playing field for evaluating
different CO frameworks. This is implied from use case 1 and goes
along with the best practice of designing a fair benchmark that is
not tailored to a specific system under test [20]. Second, since we are
dealing with different nodes and technology stacks, the measured
performance metrics must be generic, with minimal assumptions
on the orchestrator and cluster nodes. Third, the variety of tasks
of a CO framework necessitates broad coverage and metrics for
every task. One should also consider that all of these tasks are
concurrently executed, and therefore interdependencies between
individual tasks exist. A benchmarking approach should therefore
target as many tasks as possible in parallel instead of evaluating
them one after the other.

3.2 Core Requirements and Metrics
Now that we have defined the scope of our benchmarking effort
and the tasks to be tested, we need to decompose the abstract list
of tasks into concrete fine-granular requirements, which can then
be evaluated and quantified by specific metrics. Table 1 shows an
overview of seven core requirements for CO frameworks and which
tasks are addressed by these requirements. In the following, we
detail these requirements and give metrics that can quantify how
well a CO framework fulfills each requirement. The metrics should
be easily measurable and not impose any assumptions on the nodes
or the orchestration framework.

R1. One of the core requirements of any CO framework is the
ability to start containers. If a new container has to be launched,
the scheduling algorithm decides first on which node the container
should be placed. Then, node resources are reserved, and if neces-
sary, the image is downloaded from a registry before the container
is started. The main metric to quantify the start performance is
the readiness time, that is, the time it takes from issuing the start
command until the container context is initialized and the container
is running. The readiness time consists of different phases: schedul-
ing, image pull, and start time. The start time is the time it takes
for the container engine to process the image manifest and set up
the controller environment (e.g., control groups and namespaces).

R2. Every container that was started should also be terminated
and removed. The associated performance metric is the removal
time. It is to be expected that the removal time is significantly
lower than the readiness time since no placement and image pull
take place. However, depending on the container, there may also

189

https://www.nomadproject.io/
https://www.consul.io/

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Martin Straesser, Jonas Mathiasch, André Bauer, & Samuel Kounev

Requirement T1 T2 T3 T4 T5 T6 T7 T8
R1: Containers can be started. X X X X
R2: Containers can be removed. X
R3: Containers can be restarted manually or in case of failures. X X X X X X
R4: Containers can be updated to a new version. X X X X X
R5: Provisioned resources can be varied depending on workload. X X X X X
R6: Requests from external sources are balanced across running containers. X
R7: Containers are able to communicate with other containers in the same cluster. X

Table 1: Core requirements for container orchestration frameworks and related tasks from Section 3.1.

be pre-destroy statements that allow a graceful exit (e.g., a clean
disconnect from a database).

R3. Automated restarts are usually out of scope for container
engines but a core task of CO frameworks. The reasons for restarts
can be various: developers can manually trigger restarts, or unex-
pected errors in the container process might cause them. Another
reason could be that the container runs out of resources (e.g., if it is
overloaded). In the latter case, health monitoring should track the
state of the container. One performance metric for this requirement
is the restart time. It comprises the removal time of the old container
and the readiness time of the new one. In case of an error-induced
restart, the failure discovery time can be considered, that is, the time
difference between the occurrence of an error and the time when
the restart is initiated. If the container receives external requests,
the load balancing algorithm must also react and not allocate any
additional load to the container. In this case, the number of failed
requests can also be considered a performance metric.

R4. In continuous deployment, it is essential to be able to perform
a rolling update, that is, to update a set of containers to a new
version. One common use case is to change the container image.
The task of the CO framework is to perform and coordinate this
update as fast as possible but also to maintain availability and avoid
violating service-level agreements. Consequently, we use the total
update time alongside the response time and the number of failed
user requests as performance metrics.

R5.Asmentioned in Section 3.1, scaling is one of themain tasks of
CO frameworks. Dynamic resources can be the number of container
instances (horizontal scaling), the computing resources allocated
to a container (vertical scaling), or the number of nodes in the
cluster (cluster scaling). Typically, autoscalers are evaluated using
a mixture of cost and QoS metrics such as response times [13, 31].

R6. In the context of microservice applications, usually multiple
application instances are deployed. When a user requests a service,
the request must be assigned to a chosen instance. Load balancing is
used to avoid overloading and performance degradation. Metrics for
the evaluation of load balancers are the end-to-end response times
of user requests and the load balancer’s generated overhead [39].
In this paper, we also consider the distribution of requests over
service instances to determine how the load balancer distributes
requests over a set of instances.

R7. Communication between containers is essential for multi-
service applications. However, also for containers of the same kind,
container-to-container communication can be essential (e.g., when
states have to be synchronized). Usually, this kind of networking
is realized using overlay networks. Classical network metrics like

Proxy

Test
Container

Worker
Node

Container Cluster

Benchmark
Controller

Load
Generator

Test
Container

Worker
Node

Control
Plane

Load
Balancer

User

Benchmark
Spec.

Control Flow Workload

Figure 2: Benchmark architecture and components (blue).

throughput, round-trip time, and latency can be used to evaluate
in-cluster networking.

3.3 Benchmark Architecture
In this section, we propose an architecture that can quantify a CO
framework’s performance based on the requirements and associated
metrics defined above. As mentioned in Section 3.1, the architecture
should be as generic as possible and not depend on the specifics of
individual orchestration frameworks and underlying technology
stacks.

Figure 2 shows our proposed architecture. The core component
is the benchmark controller, which receives the benchmark speci-
fication from the user. Furthermore, test containers are deployed
in the cluster. Individual instructions within the benchmark spec-
ification can either generate requests to the cluster control plane
(e.g., for container starts) or selected test containers (e.g., for failure
injection). In the latter case, a proxy is needed. This is because indi-
vidual containers are usually not directly addressable from outside
as a network barrier between cluster and external users exists. A
load generator is used to imitate user requests. The benchmark con-
troller and load generator should be deployed outside the cluster to
avoid interferences. Several test container instances communicate
with each other via in-cluster networking.

This architecture satisfies all the properties we defined earlier.
The only assumptions made about the CO framework are that a
proxy can be deployed, the controller has access to the control plane,
and a load generator can send requests to the cluster. Modern CO
frameworks fulfill all these requirements. Furthermore, the pro-
posed architecture allows us to measure many of the performance
metrics from Section 3.2. The controller generates a timestamp

190

A Systematic Approach for Benchmarking of Container Orchestration Frameworks ICPE ’23, April 15–19, 2023, Coimbra, Portugal

Command Description
START <n> Starts n test container instances
RESTART <n> Restarts n instances
HEALTH <n> Sets unhealthy flag in n instances
CRASH <n> Causes crash of n instances
UPDATE <n> Updates n instances (changes image)
NETWORK Measures round-trip time between

running instances
REMOVE <n> Shuts down n instances
LOAD / ENDLOAD Starts/Ends load generation
SEQ / ENDSEQ Starts/Ends a sequence
LOOP <n> / ENDLOOP Starts/Ends a loop with n iterations
OFFSET <t> Invokes next command after t sec.
DELAY <t> Pauses a sequence/loop for t sec.

Table 2: Commands for test campaign definition.

when the command is sent for the measurements of readiness, re-
moval, update, and outage times. The created, removed, or updated
test container instance also reports a timestamp, and the controller
can calculate the time difference between the two events. Using
a load generator enables measuring metrics like response times,
the number of failed user requests, and more. Further fine-granular
metrics might be requested via the cluster control plane. The built-
in user-level metrics might be complemented with system-level
metrics, like CPU utilization of the nodes. However, note that no
extended monitoring capabilities are necessary to use the proposed
benchmark architecture.

4 BENCHMARKING FRAMEWORK
This section introduces COFFEE, a benchmarking framework for
container orchestrators. Our benchmarking concept and reference
architecture served as a basis for the design of COFFEE. Accordingly,
it consists of 3 main components: controller, test container, and
proxy. All components use Java and Spring as implementation
technologies. The source code of COFFEE and all examples used in
this paper can be found on GitHub5 and Zenodo.6

The controller is the most complex component of COFFEE, as
Figure 3 shows. The controller requires two inputs. First, the test
campaign must be specified. The textual input is translated into a
set of operations. All currently supported operations can be found
in Table 2. In general, there are three types of operations. The
first group interacts with the load generator (LOAD, ENDLOAD).
COFFEE provides an interface for the HTTP Load Generator,7 but
other load generators can be integrated with low effort. The second
group consists of orchestrator-agnostic operations forwarded to
the test containers via the proxy (CRASH, HEALTH, NETWORK).
These are processed by the test containers and therefore do not need
to be re-implemented for different orchestrators. The third group
of operations is orchestrator-specific and needs to be implemented
for each framework. It includes container starts (START), removals
(REMOVE), updates (UPDATE), and manual restarts (RESTART).

5https://github.com/DescartesResearch/COFFEE
6https://doi.org/10.5281/zenodo.7603961
7https://github.com/joakimkistowski/HTTP-Load-Generator

Test Campaign
Parser

Load
Generator

Cluster
Client

Config
Loader

Monitoring
Server DB

Benchmarker

Test
Campaign

Cluster
Config

COBench Controller

specifies specifies

Result
Data

Result
Data

Container Cluster

Load
Balancer

COBench
Proxy

Control
Plane

Cluster
Monitoring

Test
Container

configures

C
o

m
m

a
n

d
s

A
P

I
R

eq
u

es
ts

init

W
o

rk
lo

a
d

uses

Figure 3: COFFEE controller in detail.

Furthermore, auxiliary commands enable the definition of com-
plex test campaigns. By default, all commands are executed asyn-
chronously and in parallel; by specifying an OFFSET, the user can
specify when a command should be sent. If a sequential execution
of a series of commands is desired, one can wrap this sequence
by SEQ/ENDSEQ or LOOP/ENDLOOP for repeated executions. A
command is considered completed if all expected responses/metrics
of the command have been reported to the controller. For exam-
ple, if five containers need to be started, the controller waits to
continue a sequence until five start times have been reported. The
keyword DELAY can be used within a sequence to set a pause
between operations.

LOOP 100
START 10
DELAY 20
LOAD

DELAY 120
CRASH 10
DELAY 120

ENDLOAD
REMOVE 10
DELAY 30

ENDLOOP

Listing 1: Example test campaign for failure recovery.

Listing 1 shows an example test campaign, which is also used in
Section 5.3. Here, we use LOOP 100 to indicate that this experiment
should be repeated 100 times. First, we start ten test containers.
Afterward, we wait 20 seconds until the load generator is started.
The configuration of the load generator contains many parameters,
e.g., request rates over time and target IPs, and is done not within
the test campaign but dynamically at runtime. After starting the
load generation, the test script is paused for 2 minutes. This is
the warmup phase for the test containers, as the load generator
sends requests in parallel. In the next step, a CRASH command
is issued, which terminates all ten running containers. We again
wait 2 minutes while the load generator continues to record the

191

https://github.com/DescartesResearch/COFFEE
https://doi.org/10.5281/zenodo.7603961
https://github.com/joakimkistowski/HTTP-Load-Generator

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Martin Straesser, Jonas Mathiasch, André Bauer, & Samuel Kounev

response times during that recovery phase. The load generator is
shut down, and all ten containers are removed at the end of one
experiment run. The 30 seconds delay at the end provides a short
pause before the next loop iteration.

The specified test script can be reused for different frameworks.
However, the controller also needs an orchestrator-specific config-
uration containing at least the cluster control plane address, the
orchestrator type, and authentication data if necessary. Currently,
COFFEE supports Kubernetes and Nomad as frameworks under
test. COFFEE can be extended to work with other orchestrators as
well. Therefore, the orchestrator-specific configuration, the four
orchestrator-specific commands explained above, and some query
operations, like the retrieval of node names, must be implemented.
The controller is also concerned with processing the experiment
results. It receives result data from the cluster and writes them to a
result database. A summary of the most important results can be
printed on the console at the end of the experiment.

The second core part of COFFEE consists of the test containers
deployed in the cluster. Once the test container’s context is initial-
ized, a timestamp is taken and sent to the controller so that it can
confirm the instance start and determine the readiness time. Once
the test container is started, six endpoints can be accessed. The
load endpoint is accessed by the load generator and performs some
dummy operations that can be freely implemented. In our case, it
creates CPU load by checking prime numbers and doing factorial
calculations with Java’s BigInteger class. The load endpoint also
contains a counter tracking the number of received requests from
the load generator. The second endpoint crash causes the process
to end with a non-zero exit code. The third endpoint is used by
the container orchestrator for HTTP-based health monitoring. The
fourth endpoint is called in case of a HEALTH command and causes
the HTTP-based health monitoring to fail. The last two endpoints
are used for NETWORK tests. One is called when the instance
should send requests to other containers, while the other is used
for receiving requests from other instances. Before the container is
terminated, it sends a timestamp to the controller to confirm the
instance removal. In this step, the number of received load requests
is also submitted to the controller.

The proxy application acts as a reverse proxy and forwards the
commands HEALTH, NETWORK, and CRASH to specific contain-
ers. It receives the target addresses from the controller. Overall,
COFFEE offers a simple design and is easy to use. It enables autom-
atized benchmarking experiments with different CO frameworks.
By design, COFFEE takes benchmark scalability into account by
reducing the number of requests to the controller to a minimum.
As COFFEE makes no critical assumptions on the test cluster, it
can be used with test clusters of different sizes and resources. The
proxy and test containers can be scaled both horizontally and verti-
cally if necessary. The scalability of the load generation depends on
the used generator. The HTTP Load Generator used in this work
supports distributed execution on various nodes to achieve high
request rates.

5 CASE STUDIES
In this section, we use COFFEE for some selected case studies.
We compare the CO frameworks Nomad and Kubernetes in a self-
hosted setup and on virtual machines running in the Google Cloud.
The test scenarios include container provisioning and network-
ing, failure recovery, and rolling updates. Before that, we present
the technical setup in more detail. All measurement results and
evaluation scripts are available in our replication package.8

5.1 Technical Setup
Each test cluster consists of three worker nodes and one node acting
as the control plane. In the case of our self-hosted environment,
the CO frameworks run on bare-metal servers of type HPE Pro-
Liant DL360 Gen9 with Intel(R) Xeon(R) CPU E5-2650 v4 and 16
GiB DDR4 RAM and Ubuntu 18.04.6 LTS as the OS. In the Google
Cloud, we use VM instances of type e2-standard-8 with Ubuntu
22.04 LTS placed in one common compute zone. The COFFEE con-
troller, result databases, and load generators run on independent
machines outside the test cluster to avoid interferences. We use
Kubernetes version v1.24.4 in the self-hosted setup and the equiva-
lent v1.24.4-gke.800 in the Google Kubernetes Engine (GKE), both
with containerd v1.6.6 as the container engine. For container net-
working, we use Flannel v0.19.2 as the networking plugin in our
self-hosted environment, while GKE provides a built-in networking
solution. For Nomad, we use version v1.4.1 with Docker v20.10.18
and Consul v1.13.2. Nomad also requires the manual deployment
of a load balancing solution. For this, we use HAProxy v2.6.2. Note
that to the best of our knowledge, Google Cloud does not provide a
managed Nomad service, and it is, therefore, necessary to deploy
it manually on a set of Google Cloud VMs. We provide the scripts
used to setup our test nodes in our GitHub repository5.

5.2 Container Provisioning and Networking
This section focuses on three core requirements for CO frameworks:
container starts, container removals, and inter-container network-
ing. We examine readiness and removal times in Kubernetes and
Nomad running in our self-hosted environment and the Google
Cloud. As an additional degree of freedom, we consider the number
of containers 𝑛 that should be started simultaneously. In both Ku-
bernetes and Nomad, declarative methods are used for deployments
(Kubernetes) and tasks (Nomad) to specify the desired number of
running replicas. A warmup run ensures that the test image is al-
ready present on all cluster nodes;therefore the pull time does not
matter in the experiments. The experiment is rather simple: 𝑛 con-
tainers are deployed, and after 30 seconds,𝑛 containers are removed
again. Between two repetitions, there is also a delay of 30 seconds.
We repeat the experiment 100 times in all test environments.

Figure 4a shows the average readiness time per container for
the four test systems. The number of containers to be started is
plotted on the horizontal axis. The error bars indicate the 95 percent
confidence interval (CI) in this and all the following figures. As we
perform 100 repetitions, we can assume that the sample variance
is a good estimation of the population variance, and therefore we
can use the sample variance to calculate a CI [20]. Figure 4a shows
that regardless of the CO framework, the self-hosted environment
8https://doi.org/10.24433/CO.8875394.v3

192

https://doi.org/10.24433/CO.8875394.v3

A Systematic Approach for Benchmarking of Container Orchestration Frameworks ICPE ’23, April 15–19, 2023, Coimbra, Portugal

0

3000

6000

9000

12000

1 2 3 4 5 6 7 8 9 10
Number of Containers

R
ea

di
ne

ss
 T

im
e

[m
s]

Self−hosted K8s
Google Kubernetes Engine
Self−hosted Nomad
Google Cloud Nomad

(a) Readiness Time

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10
Number of Containers

R
em

ov
al

 T
im

e
[m

s]

Self−hosted K8s
Google Kubernetes Engine
Self−hosted Nomad
Google Cloud Nomad

(b) Removal Time

Figure 4: Container provisioning metrics for different CO frameworks and test clusters.

with the older technology stack performs worse than the Google
Cloud VMs. This can be seen in the pairwise comparison between
the red and green, as well as blue and purple bars. Furthermore, the
average readiness time per container increases with the number
of desired containers. This is probably due to queueing effects
during the scheduling process. The only anomalies are the two
Nomad test systems, which show high readiness times with high
variability for low replica numbers. Since this effect repeatedly
occurs in both test environments, it is specific to the CO framework,
not the environment. The investigation of the readiness times shows
that COFFEE can investigate differences between CO frameworks
(use case 1 from Section 3.1) as well as differences between two test
clusters (use case 3).

In contrast, no clear trends can be seen in the average removal
times per container shown in Figure 4b. Looking at all four test
systems, there is no consistent correlation between the number of
containers to remove and the removal time. However, there are
still two takeaways. First, the removal time is significantly lower
than the readiness times, which is in line with our expectations.
Furthermore, we see that self-hosted Nomad performs worst among
the test systems.

As a second baseline test for our clusters, we look at the perfor-
mance of the in-cluster networking. We deploy one test container
per worker node (3 in total). After a 30-second pause, requests
are exchanged between all containers. Thereby, each instance acts
as both sender and receiver. This creates six evaluated routes in
total. As a performance metric, we consider the round-trip time
(RTT) of the messages. After the end of the network tests, the three
test instances are shut down again. The experiment is repeated
100 times, with a 30-second pause between the runs. As an addi-
tional test system, we created a multi-region Kubernetes cluster
in the Google Cloud. One node is located in the compute region
us-west1 (Oregon, US), one in europe-west2 (London), and one in
asia-southeast1 (Singapore). The node specification and software
stack are the same as described for the other Google Cloud VMs.
We expect to measure a significantly higher round-trip time than in
the self-hosted environment and the single-region GKE and Google
Cloud Nomad clusters.

Test system Avg. round-trip time [ms]
Self-hosted K8s 15.07 ± 0.60
Google Kubernetes Engine 24.63 ± 3.46
Self-hosted Nomad 15.17 ± 0.52
Google Cloud Nomad 14.95 ± 0.46
Multi-Region Cluster 396.52 ± 11.47

Table 3: Average round-trip times between two nodes.

Table 3 shows all test systems’ average round-trip times and
confidence intervals. Since the RTT does not vary significantly
between different routes for our four standard test systems, all
routes are included in the calculation of the average, i.e., a total
of 600 measured values. It can be seen that the RTT in the self-
hosted and the Google Cloud Nomad clusters are nearly equal.
In the case of the GKE cluster, we observe slightly higher values.
However, it should be noted that the networking metrics are subject
to measurement errors caused by imperfect time synchronization
between the hosts, as discussed in Section 6.

Furthermore, our hypothesis that the round-trip times in the
multi-regional cluster are significantly higher than in the other
systems is confirmed. Table 3 reports the average value over all
routes, but we also measure significant differences between the
routes in this case. For example, the Oregon-London route was the
fastest, with an average RTT of 267.88ms, followed by the Oregon-
Singapore route with 326.62ms. The slowest route was London-
Singapore, with a 595.07ms average round-trip time. In summary,
we demonstrated that our approach is able to detect differences in
network performance. Further interesting investigations could be
the differences between different container networking solutions,
similar to the works of Bankston and Guo [2] and Zeng et al. [40].
This would match our benchmarking use case 2 from Section 3.1.

5.3 Failure Recovery
After the baseline tests from the previous section, we shift our fo-
cus to more complex experiments. In this section, we examine how
fast our test systems can detect and react to the failure of several
containers. We have already introduced the test procedure as an

193

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Martin Straesser, Jonas Mathiasch, André Bauer, & Samuel Kounev

0

5

10

15

20

0

250

500

750

1000

Self−hosted
K8s

Google
Kubernetes

Engine

Self−hosted
Nomad

Google
Cloud

Nomad

C
ra

sh
 R

ec
ov

er
y

T
im

e
[s

] Failed U
ser R

equests

Figure 5: Failure recovery metrics.

example in Listing 1. In summary, ten containers are started and
stressed with 50 user requests per second using a load generator.
After a warmup period of two minutes, all containers are abruptly
terminated, i.e., the container process exits with a non-zero code.
In parallel, requests are sent at the same rate. We repeated the
experiment 100 times. In all test environments, HTTP-based con-
tainer health checks are configured in intervals of 10 seconds. The
expectation is that after detecting the container crashes, all ten
containers will be restarted. Requests should fail for a short time as
all containers crash almost simultaneously.

We consider the crash recovery time, i.e., the time from the crash
of the application to the point where all ten instances are restarted
and ready, as a performance metric. Furthermore, we look at the
total number of failed user requests reported by the load generator.
Figure 5 shows our measurement results. We see for all four test
systems that the number of failed requests correlates strongly with
the crash recovery time. This was to be expected due to the constant
request rate. Furthermore, we see that Kubernetes has lower crash
recovery times than the Nomad systems in pairwise comparison
within the same environment and in absolute comparison.

The order of magnitude of the measured values is in line with
our expectations considering a simplified model. Let us assume that
the time of the crash and the time of the next HTTP-based health
check are independent. With a deterministic health check interval
of ten seconds, the expected time until the next health check is
five seconds. Suppose we add the removal and readiness time from
Section 5.2 for ten parallel starting containers and a little overhead
to this value. In that case, the result corresponds approximately to
the observed values here. Assuming that the health checks work
reliably, the readiness time of the containers is again one of the
most critical performance factors. Our methodology, as seen from
the confidence intervals, also ensures good repeatability of the
experiments containing container crashes.

5.4 Rolling Updates
In this section, we examine performance metrics related to rolling
updates. The experiment setup is similar to the previous experi-
ment. Ten containers are started and stressed with a request load
of 50 requests per second (req/s). After a 2-minute warmup phase,
all containers are updated to a new version; that is, the image is
changed. To prevent downtimes by terminating all containers at the

0

10

20

30

40

50

0

100

200

300

Self−hosted
K8s

Google
Kubernetes

Engine

Self−hosted
Nomad

Google
Cloud

Nomad

U
pd

at
e

T
im

e
[s

]

Failed U
ser R

equests

Figure 6: Rolling update metrics.

same time, both Nomad and Kubernetes offer settings for rolling
updates. Kubernetes provides two key parameters. First, maxU-
navailable specifies the percentage of running replicas that can be
down at the same time during the update process. Second,maxSurge
specifies how many additional containers can be started during an
update relative to the number of desired replicas. We set maxSurge
and maxUnavailable to 25%, meaning between 8 and 12 pods are
deployed during an update. In Nomad, one can set the number of
containers that can be updated simultaneously (absolute number).
In our experiments, we set this parameter named maxParallel to 2,
similar to the maxUnavailable setting in Kubernetes. In our experi-
ments, a warmup run ensures that both the original image and the
update image are already present on all nodes; that is, no image
pull takes place.

We consider two performance metrics for rolling updates. First,
the update time is the time it takes until all ten test containers have
been updated and become ready. Second, we look at the number of
failed user requests, similar to Section 5.3. Figure 6 shows our mea-
surement results for the four test systems. Similar to the previous
experiments, the Google Cloud VMs perform significantly better
considering pairwise comparison with the self-hosted environment.
We see an excellent update performance in the self-hosted Kuber-
netes environment with an update time of 10 to 15 seconds and
almost no failed requests (average below 1). Google Kubernetes
Engine offers the fastest update with an update time well below
10 seconds, but up to 300 user requests fail, corresponding to a
downtime of about 6 seconds. The total update times for Nomad
are significantly higher than for Kubernetes. Furthermore, a small
but measurable number of requests fail for those test systems.

The results obtained require a more detailed analysis. Figure 7
shows two exemplary runs for Google Kubernetes Engine and
Google Cloud Nomad. The number of failed requests over time is
shown in red. In addition, we depict the number of ready instances,
that is, instances registered in the COFFEE controller, in black. If
the number of ready instances decreases, a container of the old
version is shut down. If the number of ready instances increases,
a container with the new image is deployed. In Figure 7a, we see
that the update for the Google Kubernetes Engine is very fast. The
time between the first event (the removal of the first container) and
the last event (the removal of the last container) is just about four
seconds. Furthermore, we see that requests fail mainly towards or

194

A Systematic Approach for Benchmarking of Container Orchestration Frameworks ICPE ’23, April 15–19, 2023, Coimbra, Portugal

Test system Avg. load rate [req/s] Std. Dev.
Self-hosted K8s 4.567 1.777
Google Kubernetes Engine 4.565 1.775
Self-hosted Nomad 4.624 0.352
Google Cloud Nomad 4.431 0.618
Table 4: Received user requests per second and instance.

after the end of the update process, that is, when all old containers
have been terminated. This can be explained by the fact that some
requests are still routed to IP addresses that are no longer occupied.
We further see that there are always at least 8, but at some points,
more than the expected 12 containers deployed and ready. There
are two possible causes for this unexpected behavior: First, the
Kubernetes documentation states that terminating pods do not
belong to the available quantity and, therefore, more pods than
expected can be deployed during the update.9 Second, it can also
be a matter of measurement errors, as the event are separated by
only a few milliseconds.

In Figure 7b, we see that the update process in the Nomad system
takes significantly longer than in the Kubernetes system. Accord-
ing to our setting of the maxParallel parameter, between 8 and
10 containers are deployed at any time. Similar to the Kubernetes
system, most request failures occur toward the end of the update
process. However, the total number of failed requests is signifi-
cantly lower. Our investigations motivate to set minimum healthy
times/cooldown times for rolling updates to ensure that sufficient
containers are always accessible and routing tables can be updated.

We look at the empirical load distribution over individual in-
stances to understand how load balancing works in the bench-
marked systems. Table 4 shows the average number of requests
received by an instance per second and its standard deviation. The
numbers have been measured in the rolling update experiments.
However, they have also been confirmed in the context of the failure
recovery experiments from Section 5.3. The average request rate
is calculated as follows: Every test container counts the number
of user requests it receives. In addition, it captures both its start
and termination time. The difference between termination and start
time is the total instance runtime. To calculate the request rate, we
divide the total received requests by the instance runtime.

We see significant differences between Kubernetes and Nomad
in terms of load balancing. Kubernetes distributes requests much
more inequally among instances than Nomad. This indicates a dif-
ferent load-balancing algorithm. Nomad is much closer to an equal
distribution with a significantly lower standard deviation. There is
no significant difference between different cluster environments.
This shows that COFFEE can capture empirical results for load bal-
ancing metrics. This enables investigations of load balancers that
are not open-source, for instance, the Google Cloud Load Balancer.
Furthermore, one can compare different load-balancing options, for
example, as offered by Nomad.10 As mentioned in Section 5.1, we
use HAProxy load balancing for our Nomad test systems, but other
open-source load balancers might be future benchmarking targets.
9https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#updating-
a-deployment
10https://developer.hashicorp.com/nomad/tutorials/load-balancing/load-balancing

6 DISCUSSION
In this section, we give a short summary of our main findings from
Section 5 and point out limitations and open challenges. All in all,
we conclude from our case studies that COFFEE is able to capture
several performance metrics for container orchestration frame-
works. We could detect performance differences for the same or-
chestration framework running on different hardware (self-hosted
vs. Google Cloud environment), as well as for different orchestra-
tion frameworks running on the same hardware (Kubernetes vs.
Nomad). Our results indicate that Kubernetes outperforms Nomad
in many scenarios, but more experiments in different environments
are needed to solidify this statement.

This leads to the limitations and open challenges of this work.
Our approach and the COFFEE framework provide a basis for future
work and numerous case studies in the area of benchmarking of CO
frameworks. However, our work does not yet represent a complete
benchmark as defined by the latest empirical standards [11]. The
main missing points are representative workloads for container
orchestration frameworks. In the context of COFFEE, this means we
need realistic test scripts. Our case studies cover the basic functions
of CO frameworks. More enhanced studies would be enabled if
more data from production workloads of CO frameworks were
available.

One aspect we have not yet evaluated in this paper is the size of
the test cluster and the scalability of our approach. The influence
of the number of nodes on metrics like the container start time or
load distribution is still to be investigated. We reduced the number
and size of requests to the COFFEE controller as far as possible in
the design phase. However, there is still proof needed that COF-
FEE can handle complex test scripts in large test clusters. Further
optimization or redundancy of the COFFEE controller might be
necessary. Another current limitation is that only one type of test
container can be deployed in the cluster. In future work, one could
introduce different types of testing containers, for instance, with
different resource requirements, to evaluate the impact on readiness
times. As discussed in Section 3.1, we limited our case studies to
the comparison of different test environments and orchestration
frameworks. We left the use case of tuning an orchestration plat-
form open for future work. Changing the configuration of the CO
frameworks might change the benchmarking results presented in
this study, which is why our results from the case studies cannot
be generalized. However, we decided to show the usage of COFFEE
with different orchestration platforms and test environments to un-
derline COFFEE’s broad use cases. For studies comparing different
orchestrator configurations, we refer to related work in Section 7.

In our case studies, we have not yet covered all the core tasks
of CO frameworks, especially autoscaling and placement. COFFEE
can track placement decisions and also supports autoscaling exper-
iments by supporting dynamic loads or reconfiguration of the load
endpoint. These two tasks, in particular, have the characteristic
that they are commonly evaluated with application-specific met-
rics like response times and do not offer directly interpretable and
application-agnostic metrics. For these purposes, specialized frame-
works such as Theodolite [12] for scaling might be preferred in
some use cases. The full potential of COFFEE could be achieved by
including system-level metrics and orchestrator-specific data, such

195

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#updating-a-deployment
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#updating-a-deployment
https://developer.hashicorp.com/nomad/tutorials/load-balancing/load-balancing

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Martin Straesser, Jonas Mathiasch, André Bauer, & Samuel Kounev

0

5

10

15

0

10

20

30

40

50

0 5 10 15 20
Time [s]

In
st

an
ce

s

Failed U
ser R

equests

(a) Google Kubernetes Engine

0

5

10

15

0

10

20

30

40

50

0 5 10 15 20 25
Time [s]

In
st

an
ce

s

Failed U
ser R

equests

(b) Google Cloud Nomad

Figure 7: Detailed view on rolling updates for exemplary runs.

as log data, to track also fine-grained metrics, such as the runtime
of load balancing algorithms [39]. However, including more metrics
raises the question of how to aggregate these metrics, e.g., to a total
score for the whole CO framework. More measurements with more
frameworks and in different environments must be conducted to
propose such an overall score. In this paper, we show the usage of
COFFEE with its minimum requirements to make clear that our
approach does not rely on advanced monitoring capabilities and
the presence of system-level or orchestrator-specific metrics.

We reduce statistical errors by repeating all measurements 100
times. However, as known from previous studies [22, 27], measure-
ments in public clouds are always subject to variability, and results
in other settings, for instance, other compute regions, might be
different. More empirical results must be collected to allow fur-
ther claims on the performance of different cloud environments.
Note that we selected nodes with more computing resources than
required to avoid hardware bottlenecks. In test runs of our work-
loads, CPU and memory utilization of all nodes stayed far below
50%. In our case, the most significant source of uncertainty is the
time synchronization between the nodes. Some operations rely
on timestamps from different machines. This influence is espe-
cially significant for network measurements. We use network time
protocol-based (NTP) synchronization between hosts in all test clus-
ters. Better synchronization methods like precision time protocol
(PTP) are not supported on Google Cloud virtual machines as they
do not fulfill specific network interface requirements.

7 RELATEDWORK
With the emerging trend of containers and the release of Docker and
Kubernetes, there have been several studies that have made compar-
isons between individual orchestration frameworks. Al Jawarneh
et al. [17] focus on provisioning and availability metrics for Kuber-
netes, Docker Swarm, Mesos, and Cattle. Truyen et al. [35] conduct
a comprehensive feature comparison study between Docker Swarm,
Mesos, Kubernetes, and other orchestration frameworks. Pan et
al. [26] compare the performance properties of Kubernetes and
determine its influence on the execution time of cloud applications.
Fayos-Jordan et al. [8] compare Kubernetes and Docker Swarm for
IoT use cases. All these studies have in common that they were

conducted before the extensive adoption of CO frameworks in
production systems. Consequently, they do not cover the latest
improvements, and some results are even outdated, e.g., the classic
Docker Swarm features are now deprecated.11

Besides the papers investigating container orchestration frame-
works, some works analyze selected orchestration tasks and their
performance. Bozoki et al. [4] focus on the resilience testing of
Kubernetes and especially examine pod restart times. Similar to
our work, fault injection is used to force restarts. Kjorveziroski
and Filiposka [19] compare different deployment options of Kuber-
netes for serverless applications based on start and response time
metrics. Multiple other works [3, 32] investigate performance and
resource consumption metrics for different Kubernetes-like frame-
works. In the pre-container era, performance analysis approaches
for cloud environments targeted provisioning times and through-
puts [7, 16, 30]. Yu et al. [39] evaluate load balancing algorithms
in the IoT sector for interconnected microservices. They explicitly
consider the time to decision, the maximum runtime of the load
balancing algorithms, as a performance metric. Amaral et al. [1]
evaluate the performance of container-based microservices and tar-
get the issue of network performance, throughput, and latency. In
the model-based approach of Medel et al. [23], the used bandwidth
of containers within one or more Kubernetes pods is analyzed. The
works of Zeng et al. [40] and Bankston and Guo [2] focus on the
empirical evaluation of different container networking solutions.

Lei et al. [21] focus on the scalability of Kubernetes clusters. Pod
startup times, latencies of API callbacks, and other metrics are ana-
lyzed in differently-sized clusters. Henning and Hasselbring [12]
focus on scalability benchmarking of cloud-native applications.
Therefore, they also provide tooling for Kubernetes and conduct
experiments on the Google Cloud Platform. Other benchmarking
tools, especially for Kubernetes, include kubestr [5], which eval-
uates the performance of different cluster storage options, and
kube-bench [29], which is concerned with the security evaluation
of Kubernetes clusters. K-Bench [38] is a framework for assessing
the performance of Kubernetes’ control and data plane with support
for pod start, networking, and I/O metrics. Nomad has not been

11https://docs.docker.com/engine/deprecated/

196

https://docs.docker.com/engine/deprecated/

A Systematic Approach for Benchmarking of Container Orchestration Frameworks ICPE ’23, April 15–19, 2023, Coimbra, Portugal

investigated much in the scientific literature, only in conjunction
with the deployment of network services [36, 37]. To the best of our
knowledge, no recent work focuses on as many CO tasks as this
work and supports different container orchestration frameworks.

8 CONCLUSION
CO frameworks play essential roles in modern cloud computing
paradigms such as cloud-native or serverless computing and per-
form many performance-relevant tasks in parallel. To enable com-
prehensive benchmarking of CO frameworks, it is therefore impor-
tant to cover the large variety of orchestration tasks. Furthermore,
a generic approach must be chosen to allow comparing different
frameworks and technology stacks. This paper presents the first
benchmarking approach for CO frameworks that covers several CO
tasks and has been tested with multiple CO frameworks. Therefore,
we first set a benchmarking scope by defining tasks and require-
ments for CO frameworks. Subsequently, we describe performance
metrics and introduce COFFEE, a benchmarking framework that
allows the definition and execution of complex benchmarking sce-
narios. We demonstrate the relevance of the problem and the useful-
ness of our approach in case studies with Kubernetes and Nomad in
a self-hosted environment and on Google Cloud VM instances. Our
studies found significant performance differences, e.g., regarding
container readiness times and rolling updates.

As future work, more empirical studies must be conducted to
evaluate and extend our approach. With sufficient data and expe-
rience, realistic scenarios and aggregated metrics, such as a total
performance score of CO frameworks, can be defined. Potential
experiments of interest include systematic studies on the perfor-
mance of CO frameworks in public and private clouds, comparison,
ranking, and tuning of different frameworks and configurations,
and regression testing of CO frameworks. Our work thus provides
the basis for various enhanced studies, and with COFFEE, a ready-
to-use and extensible benchmarking framework for CO frameworks
is available.

REFERENCES
[1] Marcelo Amaral, Jordà Polo, David Carrera, Iqbal Mohomed, Merve Unuvar, and

Malgorzata Steinder. 2015. Performance Evaluation of Microservices Architec-
tures Using Containers. In 2015 IEEE 14th International Symposium on Network
Computing and Applications. 27–34.

[2] Ryan Bankston and Jinhua Guo. 2018. Performance of Container Network Tech-
nologies in Cloud Environments. In 2018 IEEE International Conference on Elec-
tro/Information Technology (EIT). 0277–0283.

[3] Sebastian Böhm and Guido Wirtz. 2021. Profiling Lightweight Container Plat-
forms: MicroK8s and K3s in Comparison to Kubernetes.. In ZEUS. 65–73.

[4] Szilárd Bozóki, Jenő Szalontai, Dániel Pethő, Imre Kocsis, András Pataricza, Péter
Suskovics, and Benedek Kovács. 2020. Application of Extreme Value Analysis
for Characterizing the Execution Time of Resilience Supporting Mechanisms
in Kubernetes. In Dependable Computing - EDCC 2020 Workshops. Springer Inter-
national Publishing, Cham, 185–199.

[5] Git Repository by Kastenhq. 2022. Kubestr. Retrieved October 14, 2022 from
https://github.com/kastenhq/kubestr

[6] Emiliano Casalicchio. 2019. Container Orchestration: A Survey. Springer Interna-
tional Publishing, Cham, 221–235.

[7] Mohan Baruwal Chhetri, Sergei Chichin, Quoc Bao Vo, and Ryszard Kowalczyk.
2013. Smart CloudBench – Automated Performance Benchmarking of the Cloud.
In 2013 IEEE Sixth International Conference on Cloud Computing. 414–421.

[8] Rafael Fayos-Jordan, Santiago Felici-Castell, Jaume Segura-Garcia, Jesus Lopez-
Ballester, and Maximo Cobos. 2020. Performance comparison of container orches-
tration platforms with low cost devices in the fog, assisting Internet of Things
applications. Journal of Network and Computer Applications 169 (2020), 102788.

[9] Cloud Native Computing Foundation. 2022. CNCF Annual Survey 2021. Retrieved
October 13, 2022 from https://www.cncf.io/reports/cncf-annual-survey-2021/

[10] VMware Glossary. 2022. What is container orchestration? Retrieved Octo-
ber 14, 2022 from https://www.vmware.com/topics/glossary/content/container-
orchestration.html

[11] Wilhelm Hasselbring. 2021. Benchmarking as Empirical Standard in Software
Engineering Research. In Evaluation and Assessment in Software Engineering
(Trondheim, Norway) (EASE 2021). Association for Computing Machinery, New
York, NY, USA, 365–372.

[12] Sören Henning andWilhelm Hasselbring. 2022. A configurable method for bench-
marking scalability of cloud-native applications. Empirical Software Engineering
27, 6 (2022), 1–42.

[13] Nikolas Roman Herbst, Samuel Kounev, Andreas Weber, and Henning Groenda.
2015. BUNGEE: An Elasticity Benchmark for Self-Adaptive IaaS Cloud Environ-
ments. In 2015 IEEE/ACM 10th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems. 46–56.

[14] IBM Cloud Learn Hub. 2021. Container orchestration. Retrieved October 14, 2022
from https://www.ibm.com/cloud/learn/container-orchestration

[15] Red Hat Inc. 2022. What is container orchestration? Retrieved October
14, 2022 from https://www.redhat.com/en/topics/containers/what-is-container-
orchestration

[16] Alexandru Iosup, Simon Ostermann, M. Nezih Yigitbasi, Radu Prodan, Thomas
Fahringer, and Dick Epema. 2011. Performance Analysis of Cloud Computing
Services for Many-Tasks Scientific Computing. IEEE Transactions on Parallel and
Distributed Systems 22, 6 (2011), 931–945.

[17] Isam Mashhour Al Jawarneh, Paolo Bellavista, Filippo Bosi, Luca Foschini,
Giuseppe Martuscelli, Rebecca Montanari, and Amedeo Palopoli. 2019. Container
Orchestration Engines: A Thorough Functional and Performance Comparison.
In ICC 2019 - 2019 IEEE International Conference on Communications (ICC). 1–6.

[18] Asif Khan. 2017. Key Characteristics of a Container Orchestration Platform to
Enable a Modern Application. IEEE Cloud Computing 4, 5 (2017), 42–48.

[19] Vojdan Kjorveziroski and Sonja Filiposka. 2022. Kubernetes distributions for the
edge: serverless performance evaluation. The Journal of Supercomputing (2022),
1–28.

[20] Samuel Kounev, Klaus-Dieter Lange, and Joakim Von Kistowski. 2021. Systems
Benchmarking: For Scientists and Engineers. Springer.

[21] Qing Lei, Weidong Liao, Yingtao Jiang, Mei Yang, and Haifeng Li. 2019. Perfor-
mance and Scalability Testing Strategy Based on Kubemark. In 2019 IEEE 4th
International Conference on Cloud Computing and Big Data Analysis (ICCCBDA).
511–516.

[22] Philipp Leitner and Jürgen Cito. 2016. Patterns in the Chaos—A Study of Perfor-
mance Variation and Predictability in Public IaaS Clouds. ACM Trans. Internet
Technol. 16, 3, Article 15 (apr 2016).

[23] Víctor Medel, Omer Rana, José Ángel Bañares, and Unai Arronategui. 2016. Mod-
elling Performance & Resource Management in Kubernetes. In 2016 IEEE/ACM
9th International Conference on Utility and Cloud Computing (UCC). 257–262.

[24] Mohamed Mekki, Nassima Toumi, and Adlen Ksentini. 2022. Microservices
Configurations and the Impact on the Performance in Cloud Native Environments.
In 2022 IEEE 47th Conference on Local Computer Networks (LCN). 239–244.

[25] HashiCorp Nomad. 2022. Who Uses Nomad. Retrieved October 14, 2022 from
https://www.nomadproject.io/docs/who-uses-nomad

[26] Yao Pan, Ian Chen, Francisco Brasileiro, Glenn Jayaputera, and Richard Sinnott.
2019. A Performance Comparison of Cloud-Based Container Orchestration Tools.
In 2019 IEEE International Conference on Big Knowledge (ICBK). 191–198.

[27] Arnaldo Pereira Ferreira and Richard Sinnott. 2019. A Performance Evaluation of
Containers Running on Managed Kubernetes Services. In 2019 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom). 199–208.

[28] Maria A Rodriguez and Rajkumar Buyya. 2019. Container-based cluster orchestra-
tion systems: A taxonomy and future directions. Software: Practice and Experience
49, 5 (2019), 698–719.

[29] Aqua Security. 2022. Kube-bench. Retrieved October 14, 2022 from https://github.
com/aquasecurity/kube-bench

[30] Marcio Silva, Michael R. Hines, Diego Gallo, Qi Liu, Kyung Dong Ryu, and Dilma
da Silva. 2013. CloudBench: Experiment Automation for Cloud Environments. In
2013 IEEE International Conference on Cloud Engineering (IC2E). 302–311.

[31] Martin Straesser, Johannes Grohmann, Jóakim von Kistowski, Simon Eismann,
André Bauer, and Samuel Kounev. 2022. Why Is It Not Solved Yet? Challenges for
Production-Ready Autoscaling (ICPE ’22). Association for Computing Machinery,
New York, NY, USA, 105–115.

[32] Sergii Telenyk, Oleksii Sopov, Eduard Zharikov, and Grzegorz Nowakowski. 2021.
A Comparison of Kubernetes and Kubernetes-Compatible Platforms. In 2021
11th IEEE International Conference on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications (IDAACS), Vol. 1. 313–317.

[33] Eddy Truyen, Matt Bruzek, Dimitri Van Landuyt, Bert Lagaisse, and Wouter
Joosen. 2018. Evaluation of Container Orchestration Systems for Deploying and
Managing NoSQL Database Clusters. In 2018 IEEE 11th International Conference
on Cloud Computing (CLOUD). 468–475.

[34] Eddy Truyen, Dimitri Van Landuyt, Bert Lagaisse, and Wouter Joosen. 2019.
Performance Overhead of Container Orchestration Frameworks for Management
of Multi-Tenant Database Deployments. In Proceedings of the 34th ACM/SIGAPP

197

https://github.com/kastenhq/kubestr
https://www.cncf.io/reports/cncf-annual-survey-2021/
https://www.vmware.com/topics/glossary/content/container-orchestration.html
https://www.vmware.com/topics/glossary/content/container-orchestration.html
https://www.ibm.com/cloud/learn/container-orchestration
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://www.nomadproject.io/docs/who-uses-nomad
https://github.com/aquasecurity/kube-bench
https://github.com/aquasecurity/kube-bench

ICPE ’23, April 15–19, 2023, Coimbra, Portugal Martin Straesser, Jonas Mathiasch, André Bauer, & Samuel Kounev

Symposium on Applied Computing (Limassol, Cyprus) (SAC ’19). Association for
Computing Machinery, New York, NY, USA, 156–159.

[35] Eddy Truyen, Dimitri Van Landuyt, Davy Preuveneers, Bert Lagaisse, andWouter
Joosen. 2019. A Comprehensive Feature Comparison Study of Open-Source
Container Orchestration Frameworks. Applied Sciences 9, 5 (2019).

[36] Alexandros Valantasis, Nikos Makris, and Thanasis Korakis. 2022. Orchestration
Software for Resource Constrained Datacenters: an Experimental Evaluation.
In 2022 IEEE 8th International Conference on Network Softwarization (NetSoft).
121–126.

[37] Alexandros Valantasis, Nikos Makris, Christos Zarafetas, and Thanasis Korakis.
2021. Experimental Evaluation of Orchestration Software for Virtual Network

Functions. In 2021 IEEE Wireless Communications and Networking Conference
(WCNC). 1–6.

[38] VMware. 2022. K-bench. Retrieved January 23, 2023 from https://github.com/
vmware-tanzu/k-bench

[39] Ruozhou Yu, Vishnu Teja Kilari, Guoliang Xue, and Dejun Yang. 2019. Load
Balancing for Interdependent IoT Microservices. In IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications. 298–306.

[40] Hao Zeng, Baosheng Wang, Wenping Deng, and Weiqi Zhang. 2017. Measure-
ment and Evaluation for Docker Container Networking. In 2017 International
Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery
(CyberC). 105–108.

198

https://github.com/vmware-tanzu/k-bench
https://github.com/vmware-tanzu/k-bench

	Abstract
	1 Introduction
	2 Background
	3 Benchmarking Approach
	3.1 Benchmarking Use Cases and Scope
	3.2 Core Requirements and Metrics
	3.3 Benchmark Architecture

	4 Benchmarking Framework
	5 Case Studies
	5.1 Technical Setup
	5.2 Container Provisioning and Networking
	5.3 Failure Recovery
	5.4 Rolling Updates

	6 Discussion
	7 Related Work
	8 Conclusion
	References

